import gradio as gr from fastai.vision.all import * import skimage learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Breast cancer detection with AI(Deep Transfer Learning)" description = "

As a radiologist or oncologist, it is crucial to know what is wrong with a breast x-ray image.

" article="

Upload the breast X-ray image to know what is wrong with a patients breast with or without inplant

" examples = ['img1.JPEG', 'img2.JPEG'] #interpretation='default' enable_queue=True gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,enable_queue=enable_queue).launch()