Spaces:
Sleeping
Sleeping
File size: 38,664 Bytes
cae8015 19a9439 3019fd8 feca185 0b0fa7c 19a9439 0b0fa7c 9d2803a 19a9439 ad6ef2a feca185 ad6ef2a feca185 19a9439 0b0fa7c 19a9439 3019fd8 9d2803a 3019fd8 19a9439 0b0fa7c 19a9439 0b0fa7c 19a9439 cae8015 feca185 19a9439 feca185 0b0fa7c cae8015 feca185 cae8015 feca185 0b0fa7c cae8015 0b0fa7c 19a9439 0b0fa7c feca185 0b0fa7c 19a9439 0b0fa7c 19a9439 0b0fa7c 19a9439 feca185 cae8015 19a9439 0b0fa7c cae8015 0b0fa7c cae8015 0b0fa7c cae8015 0b0fa7c cae8015 0b0fa7c cae8015 0b0fa7c cae8015 0b0fa7c f78a406 0b0fa7c f78a406 0b0fa7c ad6ef2a cae8015 ad6ef2a 0b0fa7c ad6ef2a 0b0fa7c ad6ef2a cae8015 0b0fa7c f78a406 ad6ef2a 0b0fa7c cae8015 0b0fa7c cae8015 0b0fa7c 9d2803a cae8015 9d2803a 3019fd8 9d2803a cae8015 9d2803a ad6ef2a 9d2803a ad6ef2a cae8015 ad6ef2a cae8015 ad6ef2a cae8015 ad6ef2a cae8015 ad6ef2a 9d2803a 19a9439 9d2803a 19a9439 9d2803a 19a9439 9d2803a 19a9439 9d2803a cae8015 9d2803a 19a9439 9d2803a 19a9439 9d2803a cae8015 9d2803a 0b0fa7c 9d2803a 0b0fa7c 9d2803a 0b0fa7c 9d2803a 0b0fa7c 9d2803a cae8015 9d2803a ad6ef2a 9d2803a ad6ef2a 9d2803a 0b0fa7c 9d2803a ad6ef2a f78a406 ad6ef2a cae8015 ad6ef2a 9d2803a 0b0fa7c 9d2803a 0b0fa7c 9d2803a 83001db f78a406 9d2803a ad6ef2a 9d2803a ad6ef2a 0b0fa7c cae8015 ad6ef2a 3019fd8 ad6ef2a cae8015 ad6ef2a cae8015 ad6ef2a cae8015 ad6ef2a f78a406 ad6ef2a cae8015 ad6ef2a 3019fd8 f78a406 3019fd8 cae8015 ad6ef2a 9d2803a ad6ef2a 3019fd8 19a9439 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 |
# app.py
import streamlit as st
from streamlit_option_menu import option_menu
from langchain_groq import ChatGroq
import fitz # PyMuPDF
import requests
from bs4 import BeautifulSoup
import plotly.express as px
import re
import pandas as pd
import sqlite3
from datetime import datetime, timedelta
GROQ_API_KEY = "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"
RAPIDAPI_KEY = "2a4a8a38a9msh97ce530a89589a6p1d0106jsn1acc0a5ea6bc"
llm = ChatGroq(
temperature=0,
groq_api_key=GROQ_API_KEY,
model_name="llama-3.1-70b-versatile"
)
def extract_text_from_pdf(pdf_file):
"""
Extracts text from an uploaded PDF file.
"""
text = ""
try:
with fitz.open(stream=pdf_file.read(), filetype="pdf") as doc:
for page in doc:
text += page.get_text()
return text
except Exception as e:
st.error(f"Error extracting text from PDF: {e}")
return ""
def extract_job_description(job_link):
"""
Fetches and extracts job description text from a given URL.
"""
try:
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64)"
}
response = requests.get(job_link, headers=headers)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# You might need to adjust the selectors based on the website's structure
job_description = soup.get_text(separator='\n')
return job_description.strip()
except Exception as e:
st.error(f"Error fetching job description: {e}")
return ""
def extract_requirements(job_description):
"""
Uses Groq to extract job requirements from the job description.
"""
prompt = f"""
The following is a job description:
{job_description}
Extract the list of job requirements, qualifications, and skills from the job description. Provide them as a numbered list.
Requirements:
"""
try:
response = llm.invoke(prompt)
requirements = response.content.strip()
return requirements
except Exception as e:
st.error(f"Error extracting requirements: {e}")
return ""
def generate_email(job_description, requirements, resume_text):
"""
Generates a personalized cold email using Groq based on the job description, requirements, and resume.
"""
prompt = f"""
You are Adithya S Nair, a recent Computer Science graduate specializing in Artificial Intelligence and Machine Learning. Craft a concise and professional cold email to a potential employer based on the following information:
**Job Description:**
{job_description}
**Extracted Requirements:**
{requirements}
**Your Resume:**
{resume_text}
**Email Requirements:**
- **Introduction:** Briefly introduce yourself and mention the specific job you are applying for.
- **Body:** Highlight your relevant skills, projects, internships, and leadership experiences that align with the job requirements.
- **Value Proposition:** Explain how your fresh perspective and recent academic knowledge can add value to the company.
- **Closing:** Express enthusiasm for the opportunity, mention your willingness for an interview, and thank the recipient for their time.
**Email:**
"""
try:
response = llm.invoke(prompt)
email_text = response.content.strip()
return email_text
except Exception as e:
st.error(f"Error generating email: {e}")
return ""
def generate_cover_letter(job_description, requirements, resume_text):
"""
Generates a personalized cover letter using Groq based on the job description, requirements, and resume.
"""
prompt = f"""
You are Adithya S Nair, a recent Computer Science graduate specializing in Artificial Intelligence and Machine Learning. Compose a personalized and professional cover letter based on the following information:
**Job Description:**
{job_description}
**Extracted Requirements:**
{requirements}
**Your Resume:**
{resume_text}
**Cover Letter Requirements:**
1. **Greeting:** Address the hiring manager by name if available; otherwise, use a generic greeting such as "Dear Hiring Manager."
2. **Introduction:** Begin with an engaging opening that mentions the specific position you are applying for and conveys your enthusiasm.
3. **Body:**
- **Skills and Experiences:** Highlight relevant technical skills, projects, internships, and leadership roles that align with the job requirements.
- **Alignment:** Demonstrate how your academic background and hands-on experiences make you a suitable candidate for the role.
4. **Value Proposition:** Explain how your fresh perspective, recent academic knowledge, and eagerness to learn can contribute to the company's success.
5. **Conclusion:** End with a strong closing statement expressing your interest in an interview, your availability, and gratitude for the hiring manager’s time and consideration.
6. **Professional Tone:** Maintain a respectful and professional tone throughout the letter.
**Cover Letter:**
"""
try:
response = llm.invoke(prompt)
cover_letter = response.content.strip()
return cover_letter
except Exception as e:
st.error(f"Error generating cover letter: {e}")
return ""
def extract_skills(text):
"""
Extracts a list of skills from the resume text using Groq.
"""
prompt = f"""
Extract a comprehensive list of technical and soft skills from the following resume text. Provide the skills as a comma-separated list.
Resume Text:
{text}
Skills:
"""
try:
response = llm.invoke(prompt)
skills = response.content.strip()
# Clean and split the skills
skills_list = [skill.strip() for skill in re.split(',|\n', skills) if skill.strip()]
return skills_list
except Exception as e:
st.error(f"Error extracting skills: {e}")
return []
def suggest_keywords(resume_text, job_description=None):
"""
Suggests additional relevant keywords to enhance resume compatibility with ATS.
"""
prompt = f"""
Analyze the following resume text and suggest additional relevant keywords that can enhance its compatibility with Applicant Tracking Systems (ATS). If a job description is provided, tailor the keywords to align with the job requirements.
Resume Text:
{resume_text}
Job Description:
{job_description if job_description else "N/A"}
Suggested Keywords:
"""
try:
response = llm.invoke(prompt)
keywords = response.content.strip()
keywords_list = [keyword.strip() for keyword in re.split(',|\n', keywords) if keyword.strip()]
return keywords_list
except Exception as e:
st.error(f"Error suggesting keywords: {e}")
return []
def get_job_recommendations(job_title, location="India"):
"""
Fetches salary estimates using the JSearch API based on the job title and location.
"""
url = "https://jsearch.p.rapidapi.com/estimated-salary"
querystring = {
"job_title": job_title.strip(),
"location": location.strip(),
"radius": "100" # Adjust radius as needed
}
headers = {
"x-rapidapi-key": RAPIDAPI_KEY, # Embedded API key
"x-rapidapi-host": "jsearch.p.rapidapi.com"
}
try:
response = requests.get(url, headers=headers, params=querystring)
response.raise_for_status()
salary_data = response.json()
# Extract relevant data
min_salary = salary_data.get("min_salary")
avg_salary = salary_data.get("avg_salary")
max_salary = salary_data.get("max_salary")
return {
"min_salary": min_salary,
"avg_salary": avg_salary,
"max_salary": max_salary
}
except requests.exceptions.HTTPError as http_err:
st.error(f"HTTP error occurred: {http_err}")
return {}
except Exception as e:
st.error(f"Error fetching salary data: {e}")
return {}
def create_skill_distribution_chart(skills):
"""
Creates a bar chart showing the distribution of skills.
"""
skill_counts = {}
for skill in skills:
skill_counts[skill] = skill_counts.get(skill, 0) + 1
df = pd.DataFrame(list(skill_counts.items()), columns=['Skill', 'Count'])
fig = px.bar(df, x='Skill', y='Count', title='Skill Distribution')
return fig
def create_experience_timeline(resume_text):
"""
Creates an experience timeline from the resume text.
"""
# Extract work experience details using Groq
prompt = f"""
From the following resume text, extract the job titles, companies, and durations of employment. Provide the information in a table format with columns: Job Title, Company, Duration (in years).
Resume Text:
{resume_text}
Table:
"""
try:
response = llm.invoke(prompt)
table_text = response.content.strip()
# Parse the table_text to create a DataFrame
data = []
for line in table_text.split('\n'):
if line.strip() and not line.lower().startswith("job title"):
parts = line.split('|')
if len(parts) == 3:
job_title = parts[0].strip()
company = parts[1].strip()
duration = parts[2].strip()
# Convert duration to a float representing years
duration_years = parse_duration(duration)
data.append({"Job Title": job_title, "Company": company, "Duration (years)": duration_years})
df = pd.DataFrame(data)
if not df.empty:
# Create a cumulative duration for timeline
df['Start Year'] = df['Duration (years)'].cumsum() - df['Duration (years)']
df['End Year'] = df['Duration (years)'].cumsum()
fig = px.timeline(df, x_start="Start Year", x_end="End Year", y="Job Title", color="Company", title="Experience Timeline")
fig.update_yaxes(categoryorder="total ascending")
return fig
else:
return None
except Exception as e:
st.error(f"Error creating experience timeline: {e}")
return None
def parse_duration(duration_str):
"""
Parses duration strings like '2 years' or '6 months' into float years.
"""
try:
if 'year' in duration_str.lower():
years = float(re.findall(r'\d+\.?\d*', duration_str)[0])
return years
elif 'month' in duration_str.lower():
months = float(re.findall(r'\d+\.?\d*', duration_str)[0])
return months / 12
else:
return 0
except:
return 0
def init_db():
"""
Initializes the SQLite database for application tracking.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('''
CREATE TABLE IF NOT EXISTS applications (
id INTEGER PRIMARY KEY AUTOINCREMENT,
job_title TEXT,
company TEXT,
application_date TEXT,
status TEXT,
deadline TEXT,
notes TEXT,
job_description TEXT,
resume_text TEXT,
skills TEXT
)
''')
conn.commit()
conn.close()
def add_application(job_title, company, application_date, status, deadline, notes, job_description, resume_text, skills):
"""
Adds a new application to the database.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('''
INSERT INTO applications (job_title, company, application_date, status, deadline, notes, job_description, resume_text, skills)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
''', (job_title, company, application_date, status, deadline, notes, job_description, resume_text, ', '.join(skills)))
conn.commit()
conn.close()
def fetch_applications():
"""
Fetches all applications from the database.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('SELECT * FROM applications')
data = c.fetchall()
conn.close()
applications = []
for app in data:
applications.append({
"ID": app[0],
"Job Title": app[1],
"Company": app[2],
"Application Date": app[3],
"Status": app[4],
"Deadline": app[5],
"Notes": app[6],
"Job Description": app[7],
"Resume Text": app[8],
"Skills": app[9].split(', ') if app[9] else []
})
return applications
def update_application_status(app_id, new_status):
"""
Updates the status of an application.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('UPDATE applications SET status = ? WHERE id = ?', (new_status, app_id))
conn.commit()
conn.close()
def delete_application(app_id):
"""
Deletes an application from the database.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('DELETE FROM applications WHERE id = ?', (app_id,))
conn.commit()
conn.close()
def generate_learning_path(career_goal, current_skills):
"""
Generates a personalized learning path using Groq based on career goal and current skills.
"""
prompt = f"""
Based on the following career goal and current skills, create a personalized learning path that includes recommended courses, projects, and milestones to achieve the career goal.
**Career Goal:**
{career_goal}
**Current Skills:**
{current_skills}
**Learning Path:**
"""
try:
response = llm.invoke(prompt)
learning_path = response.content.strip()
return learning_path
except Exception as e:
st.error(f"Error generating learning path: {e}")
return ""
# -------------------------------
# Page Functions
# -------------------------------
def email_generator_page():
st.header("Automated Email Generator")
st.write("""
Generate personalized cold emails based on job postings and your resume.
""")
# Input fields
job_link = st.text_input("Enter the job link:")
uploaded_file = st.file_uploader("Upload your resume (PDF format):", type="pdf")
if st.button("Generate Email"):
if not job_link:
st.error("Please enter a job link.")
return
if not uploaded_file:
st.error("Please upload your resume.")
return
with st.spinner("Processing..."):
# Extract job description
job_description = extract_job_description(job_link)
if not job_description:
st.error("Failed to extract job description.")
return
# Extract requirements
requirements = extract_requirements(job_description)
if not requirements:
st.error("Failed to extract requirements.")
return
# Extract resume text
resume_text = extract_text_from_pdf(uploaded_file)
if not resume_text:
st.error("Failed to extract text from resume.")
return
# Generate email
email_text = generate_email(job_description, requirements, resume_text)
if email_text:
st.subheader("Generated Email:")
st.write(email_text)
# Provide download option
st.download_button(
label="Download Email",
data=email_text,
file_name="generated_email.txt",
mime="text/plain"
)
else:
st.error("Failed to generate email.")
def cover_letter_generator_page():
st.header("Automated Cover Letter Generator")
st.write("""
Generate personalized cover letters based on job postings and your resume.
""")
# Input fields
job_link = st.text_input("Enter the job link:")
uploaded_file = st.file_uploader("Upload your resume (PDF format):", type="pdf")
if st.button("Generate Cover Letter"):
if not job_link:
st.error("Please enter a job link.")
return
if not uploaded_file:
st.error("Please upload your resume.")
return
with st.spinner("Processing..."):
# Extract job description
job_description = extract_job_description(job_link)
if not job_description:
st.error("Failed to extract job description.")
return
# Extract requirements
requirements = extract_requirements(job_description)
if not requirements:
st.error("Failed to extract requirements.")
return
# Extract resume text
resume_text = extract_text_from_pdf(uploaded_file)
if not resume_text:
st.error("Failed to extract text from resume.")
return
# Generate cover letter
cover_letter = generate_cover_letter(job_description, requirements, resume_text)
if cover_letter:
st.subheader("Generated Cover Letter:")
st.write(cover_letter)
# Provide download option
st.download_button(
label="Download Cover Letter",
data=cover_letter,
file_name="generated_cover_letter.txt",
mime="text/plain"
)
else:
st.error("Failed to generate cover letter.")
def resume_analysis_page():
st.header("Resume Analysis and Optimization")
uploaded_file = st.file_uploader("Upload your resume (PDF format):", type="pdf")
if uploaded_file:
resume_text = extract_text_from_pdf(uploaded_file)
if resume_text:
st.success("Resume uploaded successfully!")
# Perform analysis
st.subheader("Extracted Information")
# Extracted skills
skills = extract_skills(resume_text)
st.write("**Skills:**", ', '.join(skills) if skills else "No skills extracted.")
# Extract keywords
keywords = suggest_keywords(resume_text)
st.write("**Suggested Keywords for ATS Optimization:**", ', '.join(keywords) if keywords else "No keywords suggested.")
# Provide optimization suggestions
st.subheader("Optimization Suggestions")
if keywords:
st.write("- **Keyword Optimization:** Incorporate the suggested keywords to improve ATS compatibility.")
else:
st.write("- **Keyword Optimization:** No keywords suggested.")
st.write("- **Formatting:** Ensure consistent formatting for headings and bullet points to enhance readability.")
st.write("- **Experience Details:** Provide specific achievements and quantify your accomplishments where possible.")
# Visual Resume Analytics
st.subheader("Visual Resume Analytics")
# Skill Distribution Chart
if skills:
st.write("**Skill Distribution:**")
fig_skills = create_skill_distribution_chart(skills)
st.plotly_chart(fig_skills)
else:
st.write("**Skill Distribution:** No skills to display.")
# Experience Timeline (if applicable)
fig_experience = create_experience_timeline(resume_text)
if fig_experience:
st.write("**Experience Timeline:**")
st.plotly_chart(fig_experience)
else:
st.write("**Experience Timeline:** Not enough data to generate a timeline.")
# Save the resume and analysis to the database
if st.button("Save Resume Analysis"):
add_application(
job_title="N/A",
company="N/A",
application_date=datetime.now().strftime("%Y-%m-%d"),
status="N/A",
deadline="N/A",
notes="Resume Analysis",
job_description="N/A",
resume_text=resume_text,
skills=skills
)
st.success("Resume analysis saved successfully!")
else:
st.error("Failed to extract text from resume.")
def application_tracking_dashboard():
st.header("Application Tracking Dashboard")
# Initialize database
init_db()
# Form to add a new application
st.subheader("Add New Application")
with st.form("add_application"):
job_title = st.text_input("Job Title")
company = st.text_input("Company")
application_date = st.date_input("Application Date", datetime.today())
status = st.selectbox("Status", ["Applied", "Interviewing", "Offered", "Rejected"])
deadline = st.date_input("Application Deadline", datetime.today() + timedelta(days=30))
notes = st.text_area("Notes")
uploaded_file = st.file_uploader("Upload Job Description (PDF)", type="pdf")
uploaded_resume = st.file_uploader("Upload Resume (PDF)", type="pdf")
submitted = st.form_submit_button("Add Application")
if submitted:
if uploaded_file:
job_description = extract_text_from_pdf(uploaded_file)
else:
job_description = ""
if uploaded_resume:
resume_text = extract_text_from_pdf(uploaded_resume)
skills = extract_skills(resume_text)
else:
resume_text = ""
skills = []
add_application(
job_title=job_title,
company=company,
application_date=application_date.strftime("%Y-%m-%d"),
status=status,
deadline=deadline.strftime("%Y-%m-%d"),
notes=notes,
job_description=job_description,
resume_text=resume_text,
skills=skills
)
st.success("Application added successfully!")
# Display applications
st.subheader("Your Applications")
applications = fetch_applications()
if applications:
df = pd.DataFrame(applications)
df = df.drop(columns=["Job Description", "Resume Text", "Skills"])
st.dataframe(df)
# Actions: Update Status or Delete
for app in applications:
with st.expander(f"{app['Job Title']} at {app['Company']}"):
st.write(f"**Application Date:** {app['Application Date']}")
st.write(f"**Deadline:** {app['Deadline']}")
st.write(f"**Status:** {app['Status']}")
st.write(f"**Notes:** {app['Notes']}")
if app['Job Description']:
st.write("**Job Description:**")
st.write(app['Job Description'][:500] + "...")
if app['Skills']:
st.write("**Skills:**", ', '.join(app['Skills']))
# Update status
new_status = st.selectbox("Update Status:", ["Applied", "Interviewing", "Offered", "Rejected"], key=f"status_{app['ID']}")
if st.button("Update Status", key=f"update_{app['ID']}"):
update_application_status(app['ID'], new_status)
st.success("Status updated successfully!")
# Delete application
if st.button("Delete Application", key=f"delete_{app['ID']}"):
delete_application(app['ID'])
st.success("Application deleted successfully!")
else:
st.write("No applications found.")
def interview_preparation_module():
st.header("Interview Preparation")
st.write("""
Prepare for your interviews with tailored mock questions and expert tips.
""")
# Input fields
job_title = st.text_input("Enter the job title you're applying for:")
company = st.text_input("Enter the company name:")
if st.button("Generate Mock Interview Questions"):
if not job_title or not company:
st.error("Please enter both job title and company name.")
return
with st.spinner("Generating questions..."):
prompt = f"""
Generate a list of 10 interview questions for a {job_title} position at {company}. Include a mix of technical and behavioral questions.
"""
try:
questions = llm.invoke(prompt).content.strip()
st.subheader("Mock Interview Questions:")
st.write(questions)
# Optionally, provide sample answers or tips
if st.checkbox("Show Sample Answers"):
sample_prompt = f"""
Provide sample answers for the following interview questions for a {job_title} position at {company}.
Questions:
{questions}
Sample Answers:
"""
try:
sample_answers = llm.invoke(sample_prompt).content.strip()
st.subheader("Sample Answers:")
st.write(sample_answers)
except Exception as e:
st.error(f"Error generating sample answers: {e}")
except Exception as e:
st.error(f"Error generating interview questions: {e}")
def personalized_learning_paths_module():
st.header("Personalized Learning Paths")
st.write("""
Receive tailored learning plans to help you acquire the skills needed for your desired career.
""")
# Input fields
career_goal = st.text_input("Enter your career goal (e.g., Data Scientist, Machine Learning Engineer):")
current_skills = st.text_input("Enter your current skills (comma-separated):")
if st.button("Generate Learning Path"):
if not career_goal or not current_skills:
st.error("Please enter both career goal and current skills.")
return
with st.spinner("Generating your personalized learning path..."):
learning_path = generate_learning_path(career_goal, current_skills)
if learning_path:
st.subheader("Your Personalized Learning Path:")
st.write(learning_path)
else:
st.error("Failed to generate learning path.")
def networking_opportunities_module():
st.header("Networking Opportunities")
st.write("""
Expand your professional network by connecting with relevant industry peers and joining professional groups.
""")
user_skills = st.text_input("Enter your key skills (comma-separated):")
industry = st.text_input("Enter your industry (e.g., Technology, Finance):")
if st.button("Find Networking Opportunities"):
if not user_skills or not industry:
st.error("Please enter both key skills and industry.")
return
with st.spinner("Fetching networking opportunities..."):
# Suggest LinkedIn groups or connections based on skills and industry
prompt = f"""
Based on the following skills: {user_skills}, and industry: {industry}, suggest relevant LinkedIn groups, professional organizations, and industry events for networking.
"""
try:
suggestions = llm.invoke(prompt).content.strip()
st.subheader("Recommended Networking Groups and Events:")
st.write(suggestions)
except Exception as e:
st.error(f"Error fetching networking opportunities: {e}")
def salary_estimation_module():
st.header("Salary Estimation and Negotiation Tips")
st.write("""
Understand the salary expectations for your desired roles and learn effective negotiation strategies.
""")
# Input fields
job_title = st.text_input("Enter the job title:")
location = st.text_input("Enter the location (e.g., New York, NY, USA):")
if st.button("Get Salary Estimate"):
if not job_title or not location:
st.error("Please enter both job title and location.")
return
with st.spinner("Fetching salary data..."):
# JSearch API Integration
salary_data = get_job_recommendations(job_title, location)
if salary_data:
min_salary = salary_data.get("min_salary")
avg_salary = salary_data.get("avg_salary")
max_salary = salary_data.get("max_salary")
if min_salary and avg_salary and max_salary:
st.subheader("Salary Estimate:")
st.write(f"**Minimum Salary:** ${min_salary:,}")
st.write(f"**Average Salary:** ${avg_salary:,}")
st.write(f"**Maximum Salary:** ${max_salary:,}")
# Visualization
salary_df = pd.DataFrame({
"Salary Range": ["Minimum", "Average", "Maximum"],
"Amount": [min_salary, avg_salary, max_salary]
})
fig = px.bar(salary_df, x="Salary Range", y="Amount",
title=f"Salary Estimates for {job_title} in {location}",
labels={"Amount": "Salary (USD)"},
text_auto=True)
st.plotly_chart(fig)
else:
st.error("Salary data not available for the provided job title and location.")
# Generate negotiation tips using Groq
tips_prompt = f"""
Provide a list of 5 effective tips for negotiating a salary for a {job_title} position in {location}.
"""
try:
tips = llm.invoke(tips_prompt).content.strip()
st.subheader("Negotiation Tips:")
st.write(tips)
except Exception as e:
st.error(f"Error generating negotiation tips: {e}")
else:
st.error("Failed to retrieve salary data.")
def feedback_and_improvement_module():
st.header("Feedback and Continuous Improvement")
st.write("""
We value your feedback! Let us know how we can improve your experience.
""")
with st.form("feedback_form"):
name = st.text_input("Your Name")
email = st.text_input("Your Email")
feedback_type = st.selectbox("Type of Feedback", ["Bug Report", "Feature Request", "General Feedback"])
feedback = st.text_area("Your Feedback")
submitted = st.form_submit_button("Submit")
if submitted:
if not name or not email or not feedback:
st.error("Please fill in all the fields.")
else:
# Here you can implement logic to store feedback, e.g., in a database or send via email
# For demonstration, we'll print to the console
print(f"Feedback from {name} ({email}): {feedback_type} - {feedback}")
st.success("Thank you for your feedback!")
def gamification_module():
st.header("Gamification and Achievements")
st.write("""
Stay motivated by earning badges and tracking your progress!
""")
# Initialize database
init_db()
# Example achievements
applications = fetch_applications()
num_apps = len(applications)
achievements = {
"First Application": num_apps >= 1,
"5 Applications": num_apps >= 5,
"10 Applications": num_apps >= 10,
"Resume Optimized": any(app['Skills'] for app in applications),
"Interview Scheduled": any(app['Status'] == 'Interviewing' for app in applications)
}
for achievement, earned in achievements.items():
if earned:
st.success(f"🎉 {achievement}")
else:
st.info(f"🔜 {achievement}")
# Progress Bar
progress = min(num_apps / 10, 1.0) # Ensure progress is between 0.0 and 1.0
st.write("**Overall Progress:**")
st.progress(progress)
st.write(f"{progress * 100:.0f}% complete")
def resource_library_page():
st.header("Resource Library")
st.write("""
Access a collection of templates and guides to enhance your job search.
""")
resources = [
{
"title": "Resume Template",
"description": "A professional resume template in DOCX format.",
"file": "resume_template.docx"
},
{
"title": "Cover Letter Template",
"description": "A customizable cover letter template.",
"file": "cover_letter_template.docx"
},
{
"title": "Job Application Checklist",
"description": "Ensure you have all the necessary steps covered during your job search.",
"file": "application_checklist.pdf"
}
]
for resource in resources:
st.markdown(f"### {resource['title']}")
st.write(resource['description'])
try:
with open(resource['file'], "rb") as file:
btn = st.download_button(
label="Download",
data=file,
file_name=resource['file'],
mime="application/octet-stream"
)
except FileNotFoundError:
st.error(f"File {resource['file']} not found. Please ensure the file is in the correct directory.")
st.write("---")
def success_stories_page():
st.header("Success Stories")
st.write("""
Hear from our users who have successfully landed their dream jobs with our assistance!
""")
# Example testimonials
testimonials = [
{
"name": "Rahul Sharma",
"position": "Data Scientist at TechCorp",
"testimonial": "This app transformed my job search process. The resume analysis and personalized emails were game-changers!",
"image": "images/user1.jpg" # Replace with actual image paths
},
{
"name": "Priya Mehta",
"position": "Machine Learning Engineer at InnovateX",
"testimonial": "The interview preparation module helped me ace my interviews with confidence. Highly recommended!",
"image": "images/user2.jpg"
}
]
for user in testimonials:
col1, col2 = st.columns([1, 3])
with col1:
try:
st.image(user["image"], width=100)
except:
st.write("")
with col2:
st.write(f"**{user['name']}**")
st.write(f"*{user['position']}*")
st.write(f"\"{user['testimonial']}\"")
st.write("---")
def chatbot_support_page():
st.header("AI-Powered Chatbot Support")
st.write("""
Have questions or need assistance? Chat with our AI-powered assistant!
""")
# Initialize session state for chatbot
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
user_input = st.text_input("You:", key="user_input")
if st.button("Send"):
if user_input:
st.session_state['chat_history'].append(f"You: {user_input}")
prompt = f"""
You are a helpful assistant for a Job Application Assistant app. Answer the user's query based on the following context:
{user_input}
"""
try:
response = llm.invoke(prompt).content.strip()
st.session_state['chat_history'].append(f"Assistant: {response}")
except Exception as e:
st.session_state['chat_history'].append(f"Assistant: Sorry, I encountered an error while processing your request.")
st.error(f"Error in chatbot: {e}")
# Display chat history
for message in st.session_state['chat_history']:
if message.startswith("You:"):
st.markdown(f"<p style='color:blue;'>{message}</p>", unsafe_allow_html=True)
else:
st.markdown(f"<p style='color:green;'>{message}</p>", unsafe_allow_html=True)
# -------------------------------
# Main App with Sidebar Navigation
# -------------------------------
def main():
st.set_page_config(page_title="Job Application Assistant", layout="wide")
# Initialize database early to ensure tables exist
init_db()
# Sidebar Navigation
with st.sidebar:
selected = option_menu(
"Main Menu",
["Email Generator", "Cover Letter Generator", "Resume Analysis", "Application Tracking",
"Interview Preparation", "Personalized Learning Paths", "Networking Opportunities",
"Salary Estimation", "Feedback", "Gamification", "Resource Library", "Success Stories", "Chatbot Support"],
icons=["envelope", "file-earmark-text", "file-person", "briefcase", "gear",
"book", "people", "currency-dollar", "chat-left-text", "trophy", "collection", "star", "chat"],
menu_icon="cast",
default_index=0,
)
if selected == "Email Generator":
email_generator_page()
elif selected == "Cover Letter Generator":
cover_letter_generator_page()
elif selected == "Resume Analysis":
resume_analysis_page()
elif selected == "Application Tracking":
application_tracking_dashboard()
elif selected == "Interview Preparation":
interview_preparation_module()
elif selected == "Personalized Learning Paths":
personalized_learning_paths_module()
elif selected == "Networking Opportunities":
networking_opportunities_module()
elif selected == "Salary Estimation":
salary_estimation_module()
elif selected == "Feedback":
feedback_and_improvement_module()
elif selected == "Gamification":
gamification_module()
elif selected == "Resource Library":
resource_library_page()
elif selected == "Success Stories":
success_stories_page()
elif selected == "Chatbot Support":
chatbot_support_page()
if __name__ == "__main__":
main()
|