File size: 38,664 Bytes
cae8015
 
19a9439
3019fd8
feca185
0b0fa7c
19a9439
 
0b0fa7c
 
 
9d2803a
 
19a9439
ad6ef2a
 
 
 
feca185
 
ad6ef2a
feca185
 
19a9439
 
0b0fa7c
 
 
19a9439
3019fd8
 
 
 
 
 
9d2803a
3019fd8
19a9439
 
0b0fa7c
 
 
19a9439
0b0fa7c
 
 
 
19a9439
 
cae8015
feca185
19a9439
 
 
 
 
feca185
0b0fa7c
 
 
cae8015
feca185
 
 
 
 
 
 
 
 
cae8015
 
 
 
 
 
 
feca185
 
0b0fa7c
 
 
cae8015
0b0fa7c
19a9439
0b0fa7c
 
 
 
 
feca185
0b0fa7c
 
19a9439
0b0fa7c
 
 
 
 
19a9439
0b0fa7c
19a9439
feca185
cae8015
 
 
 
 
 
 
19a9439
0b0fa7c
 
 
 
cae8015
0b0fa7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cae8015
 
 
 
 
 
 
0b0fa7c
 
 
 
 
cae8015
0b0fa7c
 
 
 
 
 
 
 
cae8015
 
 
 
 
 
 
 
 
0b0fa7c
 
 
 
 
cae8015
0b0fa7c
 
 
 
 
 
 
 
 
 
 
cae8015
 
 
 
 
 
 
 
0b0fa7c
f78a406
0b0fa7c
f78a406
0b0fa7c
ad6ef2a
 
cae8015
 
ad6ef2a
 
 
 
 
 
0b0fa7c
 
 
ad6ef2a
0b0fa7c
ad6ef2a
 
 
 
 
 
 
 
 
 
 
 
cae8015
 
 
0b0fa7c
f78a406
ad6ef2a
0b0fa7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cae8015
0b0fa7c
 
 
 
 
 
 
 
cae8015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b0fa7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d2803a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cae8015
9d2803a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3019fd8
9d2803a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cae8015
 
 
 
 
 
 
9d2803a
ad6ef2a
 
 
 
 
 
 
 
 
 
 
 
 
 
9d2803a
ad6ef2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cae8015
ad6ef2a
 
cae8015
ad6ef2a
 
cae8015
 
 
 
ad6ef2a
 
 
 
 
 
 
 
 
 
cae8015
 
ad6ef2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d2803a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19a9439
 
9d2803a
19a9439
 
 
9d2803a
 
19a9439
9d2803a
 
 
19a9439
9d2803a
 
 
 
cae8015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d2803a
 
 
19a9439
9d2803a
 
 
 
 
 
 
19a9439
9d2803a
 
 
 
 
 
cae8015
 
 
 
 
9d2803a
 
 
0b0fa7c
 
9d2803a
0b0fa7c
 
9d2803a
 
0b0fa7c
9d2803a
 
 
0b0fa7c
9d2803a
 
 
 
 
cae8015
 
 
 
 
 
9d2803a
 
 
 
 
 
 
 
ad6ef2a
9d2803a
ad6ef2a
9d2803a
 
 
 
0b0fa7c
9d2803a
ad6ef2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f78a406
ad6ef2a
 
 
cae8015
 
 
 
 
 
ad6ef2a
 
9d2803a
 
 
0b0fa7c
9d2803a
 
 
 
 
 
 
 
 
 
0b0fa7c
9d2803a
 
 
83001db
f78a406
 
9d2803a
 
 
ad6ef2a
 
9d2803a
ad6ef2a
 
 
0b0fa7c
cae8015
 
 
ad6ef2a
 
 
 
 
 
 
 
 
 
3019fd8
ad6ef2a
 
 
 
 
 
 
cae8015
ad6ef2a
 
cae8015
ad6ef2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cae8015
ad6ef2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f78a406
ad6ef2a
 
cae8015
 
 
 
 
 
ad6ef2a
 
 
 
 
 
 
3019fd8
f78a406
 
 
 
3019fd8
 
 
cae8015
 
 
ad6ef2a
 
 
 
 
 
 
 
 
 
 
 
9d2803a
ad6ef2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3019fd8
19a9439
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
# app.py

import streamlit as st
from streamlit_option_menu import option_menu
from langchain_groq import ChatGroq
import fitz  # PyMuPDF
import requests
from bs4 import BeautifulSoup
import plotly.express as px
import re
import pandas as pd
import sqlite3
from datetime import datetime, timedelta

GROQ_API_KEY = "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"
RAPIDAPI_KEY = "2a4a8a38a9msh97ce530a89589a6p1d0106jsn1acc0a5ea6bc"  


llm = ChatGroq(
    temperature=0,
    groq_api_key=GROQ_API_KEY,
    model_name="llama-3.1-70b-versatile"
)

def extract_text_from_pdf(pdf_file):
    """
    Extracts text from an uploaded PDF file.
    """
    text = ""
    try:
        with fitz.open(stream=pdf_file.read(), filetype="pdf") as doc:
            for page in doc:
                text += page.get_text()
        return text
    except Exception as e:
        st.error(f"Error extracting text from PDF: {e}")
        return ""

def extract_job_description(job_link):
    """
    Fetches and extracts job description text from a given URL.
    """
    try:
        headers = {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64)"
        }
        response = requests.get(job_link, headers=headers)
        response.raise_for_status()
        soup = BeautifulSoup(response.text, 'html.parser')
        # You might need to adjust the selectors based on the website's structure
        job_description = soup.get_text(separator='\n')
        return job_description.strip()
    except Exception as e:
        st.error(f"Error fetching job description: {e}")
        return ""

def extract_requirements(job_description):
    """
    Uses Groq to extract job requirements from the job description.
    """
    prompt = f"""
    The following is a job description:

    {job_description}

    Extract the list of job requirements, qualifications, and skills from the job description. Provide them as a numbered list.

    Requirements:
    """

    try:
        response = llm.invoke(prompt)
        requirements = response.content.strip()
        return requirements
    except Exception as e:
        st.error(f"Error extracting requirements: {e}")
        return ""

def generate_email(job_description, requirements, resume_text):
    """
    Generates a personalized cold email using Groq based on the job description, requirements, and resume.
    """
    prompt = f"""
    You are Adithya S Nair, a recent Computer Science graduate specializing in Artificial Intelligence and Machine Learning. Craft a concise and professional cold email to a potential employer based on the following information:

    **Job Description:**
    {job_description}

    **Extracted Requirements:**
    {requirements}

    **Your Resume:**
    {resume_text}

    **Email Requirements:**
    - **Introduction:** Briefly introduce yourself and mention the specific job you are applying for.
    - **Body:** Highlight your relevant skills, projects, internships, and leadership experiences that align with the job requirements.
    - **Value Proposition:** Explain how your fresh perspective and recent academic knowledge can add value to the company.
    - **Closing:** Express enthusiasm for the opportunity, mention your willingness for an interview, and thank the recipient for their time.

    **Email:**
    """

    try:
        response = llm.invoke(prompt)
        email_text = response.content.strip()
        return email_text
    except Exception as e:
        st.error(f"Error generating email: {e}")
        return ""

def generate_cover_letter(job_description, requirements, resume_text):
    """
    Generates a personalized cover letter using Groq based on the job description, requirements, and resume.
    """
    prompt = f"""
    You are Adithya S Nair, a recent Computer Science graduate specializing in Artificial Intelligence and Machine Learning. Compose a personalized and professional cover letter based on the following information:

    **Job Description:**
    {job_description}

    **Extracted Requirements:**
    {requirements}

    **Your Resume:**
    {resume_text}

    **Cover Letter Requirements:**
    1. **Greeting:** Address the hiring manager by name if available; otherwise, use a generic greeting such as "Dear Hiring Manager."
    2. **Introduction:** Begin with an engaging opening that mentions the specific position you are applying for and conveys your enthusiasm.
    3. **Body:**
       - **Skills and Experiences:** Highlight relevant technical skills, projects, internships, and leadership roles that align with the job requirements.
       - **Alignment:** Demonstrate how your academic background and hands-on experiences make you a suitable candidate for the role.
    4. **Value Proposition:** Explain how your fresh perspective, recent academic knowledge, and eagerness to learn can contribute to the company's success.
    5. **Conclusion:** End with a strong closing statement expressing your interest in an interview, your availability, and gratitude for the hiring manager’s time and consideration.
    6. **Professional Tone:** Maintain a respectful and professional tone throughout the letter.

    **Cover Letter:**
    """

    try:
        response = llm.invoke(prompt)
        cover_letter = response.content.strip()
        return cover_letter
    except Exception as e:
        st.error(f"Error generating cover letter: {e}")
        return ""

def extract_skills(text):
    """
    Extracts a list of skills from the resume text using Groq.
    """
    prompt = f"""
    Extract a comprehensive list of technical and soft skills from the following resume text. Provide the skills as a comma-separated list.

    Resume Text:
    {text}

    Skills:
    """

    try:
        response = llm.invoke(prompt)
        skills = response.content.strip()
        # Clean and split the skills
        skills_list = [skill.strip() for skill in re.split(',|\n', skills) if skill.strip()]
        return skills_list
    except Exception as e:
        st.error(f"Error extracting skills: {e}")
        return []

def suggest_keywords(resume_text, job_description=None):
    """
    Suggests additional relevant keywords to enhance resume compatibility with ATS.
    """
    prompt = f"""
    Analyze the following resume text and suggest additional relevant keywords that can enhance its compatibility with Applicant Tracking Systems (ATS). If a job description is provided, tailor the keywords to align with the job requirements.

    Resume Text:
    {resume_text}

    Job Description:
    {job_description if job_description else "N/A"}

    Suggested Keywords:
    """

    try:
        response = llm.invoke(prompt)
        keywords = response.content.strip()
        keywords_list = [keyword.strip() for keyword in re.split(',|\n', keywords) if keyword.strip()]
        return keywords_list
    except Exception as e:
        st.error(f"Error suggesting keywords: {e}")
        return []

def get_job_recommendations(job_title, location="India"):
    """
    Fetches salary estimates using the JSearch API based on the job title and location.
    """
    url = "https://jsearch.p.rapidapi.com/estimated-salary"
    querystring = {
        "job_title": job_title.strip(),
        "location": location.strip(),
        "radius": "100"  # Adjust radius as needed
    }

    headers = {
        "x-rapidapi-key": RAPIDAPI_KEY,  # Embedded API key
        "x-rapidapi-host": "jsearch.p.rapidapi.com"
    }

    try:
        response = requests.get(url, headers=headers, params=querystring)
        response.raise_for_status()
        salary_data = response.json()

        # Extract relevant data
        min_salary = salary_data.get("min_salary")
        avg_salary = salary_data.get("avg_salary")
        max_salary = salary_data.get("max_salary")

        return {
            "min_salary": min_salary,
            "avg_salary": avg_salary,
            "max_salary": max_salary
        }
    except requests.exceptions.HTTPError as http_err:
        st.error(f"HTTP error occurred: {http_err}")
        return {}
    except Exception as e:
        st.error(f"Error fetching salary data: {e}")
        return {}

def create_skill_distribution_chart(skills):
    """
    Creates a bar chart showing the distribution of skills.
    """
    skill_counts = {}
    for skill in skills:
        skill_counts[skill] = skill_counts.get(skill, 0) + 1
    df = pd.DataFrame(list(skill_counts.items()), columns=['Skill', 'Count'])
    fig = px.bar(df, x='Skill', y='Count', title='Skill Distribution')
    return fig

def create_experience_timeline(resume_text):
    """
    Creates an experience timeline from the resume text.
    """
    # Extract work experience details using Groq
    prompt = f"""
    From the following resume text, extract the job titles, companies, and durations of employment. Provide the information in a table format with columns: Job Title, Company, Duration (in years).

    Resume Text:
    {resume_text}

    Table:
    """

    try:
        response = llm.invoke(prompt)
        table_text = response.content.strip()
        # Parse the table_text to create a DataFrame
        data = []
        for line in table_text.split('\n'):
            if line.strip() and not line.lower().startswith("job title"):
                parts = line.split('|')
                if len(parts) == 3:
                    job_title = parts[0].strip()
                    company = parts[1].strip()
                    duration = parts[2].strip()
                    # Convert duration to a float representing years
                    duration_years = parse_duration(duration)
                    data.append({"Job Title": job_title, "Company": company, "Duration (years)": duration_years})
        df = pd.DataFrame(data)
        if not df.empty:
            # Create a cumulative duration for timeline
            df['Start Year'] = df['Duration (years)'].cumsum() - df['Duration (years)']
            df['End Year'] = df['Duration (years)'].cumsum()
            fig = px.timeline(df, x_start="Start Year", x_end="End Year", y="Job Title", color="Company", title="Experience Timeline")
            fig.update_yaxes(categoryorder="total ascending")
            return fig
        else:
            return None
    except Exception as e:
        st.error(f"Error creating experience timeline: {e}")
        return None

def parse_duration(duration_str):
    """
    Parses duration strings like '2 years' or '6 months' into float years.
    """
    try:
        if 'year' in duration_str.lower():
            years = float(re.findall(r'\d+\.?\d*', duration_str)[0])
            return years
        elif 'month' in duration_str.lower():
            months = float(re.findall(r'\d+\.?\d*', duration_str)[0])
            return months / 12
        else:
            return 0
    except:
        return 0

def init_db():
    """
    Initializes the SQLite database for application tracking.
    """
    conn = sqlite3.connect('applications.db')
    c = conn.cursor()
    c.execute('''
        CREATE TABLE IF NOT EXISTS applications (
            id INTEGER PRIMARY KEY AUTOINCREMENT,
            job_title TEXT,
            company TEXT,
            application_date TEXT,
            status TEXT,
            deadline TEXT,
            notes TEXT,
            job_description TEXT,
            resume_text TEXT,
            skills TEXT
        )
    ''')
    conn.commit()
    conn.close()

def add_application(job_title, company, application_date, status, deadline, notes, job_description, resume_text, skills):
    """
    Adds a new application to the database.
    """
    conn = sqlite3.connect('applications.db')
    c = conn.cursor()
    c.execute('''
        INSERT INTO applications (job_title, company, application_date, status, deadline, notes, job_description, resume_text, skills)
        VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
    ''', (job_title, company, application_date, status, deadline, notes, job_description, resume_text, ', '.join(skills)))
    conn.commit()
    conn.close()

def fetch_applications():
    """
    Fetches all applications from the database.
    """
    conn = sqlite3.connect('applications.db')
    c = conn.cursor()
    c.execute('SELECT * FROM applications')
    data = c.fetchall()
    conn.close()
    applications = []
    for app in data:
        applications.append({
            "ID": app[0],
            "Job Title": app[1],
            "Company": app[2],
            "Application Date": app[3],
            "Status": app[4],
            "Deadline": app[5],
            "Notes": app[6],
            "Job Description": app[7],
            "Resume Text": app[8],
            "Skills": app[9].split(', ') if app[9] else []
        })
    return applications

def update_application_status(app_id, new_status):
    """
    Updates the status of an application.
    """
    conn = sqlite3.connect('applications.db')
    c = conn.cursor()
    c.execute('UPDATE applications SET status = ? WHERE id = ?', (new_status, app_id))
    conn.commit()
    conn.close()

def delete_application(app_id):
    """
    Deletes an application from the database.
    """
    conn = sqlite3.connect('applications.db')
    c = conn.cursor()
    c.execute('DELETE FROM applications WHERE id = ?', (app_id,))
    conn.commit()
    conn.close()

def generate_learning_path(career_goal, current_skills):
    """
    Generates a personalized learning path using Groq based on career goal and current skills.
    """
    prompt = f"""
    Based on the following career goal and current skills, create a personalized learning path that includes recommended courses, projects, and milestones to achieve the career goal.

    **Career Goal:**
    {career_goal}

    **Current Skills:**
    {current_skills}

    **Learning Path:**
    """

    try:
        response = llm.invoke(prompt)
        learning_path = response.content.strip()
        return learning_path
    except Exception as e:
        st.error(f"Error generating learning path: {e}")
        return ""

# -------------------------------
# Page Functions
# -------------------------------

def email_generator_page():
    st.header("Automated Email Generator")

    st.write("""
    Generate personalized cold emails based on job postings and your resume.
    """)

    # Input fields
    job_link = st.text_input("Enter the job link:")
    uploaded_file = st.file_uploader("Upload your resume (PDF format):", type="pdf")

    if st.button("Generate Email"):
        if not job_link:
            st.error("Please enter a job link.")
            return
        if not uploaded_file:
            st.error("Please upload your resume.")
            return

        with st.spinner("Processing..."):
            # Extract job description
            job_description = extract_job_description(job_link)
            if not job_description:
                st.error("Failed to extract job description.")
                return

            # Extract requirements
            requirements = extract_requirements(job_description)
            if not requirements:
                st.error("Failed to extract requirements.")
                return

            # Extract resume text
            resume_text = extract_text_from_pdf(uploaded_file)
            if not resume_text:
                st.error("Failed to extract text from resume.")
                return

            # Generate email
            email_text = generate_email(job_description, requirements, resume_text)
            if email_text:
                st.subheader("Generated Email:")
                st.write(email_text)
                # Provide download option
                st.download_button(
                    label="Download Email",
                    data=email_text,
                    file_name="generated_email.txt",
                    mime="text/plain"
                )
            else:
                st.error("Failed to generate email.")

def cover_letter_generator_page():
    st.header("Automated Cover Letter Generator")

    st.write("""
    Generate personalized cover letters based on job postings and your resume.
    """)

    # Input fields
    job_link = st.text_input("Enter the job link:")
    uploaded_file = st.file_uploader("Upload your resume (PDF format):", type="pdf")

    if st.button("Generate Cover Letter"):
        if not job_link:
            st.error("Please enter a job link.")
            return
        if not uploaded_file:
            st.error("Please upload your resume.")
            return

        with st.spinner("Processing..."):
            # Extract job description
            job_description = extract_job_description(job_link)
            if not job_description:
                st.error("Failed to extract job description.")
                return

            # Extract requirements
            requirements = extract_requirements(job_description)
            if not requirements:
                st.error("Failed to extract requirements.")
                return

            # Extract resume text
            resume_text = extract_text_from_pdf(uploaded_file)
            if not resume_text:
                st.error("Failed to extract text from resume.")
                return

            # Generate cover letter
            cover_letter = generate_cover_letter(job_description, requirements, resume_text)
            if cover_letter:
                st.subheader("Generated Cover Letter:")
                st.write(cover_letter)
                # Provide download option
                st.download_button(
                    label="Download Cover Letter",
                    data=cover_letter,
                    file_name="generated_cover_letter.txt",
                    mime="text/plain"
                )
            else:
                st.error("Failed to generate cover letter.")

def resume_analysis_page():
    st.header("Resume Analysis and Optimization")

    uploaded_file = st.file_uploader("Upload your resume (PDF format):", type="pdf")

    if uploaded_file:
        resume_text = extract_text_from_pdf(uploaded_file)
        if resume_text:
            st.success("Resume uploaded successfully!")
            # Perform analysis
            st.subheader("Extracted Information")
            # Extracted skills
            skills = extract_skills(resume_text)
            st.write("**Skills:**", ', '.join(skills) if skills else "No skills extracted.")
            # Extract keywords
            keywords = suggest_keywords(resume_text)
            st.write("**Suggested Keywords for ATS Optimization:**", ', '.join(keywords) if keywords else "No keywords suggested.")
            # Provide optimization suggestions
            st.subheader("Optimization Suggestions")
            if keywords:
                st.write("- **Keyword Optimization:** Incorporate the suggested keywords to improve ATS compatibility.")
            else:
                st.write("- **Keyword Optimization:** No keywords suggested.")
            st.write("- **Formatting:** Ensure consistent formatting for headings and bullet points to enhance readability.")
            st.write("- **Experience Details:** Provide specific achievements and quantify your accomplishments where possible.")

            # Visual Resume Analytics
            st.subheader("Visual Resume Analytics")
            # Skill Distribution Chart
            if skills:
                st.write("**Skill Distribution:**")
                fig_skills = create_skill_distribution_chart(skills)
                st.plotly_chart(fig_skills)
            else:
                st.write("**Skill Distribution:** No skills to display.")

            # Experience Timeline (if applicable)
            fig_experience = create_experience_timeline(resume_text)
            if fig_experience:
                st.write("**Experience Timeline:**")
                st.plotly_chart(fig_experience)
            else:
                st.write("**Experience Timeline:** Not enough data to generate a timeline.")

            # Save the resume and analysis to the database
            if st.button("Save Resume Analysis"):
                add_application(
                    job_title="N/A",
                    company="N/A",
                    application_date=datetime.now().strftime("%Y-%m-%d"),
                    status="N/A",
                    deadline="N/A",
                    notes="Resume Analysis",
                    job_description="N/A",
                    resume_text=resume_text,
                    skills=skills
                )
                st.success("Resume analysis saved successfully!")
        else:
            st.error("Failed to extract text from resume.")

def application_tracking_dashboard():
    st.header("Application Tracking Dashboard")

    # Initialize database
    init_db()

    # Form to add a new application
    st.subheader("Add New Application")
    with st.form("add_application"):
        job_title = st.text_input("Job Title")
        company = st.text_input("Company")
        application_date = st.date_input("Application Date", datetime.today())
        status = st.selectbox("Status", ["Applied", "Interviewing", "Offered", "Rejected"])
        deadline = st.date_input("Application Deadline", datetime.today() + timedelta(days=30))
        notes = st.text_area("Notes")
        uploaded_file = st.file_uploader("Upload Job Description (PDF)", type="pdf")
        uploaded_resume = st.file_uploader("Upload Resume (PDF)", type="pdf")
        submitted = st.form_submit_button("Add Application")
        if submitted:
            if uploaded_file:
                job_description = extract_text_from_pdf(uploaded_file)
            else:
                job_description = ""
            if uploaded_resume:
                resume_text = extract_text_from_pdf(uploaded_resume)
                skills = extract_skills(resume_text)
            else:
                resume_text = ""
                skills = []
            add_application(
                job_title=job_title,
                company=company,
                application_date=application_date.strftime("%Y-%m-%d"),
                status=status,
                deadline=deadline.strftime("%Y-%m-%d"),
                notes=notes,
                job_description=job_description,
                resume_text=resume_text,
                skills=skills
            )
            st.success("Application added successfully!")

    # Display applications
    st.subheader("Your Applications")
    applications = fetch_applications()
    if applications:
        df = pd.DataFrame(applications)
        df = df.drop(columns=["Job Description", "Resume Text", "Skills"])
        st.dataframe(df)

        # Actions: Update Status or Delete
        for app in applications:
            with st.expander(f"{app['Job Title']} at {app['Company']}"):
                st.write(f"**Application Date:** {app['Application Date']}")
                st.write(f"**Deadline:** {app['Deadline']}")
                st.write(f"**Status:** {app['Status']}")
                st.write(f"**Notes:** {app['Notes']}")
                if app['Job Description']:
                    st.write("**Job Description:**")
                    st.write(app['Job Description'][:500] + "...")
                if app['Skills']:
                    st.write("**Skills:**", ', '.join(app['Skills']))
                # Update status
                new_status = st.selectbox("Update Status:", ["Applied", "Interviewing", "Offered", "Rejected"], key=f"status_{app['ID']}")
                if st.button("Update Status", key=f"update_{app['ID']}"):
                    update_application_status(app['ID'], new_status)
                    st.success("Status updated successfully!")
                # Delete application
                if st.button("Delete Application", key=f"delete_{app['ID']}"):
                    delete_application(app['ID'])
                    st.success("Application deleted successfully!")
    else:
        st.write("No applications found.")

def interview_preparation_module():
    st.header("Interview Preparation")

    st.write("""
    Prepare for your interviews with tailored mock questions and expert tips.
    """)

    # Input fields
    job_title = st.text_input("Enter the job title you're applying for:")
    company = st.text_input("Enter the company name:")

    if st.button("Generate Mock Interview Questions"):
        if not job_title or not company:
            st.error("Please enter both job title and company name.")
            return
        with st.spinner("Generating questions..."):
            prompt = f"""
            Generate a list of 10 interview questions for a {job_title} position at {company}. Include a mix of technical and behavioral questions.
            """
            try:
                questions = llm.invoke(prompt).content.strip()
                st.subheader("Mock Interview Questions:")
                st.write(questions)

                # Optionally, provide sample answers or tips
                if st.checkbox("Show Sample Answers"):
                    sample_prompt = f"""
                    Provide sample answers for the following interview questions for a {job_title} position at {company}.

                    Questions:
                    {questions}

                    Sample Answers:
                    """
                    try:
                        sample_answers = llm.invoke(sample_prompt).content.strip()
                        st.subheader("Sample Answers:")
                        st.write(sample_answers)
                    except Exception as e:
                        st.error(f"Error generating sample answers: {e}")
            except Exception as e:
                st.error(f"Error generating interview questions: {e}")

def personalized_learning_paths_module():
    st.header("Personalized Learning Paths")

    st.write("""
    Receive tailored learning plans to help you acquire the skills needed for your desired career.
    """)

    # Input fields
    career_goal = st.text_input("Enter your career goal (e.g., Data Scientist, Machine Learning Engineer):")
    current_skills = st.text_input("Enter your current skills (comma-separated):")

    if st.button("Generate Learning Path"):
        if not career_goal or not current_skills:
            st.error("Please enter both career goal and current skills.")
            return
        with st.spinner("Generating your personalized learning path..."):
            learning_path = generate_learning_path(career_goal, current_skills)
            if learning_path:
                st.subheader("Your Personalized Learning Path:")
                st.write(learning_path)
            else:
                st.error("Failed to generate learning path.")

def networking_opportunities_module():
    st.header("Networking Opportunities")

    st.write("""
    Expand your professional network by connecting with relevant industry peers and joining professional groups.
    """)

    user_skills = st.text_input("Enter your key skills (comma-separated):")
    industry = st.text_input("Enter your industry (e.g., Technology, Finance):")

    if st.button("Find Networking Opportunities"):
        if not user_skills or not industry:
            st.error("Please enter both key skills and industry.")
            return
        with st.spinner("Fetching networking opportunities..."):
            # Suggest LinkedIn groups or connections based on skills and industry
            prompt = f"""
            Based on the following skills: {user_skills}, and industry: {industry}, suggest relevant LinkedIn groups, professional organizations, and industry events for networking.
            """
            try:
                suggestions = llm.invoke(prompt).content.strip()
                st.subheader("Recommended Networking Groups and Events:")
                st.write(suggestions)
            except Exception as e:
                st.error(f"Error fetching networking opportunities: {e}")

def salary_estimation_module():
    st.header("Salary Estimation and Negotiation Tips")

    st.write("""
    Understand the salary expectations for your desired roles and learn effective negotiation strategies.
    """)

    # Input fields
    job_title = st.text_input("Enter the job title:")
    location = st.text_input("Enter the location (e.g., New York, NY, USA):")

    if st.button("Get Salary Estimate"):
        if not job_title or not location:
            st.error("Please enter both job title and location.")
            return
        with st.spinner("Fetching salary data..."):
            # JSearch API Integration
            salary_data = get_job_recommendations(job_title, location)
            if salary_data:
                min_salary = salary_data.get("min_salary")
                avg_salary = salary_data.get("avg_salary")
                max_salary = salary_data.get("max_salary")

                if min_salary and avg_salary and max_salary:
                    st.subheader("Salary Estimate:")
                    st.write(f"**Minimum Salary:** ${min_salary:,}")
                    st.write(f"**Average Salary:** ${avg_salary:,}")
                    st.write(f"**Maximum Salary:** ${max_salary:,}")

                    # Visualization
                    salary_df = pd.DataFrame({
                        "Salary Range": ["Minimum", "Average", "Maximum"],
                        "Amount": [min_salary, avg_salary, max_salary]
                    })

                    fig = px.bar(salary_df, x="Salary Range", y="Amount",
                                 title=f"Salary Estimates for {job_title} in {location}",
                                 labels={"Amount": "Salary (USD)"},
                                 text_auto=True)
                    st.plotly_chart(fig)
                else:
                    st.error("Salary data not available for the provided job title and location.")

                # Generate negotiation tips using Groq
                tips_prompt = f"""
                Provide a list of 5 effective tips for negotiating a salary for a {job_title} position in {location}.
                """
                try:
                    tips = llm.invoke(tips_prompt).content.strip()
                    st.subheader("Negotiation Tips:")
                    st.write(tips)
                except Exception as e:
                    st.error(f"Error generating negotiation tips: {e}")
            else:
                st.error("Failed to retrieve salary data.")

def feedback_and_improvement_module():
    st.header("Feedback and Continuous Improvement")

    st.write("""
    We value your feedback! Let us know how we can improve your experience.
    """)

    with st.form("feedback_form"):
        name = st.text_input("Your Name")
        email = st.text_input("Your Email")
        feedback_type = st.selectbox("Type of Feedback", ["Bug Report", "Feature Request", "General Feedback"])
        feedback = st.text_area("Your Feedback")
        submitted = st.form_submit_button("Submit")

        if submitted:
            if not name or not email or not feedback:
                st.error("Please fill in all the fields.")
            else:
                # Here you can implement logic to store feedback, e.g., in a database or send via email
                # For demonstration, we'll print to the console
                print(f"Feedback from {name} ({email}): {feedback_type} - {feedback}")
                st.success("Thank you for your feedback!")

def gamification_module():
    st.header("Gamification and Achievements")

    st.write("""
    Stay motivated by earning badges and tracking your progress!
    """)

    # Initialize database
    init_db()

    # Example achievements
    applications = fetch_applications()
    num_apps = len(applications)
    achievements = {
        "First Application": num_apps >= 1,
        "5 Applications": num_apps >= 5,
        "10 Applications": num_apps >= 10,
        "Resume Optimized": any(app['Skills'] for app in applications),
        "Interview Scheduled": any(app['Status'] == 'Interviewing' for app in applications)
    }

    for achievement, earned in achievements.items():
        if earned:
            st.success(f"🎉 {achievement}")
        else:
            st.info(f"🔜 {achievement}")

    # Progress Bar
    progress = min(num_apps / 10, 1.0)  # Ensure progress is between 0.0 and 1.0
    st.write("**Overall Progress:**")
    st.progress(progress)
    st.write(f"{progress * 100:.0f}% complete")

def resource_library_page():
    st.header("Resource Library")

    st.write("""
    Access a collection of templates and guides to enhance your job search.
    """)

    resources = [
        {
            "title": "Resume Template",
            "description": "A professional resume template in DOCX format.",
            "file": "resume_template.docx"
        },
        {
            "title": "Cover Letter Template",
            "description": "A customizable cover letter template.",
            "file": "cover_letter_template.docx"
        },
        {
            "title": "Job Application Checklist",
            "description": "Ensure you have all the necessary steps covered during your job search.",
            "file": "application_checklist.pdf"
        }
    ]

    for resource in resources:
        st.markdown(f"### {resource['title']}")
        st.write(resource['description'])
        try:
            with open(resource['file'], "rb") as file:
                btn = st.download_button(
                    label="Download",
                    data=file,
                    file_name=resource['file'],
                    mime="application/octet-stream"
                )
        except FileNotFoundError:
            st.error(f"File {resource['file']} not found. Please ensure the file is in the correct directory.")
        st.write("---")

def success_stories_page():
    st.header("Success Stories")

    st.write("""
    Hear from our users who have successfully landed their dream jobs with our assistance!
    """)

    # Example testimonials
    testimonials = [
        {
            "name": "Rahul Sharma",
            "position": "Data Scientist at TechCorp",
            "testimonial": "This app transformed my job search process. The resume analysis and personalized emails were game-changers!",
            "image": "images/user1.jpg"  # Replace with actual image paths
        },
        {
            "name": "Priya Mehta",
            "position": "Machine Learning Engineer at InnovateX",
            "testimonial": "The interview preparation module helped me ace my interviews with confidence. Highly recommended!",
            "image": "images/user2.jpg"
        }
    ]

    for user in testimonials:
        col1, col2 = st.columns([1, 3])
        with col1:
            try:
                st.image(user["image"], width=100)
            except:
                st.write("![User Image](https://via.placeholder.com/100)")
        with col2:
            st.write(f"**{user['name']}**")
            st.write(f"*{user['position']}*")
            st.write(f"\"{user['testimonial']}\"")
            st.write("---")

def chatbot_support_page():
    st.header("AI-Powered Chatbot Support")

    st.write("""
    Have questions or need assistance? Chat with our AI-powered assistant!
    """)

    # Initialize session state for chatbot
    if 'chat_history' not in st.session_state:
        st.session_state['chat_history'] = []

    user_input = st.text_input("You:", key="user_input")

    if st.button("Send"):
        if user_input:
            st.session_state['chat_history'].append(f"You: {user_input}")
            prompt = f"""
            You are a helpful assistant for a Job Application Assistant app. Answer the user's query based on the following context:

            {user_input}
            """
            try:
                response = llm.invoke(prompt).content.strip()
                st.session_state['chat_history'].append(f"Assistant: {response}")
            except Exception as e:
                st.session_state['chat_history'].append(f"Assistant: Sorry, I encountered an error while processing your request.")
                st.error(f"Error in chatbot: {e}")

    # Display chat history
    for message in st.session_state['chat_history']:
        if message.startswith("You:"):
            st.markdown(f"<p style='color:blue;'>{message}</p>", unsafe_allow_html=True)
        else:
            st.markdown(f"<p style='color:green;'>{message}</p>", unsafe_allow_html=True)

# -------------------------------
# Main App with Sidebar Navigation
# -------------------------------

def main():
    st.set_page_config(page_title="Job Application Assistant", layout="wide")

    # Initialize database early to ensure tables exist
    init_db()

    # Sidebar Navigation
    with st.sidebar:
        selected = option_menu(
            "Main Menu",
            ["Email Generator", "Cover Letter Generator", "Resume Analysis", "Application Tracking",
             "Interview Preparation", "Personalized Learning Paths", "Networking Opportunities",
             "Salary Estimation", "Feedback", "Gamification", "Resource Library", "Success Stories", "Chatbot Support"],
            icons=["envelope", "file-earmark-text", "file-person", "briefcase", "gear",
                   "book", "people", "currency-dollar", "chat-left-text", "trophy", "collection", "star", "chat"],
            menu_icon="cast",
            default_index=0,
        )

    if selected == "Email Generator":
        email_generator_page()
    elif selected == "Cover Letter Generator":
        cover_letter_generator_page()
    elif selected == "Resume Analysis":
        resume_analysis_page()
    elif selected == "Application Tracking":
        application_tracking_dashboard()
    elif selected == "Interview Preparation":
        interview_preparation_module()
    elif selected == "Personalized Learning Paths":
        personalized_learning_paths_module()
    elif selected == "Networking Opportunities":
        networking_opportunities_module()
    elif selected == "Salary Estimation":
        salary_estimation_module()
    elif selected == "Feedback":
        feedback_and_improvement_module()
    elif selected == "Gamification":
        gamification_module()
    elif selected == "Resource Library":
        resource_library_page()
    elif selected == "Success Stories":
        success_stories_page()
    elif selected == "Chatbot Support":
        chatbot_support_page()

if __name__ == "__main__":
    main()