Spaces:
Sleeping
Sleeping
File size: 19,967 Bytes
0b0fa7c 19a9439 3019fd8 feca185 0b0fa7c 19a9439 3019fd8 0b0fa7c 19a9439 0b0fa7c feca185 0b0fa7c feca185 19a9439 3019fd8 19a9439 0b0fa7c 19a9439 3019fd8 19a9439 0b0fa7c 19a9439 0b0fa7c 19a9439 0b0fa7c feca185 19a9439 feca185 0b0fa7c feca185 0b0fa7c feca185 0b0fa7c 19a9439 0b0fa7c feca185 0b0fa7c 19a9439 0b0fa7c 19a9439 0b0fa7c 19a9439 feca185 19a9439 0b0fa7c 3019fd8 19a9439 0b0fa7c 19a9439 feca185 19a9439 feca185 19a9439 0b0fa7c 19a9439 0b0fa7c 3019fd8 0b0fa7c 3019fd8 0b0fa7c 3019fd8 0b0fa7c 3019fd8 0b0fa7c 3019fd8 0b0fa7c 3019fd8 0b0fa7c 3019fd8 0b0fa7c 3019fd8 0b0fa7c 3019fd8 0b0fa7c 3019fd8 0b0fa7c 3019fd8 0b0fa7c 3019fd8 19a9439 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
# app.py
import streamlit as st
from streamlit_option_menu import option_menu
from langchain_groq import ChatGroq
from langchain_core.prompts import PromptTemplate
import fitz # PyMuPDF
import requests
from bs4 import BeautifulSoup
import uuid
import plotly.express as px
import re
import pandas as pd
import json
# Initialize the LLM with your Groq API key from Streamlit secrets
llm = ChatGroq(
temperature=0,
groq_api_key=st.secrets["groq_api_key"],
model_name="llama-3.1-70b-versatile"
)
def extract_text_from_pdf(pdf_file):
"""
Extracts text from an uploaded PDF file.
"""
text = ""
try:
with fitz.open(stream=pdf_file.read(), filetype="pdf") as doc:
for page in doc:
text += page.get_text()
return text
except Exception as e:
st.error(f"Error extracting text from resume: {e}")
return ""
def extract_job_description(job_link):
"""
Fetches and extracts job description text from a given URL.
"""
try:
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64)"
}
response = requests.get(job_link, headers=headers)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# Adjust selectors based on the website's structure for better extraction
job_description = soup.get_text(separator='\n')
return job_description.strip()
except Exception as e:
st.error(f"Error fetching job description: {e}")
return ""
def extract_requirements(job_description):
"""
Uses Groq to extract job requirements from the job description.
"""
prompt_text = f"""
The following is a job description:
{job_description}
Extract the list of job requirements, qualifications, and skills from the job description. Provide them as a numbered list.
Requirements:
"""
prompt = PromptTemplate.from_template(prompt_text)
chain = prompt | llm
response = chain.invoke({})
requirements = response.content.strip()
return requirements
def generate_email(job_description, requirements, resume_text):
"""
Generates a personalized cold email using Groq based on the job description, requirements, and resume.
"""
prompt_text = f"""
You are Adithya S Nair, a recent Computer Science graduate specializing in Artificial Intelligence and Machine Learning. Craft a concise and professional cold email to a potential employer based on the following information:
**Job Description:**
{job_description}
**Extracted Requirements:**
{requirements}
**Your Resume:**
{resume_text}
**Email Requirements:**
- **Introduction:** Briefly introduce yourself and mention the specific job you are applying for.
- **Body:** Highlight your relevant skills, projects, internships, and leadership experiences that align with the job requirements.
- **Value Proposition:** Explain how your fresh perspective and recent academic knowledge can add value to the company.
- **Closing:** Express enthusiasm for the opportunity, mention your willingness for an interview, and thank the recipient for their time.
**Email:**
"""
prompt = PromptTemplate.from_template(prompt_text)
chain = prompt | llm
response = chain.invoke({})
email_text = response.content.strip()
return email_text
def generate_cover_letter(job_description, requirements, resume_text):
"""
Generates a personalized cover letter using Groq based on the job description, requirements, and resume.
"""
prompt_text = f"""
You are Adithya S Nair, a recent Computer Science graduate specializing in Artificial Intelligence and Machine Learning. Compose a personalized and professional cover letter based on the following information:
**Job Description:**
{job_description}
**Extracted Requirements:**
{requirements}
**Your Resume:**
{resume_text}
**Cover Letter Requirements:**
1. **Greeting:** Address the hiring manager by name if available; otherwise, use a generic greeting such as "Dear Hiring Manager."
2. **Introduction:** Begin with an engaging opening that mentions the specific position you are applying for and conveys your enthusiasm.
3. **Body:**
- **Skills and Experiences:** Highlight relevant technical skills, projects, internships, and leadership roles that align with the job requirements.
- **Alignment:** Demonstrate how your academic background and hands-on experiences make you a suitable candidate for the role.
4. **Value Proposition:** Explain how your fresh perspective, recent academic knowledge, and eagerness to learn can contribute to the company's success.
5. **Conclusion:** End with a strong closing statement expressing your interest in an interview, your availability, and gratitude for the hiring manager’s time and consideration.
6. **Professional Tone:** Maintain a respectful and professional tone throughout the letter.
**Cover Letter:**
"""
prompt = PromptTemplate.from_template(prompt_text)
chain = prompt | llm
response = chain.invoke({})
cover_letter = response.content.strip()
return cover_letter
def extract_skills(text):
"""
Extracts a list of skills from the resume text using Groq.
"""
prompt_text = f"""
Extract a comprehensive list of technical and soft skills from the following resume text. Provide the skills as a comma-separated list.
Resume Text:
{text}
Skills:
"""
prompt = PromptTemplate.from_template(prompt_text)
chain = prompt | llm
response = chain.invoke({})
skills = response.content.strip()
# Clean and split the skills
skills_list = [skill.strip() for skill in re.split(',|\\n', skills) if skill.strip()]
return skills_list
def suggest_keywords(resume_text, job_description=None):
"""
Suggests additional relevant keywords to enhance resume compatibility with ATS.
"""
prompt_text = f"""
Analyze the following resume text and suggest additional relevant keywords that can enhance its compatibility with Applicant Tracking Systems (ATS). If a job description is provided, tailor the keywords to align with the job requirements.
Resume Text:
{resume_text}
Job Description:
{job_description if job_description else "N/A"}
Suggested Keywords:
"""
prompt = PromptTemplate.from_template(prompt_text)
chain = prompt | llm
response = chain.invoke({})
keywords = response.content.strip()
keywords_list = [keyword.strip() for keyword in re.split(',|\\n', keywords) if keyword.strip()]
return keywords_list
def get_job_recommendations(resume_text, location="India"):
"""
Fetches job recommendations using the JSearch API based on the user's skills.
"""
# Extract skills from resume
skills = extract_skills(resume_text)
query = " ".join(skills) if skills else "Software Engineer"
url = "https://jsearch.p.rapidapi.com/search"
headers = {
"X-RapidAPI-Key": st.secrets["rapidapi_key"], # Accessing RapidAPI key securely
"X-RapidAPI-Host": "jsearch.p.rapidapi.com"
}
params = {
"query": query,
"page": "1",
"num_pages": "1",
"size": "20",
"remote_filter": "false",
"location": location,
"sort": "relevance",
"salary_min": "0",
"salary_max": "0",
"salary_currency": "INR",
"radius": "0",
"company_type": "",
"job_type": "",
"degree_level": "",
"career_level": "",
"include_remote": "false"
}
try:
response = requests.get(url, headers=headers, params=params)
response.raise_for_status()
data = response.json()
jobs = data.get("data", [])
job_list = []
for job in jobs:
job_info = {
"title": job.get("job_title"),
"company": job.get("employer", {}).get("name"),
"link": job.get("job_apply_link") or job.get("job_listing_url")
}
job_list.append(job_info)
return job_list
except Exception as e:
st.error(f"Error fetching job recommendations: {e}")
return []
def create_skill_distribution_chart(skills):
"""
Creates a bar chart showing the distribution of skills.
"""
skill_counts = {}
for skill in skills:
skill_counts[skill] = skill_counts.get(skill, 0) + 1
df = pd.DataFrame(list(skill_counts.items()), columns=['Skill', 'Count'])
fig = px.bar(df, x='Skill', y='Count', title='Skill Distribution')
return fig
def create_experience_timeline(resume_text):
"""
Creates an experience timeline from the resume text.
"""
# Extract work experience details using Groq
prompt_text = f"""
From the following resume text, extract the job titles, companies, and durations of employment. Provide the information in a table format with columns: Job Title, Company, Duration (in years).
Resume Text:
{resume_text}
Table:
"""
prompt = PromptTemplate.from_template(prompt_text)
chain = prompt | llm
response = chain.invoke({})
table_text = response.content.strip()
# Parse the table_text to create a DataFrame
data = []
for line in table_text.split('\n'):
if line.strip() and not line.lower().startswith("job title"):
parts = line.split('|')
if len(parts) == 3:
job_title = parts[0].strip()
company = parts[1].strip()
duration = parts[2].strip()
# Convert duration to a float representing years
duration_years = parse_duration(duration)
data.append({"Job Title": job_title, "Company": company, "Duration (years)": duration_years})
df = pd.DataFrame(data)
if not df.empty:
# Create a cumulative duration for timeline
df['Start Year'] = df['Duration (years)'].cumsum() - df['Duration (years)']
df['End Year'] = df['Duration (years)'].cumsum()
fig = px.timeline(df, x_start="Start Year", x_end="End Year", y="Job Title", color="Company", title="Experience Timeline")
fig.update_yaxes(categoryorder="total ascending")
return fig
else:
return None
def parse_duration(duration_str):
"""
Parses duration strings like '2 years' or '6 months' into float years.
"""
try:
if 'year' in duration_str.lower():
years = float(re.findall(r'\d+\.?\d*', duration_str)[0])
return years
elif 'month' in duration_str.lower():
months = float(re.findall(r'\d+\.?\d*', duration_str)[0])
return months / 12
else:
return 0
except:
return 0
# -------------------------------
# Page Functions
# -------------------------------
def email_generator_page():
st.header("Automated Email Generator")
st.write("""
This application generates a personalized cold email based on a job posting and your resume.
""")
# Input fields
job_link = st.text_input("Enter the job link:")
uploaded_file = st.file_uploader("Upload your resume (PDF format):", type="pdf")
if st.button("Generate Email"):
if not job_link:
st.error("Please enter a job link.")
return
if not uploaded_file:
st.error("Please upload your resume.")
return
with st.spinner("Processing..."):
# Extract job description
job_description = extract_job_description(job_link)
if not job_description:
st.error("Failed to extract job description.")
return
# Extract requirements
requirements = extract_requirements(job_description)
if not requirements:
st.error("Failed to extract requirements.")
return
# Extract resume text
resume_text = extract_text_from_pdf(uploaded_file)
if not resume_text:
st.error("Failed to extract text from resume.")
return
# Generate email
email_text = generate_email(job_description, requirements, resume_text)
if email_text:
st.subheader("Generated Email:")
st.write(email_text)
# Provide download option
st.download_button(
label="Download Email",
data=email_text,
file_name="generated_email.txt",
mime="text/plain"
)
else:
st.error("Failed to generate email.")
def cover_letter_generator_page():
st.header("Automated Cover Letter Generator")
st.write("""
This application generates a personalized cover letter based on a job posting and your resume.
""")
# Input fields
job_link = st.text_input("Enter the job link:")
uploaded_file = st.file_uploader("Upload your resume (PDF format):", type="pdf")
if st.button("Generate Cover Letter"):
if not job_link:
st.error("Please enter a job link.")
return
if not uploaded_file:
st.error("Please upload your resume.")
return
with st.spinner("Processing..."):
# Extract job description
job_description = extract_job_description(job_link)
if not job_description:
st.error("Failed to extract job description.")
return
# Extract requirements
requirements = extract_requirements(job_description)
if not requirements:
st.error("Failed to extract requirements.")
return
# Extract resume text
resume_text = extract_text_from_pdf(uploaded_file)
if not resume_text:
st.error("Failed to extract text from resume.")
return
# Generate cover letter
cover_letter = generate_cover_letter(job_description, requirements, resume_text)
if cover_letter:
st.subheader("Generated Cover Letter:")
st.write(cover_letter)
# Provide download option
st.download_button(
label="Download Cover Letter",
data=cover_letter,
file_name="generated_cover_letter.txt",
mime="text/plain"
)
else:
st.error("Failed to generate cover letter.")
def resume_analysis_page():
import pandas as pd # Importing here to prevent unnecessary imports if not used
st.header("Resume Analysis and Optimization")
uploaded_file = st.file_uploader("Upload your resume (PDF format):", type="pdf")
if uploaded_file:
resume_text = extract_text_from_pdf(uploaded_file)
if resume_text:
st.success("Resume uploaded successfully!")
# Perform analysis
st.subheader("Extracted Information")
# Extracted skills
skills = extract_skills(resume_text)
st.write("**Skills:**", ', '.join(skills))
# Extract keywords
keywords = suggest_keywords(resume_text)
st.write("**Suggested Keywords for ATS Optimization:**", ', '.join(keywords))
# Provide optimization suggestions
st.subheader("Optimization Suggestions")
st.write("- **Keyword Optimization:** Incorporate the suggested keywords to improve ATS compatibility.")
st.write("- **Formatting:** Ensure consistent formatting for headings and bullet points to enhance readability.")
st.write("- **Experience Details:** Provide specific achievements and quantify your accomplishments where possible.")
# Visual Resume Analytics
st.subheader("Visual Resume Analytics")
# Skill Distribution Chart
if skills:
st.write("**Skill Distribution:**")
fig_skills = create_skill_distribution_chart(skills)
st.plotly_chart(fig_skills)
# Experience Timeline (if applicable)
fig_experience = create_experience_timeline(resume_text)
if fig_experience:
st.write("**Experience Timeline:**")
st.plotly_chart(fig_experience)
else:
st.write("**Experience Timeline:** Not enough data to generate a timeline.")
else:
st.error("Failed to extract text from resume.")
def job_recommendations_page():
st.header("Job Recommendations")
uploaded_file = st.file_uploader("Upload your resume (PDF format):", type="pdf")
if uploaded_file:
resume_text = extract_text_from_pdf(uploaded_file)
if resume_text:
st.success("Resume uploaded successfully!")
# Fetch job recommendations
st.subheader("Recommended Jobs")
jobs = get_job_recommendations(resume_text)
if jobs:
for job in jobs:
st.write(f"**{job['title']}** at {job['company']}")
st.markdown(f"[Apply Here]({job['link']})")
else:
st.write("No job recommendations found based on your skills.")
else:
st.error("Failed to extract text from resume.")
def skill_matching_page():
st.header("Skill Matching and Gap Analysis")
job_description_input = st.text_area("Paste the job description here:")
uploaded_file = st.file_uploader("Upload your resume (PDF format):", type="pdf")
if st.button("Analyze Skills"):
if not job_description_input:
st.error("Please paste the job description.")
return
if not uploaded_file:
st.error("Please upload your resume.")
return
with st.spinner("Analyzing..."):
# Extract resume text
resume_text = extract_text_from_pdf(uploaded_file)
if not resume_text:
st.error("Failed to extract text from resume.")
return
# Extract skills
resume_skills = extract_skills(resume_text)
job_skills = extract_skills(job_description_input)
# Find matches and gaps
matching_skills = set(resume_skills).intersection(set(job_skills))
missing_skills = set(job_skills) - set(resume_skills)
# Display results
st.subheader("Matching Skills")
st.write(', '.join(matching_skills) if matching_skills else "No matching skills found.")
st.subheader("Missing Skills")
st.write(', '.join(missing_skills) if missing_skills else "No missing skills.")
# -------------------------------
# Main App with Sidebar Navigation
# -------------------------------
def main():
st.set_page_config(page_title="Job Application Assistant", layout="wide")
with st.sidebar:
selected = option_menu(
"Main Menu",
["Email Generator", "Cover Letter Generator", "Resume Analysis", "Job Recommendations", "Skill Matching"],
icons=["envelope", "file-earmark-text", "file-person", "briefcase", "bar-chart"],
menu_icon="cast",
default_index=0,
)
if selected == "Email Generator":
email_generator_page()
elif selected == "Cover Letter Generator":
cover_letter_generator_page()
elif selected == "Resume Analysis":
resume_analysis_page()
elif selected == "Job Recommendations":
job_recommendations_page()
elif selected == "Skill Matching":
skill_matching_page()
if __name__ == "__main__":
main()
|