Update app.py
Browse files
app.py
CHANGED
|
@@ -3,22 +3,27 @@ from fastai.vision.all import *
|
|
| 3 |
import skimage
|
| 4 |
|
| 5 |
learn = load_learner('export.pkl')
|
| 6 |
-
|
| 7 |
labels = learn.dls.vocab
|
|
|
|
| 8 |
def predict(img):
|
| 9 |
img = PILImage.create(img)
|
| 10 |
-
pred,pred_idx,probs = learn.predict(img)
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
return prediction
|
| 14 |
-
|
| 15 |
|
| 16 |
title = "Breast cancer detection with Deep Transfer Learning(ResNet18)."
|
| 17 |
-
description = "<p style='text-align: center<p>"
|
| 18 |
-
article="<p style='text-align: center'>Web app is built and managed by Addai Fosberg
|
| 19 |
examples = ['img1.jpeg', 'img2.jpeg']
|
| 20 |
-
enable_queue=True
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
|
|
|
| 3 |
import skimage
|
| 4 |
|
| 5 |
learn = load_learner('export.pkl')
|
|
|
|
| 6 |
labels = learn.dls.vocab
|
| 7 |
+
|
| 8 |
def predict(img):
|
| 9 |
img = PILImage.create(img)
|
| 10 |
+
pred, pred_idx, probs = learn.predict(img)
|
| 11 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
title = "Breast cancer detection with Deep Transfer Learning(ResNet18)."
|
| 14 |
+
description = "<p style='text-align: center'><b>As a radiologist or oncologist, it is crucial to know what is wrong with a breast x-ray image.</b><br><b>Upload the breast X-ray image to know what is wrong with a patient's breast with or without implant. This product is from the findings of my (Team) published research paper: <a href='https://iopscience.iop.org/article/10.1088/2057-1976/ad3cdf' target='_blank' style='color: blue;'>read paper</a>. Learn more about me: <a href='https://www.linkedin.com/in/fosberg-addai-53a6991a7/' target='_blank' style='color: blue;'>Fosberg Addai</a></b></p>"
|
| 15 |
+
article = "<p style='text-align: center'><b>Web app is built and managed by Addai Fosberg</b></p>"
|
| 16 |
examples = ['img1.jpeg', 'img2.jpeg']
|
|
|
|
| 17 |
|
| 18 |
+
iface = gr.Interface(
|
| 19 |
+
fn=predict,
|
| 20 |
+
inputs=gr.Image(shape=(512, 512)),
|
| 21 |
+
outputs=gr.Label(num_top_classes=3),
|
| 22 |
+
title=title,
|
| 23 |
+
description=description,
|
| 24 |
+
article=article,
|
| 25 |
+
examples=examples,
|
| 26 |
+
enable_queue=True
|
| 27 |
+
)
|
| 28 |
|
| 29 |
+
iface.launch()
|