Adipta commited on
Commit
331aefd
·
verified ·
1 Parent(s): 056373e
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -7,7 +7,7 @@ data = pd.read_csv(r"data_final.csv")
7
  def product_recommender(customer_id):
8
  list_predicted = []
9
 
10
- for id in df_ph_final['product_id'].unique():
11
  preds = list(algo.predict(customer_id, id))
12
  product_id = preds[1]
13
  product_score = preds[3]
@@ -17,11 +17,11 @@ def product_recommender(customer_id):
17
  top_5_products_raw = sorted(list_predicted, key=lambda x:x[1], reverse=True)[:5]
18
  top_5_products = [product[0] for product in top_5_products_raw]
19
 
20
- product_1_category = df_ph_final[df_ph_final['product_id']==top_5_products[0]]['category'].values[0]
21
- product_2_category = df_ph_final[df_ph_final['product_id']==top_5_products[1]]['category'].values[0]
22
- product_3_category = df_ph_final[df_ph_final['product_id']==top_5_products[2]]['category'].values[0]
23
- product_4_category = df_ph_final[df_ph_final['product_id']==top_5_products[3]]['category'].values[0]
24
- product_5_category = df_ph_final[df_ph_final['product_id']==top_5_products[4]]['category'].values[0]
25
 
26
  result_1 = f"Recommendation Product ID {top_5_products[0]} with Category {product_1_category}"
27
  result_2 = f"Recommendation Product ID {top_5_products[1]} with Category {product_2_category}"
 
7
  def product_recommender(customer_id):
8
  list_predicted = []
9
 
10
+ for id in data['product_id'].unique():
11
  preds = list(algo.predict(customer_id, id))
12
  product_id = preds[1]
13
  product_score = preds[3]
 
17
  top_5_products_raw = sorted(list_predicted, key=lambda x:x[1], reverse=True)[:5]
18
  top_5_products = [product[0] for product in top_5_products_raw]
19
 
20
+ product_1_category = data[data['product_id']==top_5_products[0]]['category'].values[0]
21
+ product_2_category = data[data['product_id']==top_5_products[1]]['category'].values[0]
22
+ product_3_category = data[data['product_id']==top_5_products[2]]['category'].values[0]
23
+ product_4_category = data[data['product_id']==top_5_products[3]]['category'].values[0]
24
+ product_5_category = data[data['product_id']==top_5_products[4]]['category'].values[0]
25
 
26
  result_1 = f"Recommendation Product ID {top_5_products[0]} with Category {product_1_category}"
27
  result_2 = f"Recommendation Product ID {top_5_products[1]} with Category {product_2_category}"