import gradio as gr from fastai.vision.all import load_learner, PILImage learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} iface = gr.Interface( fn=predict, inputs=gr.Image(), outputs=gr.Label(num_top_classes=3), title="Breast Cancer Detection", description="Upload a breast X-ray image to detect potential issues.", examples=['img1.jpeg', 'img2.jpeg'] ) iface.launch()