Spaces:
Sleeping
Sleeping
File size: 45,926 Bytes
19a9439 0e8be63 0b0fa7c 9d2803a 0e8be63 0175ebc 0c0b5ad df33714 ad6ef2a df33714 0175ebc 0e8be63 8a2ea33 ad6ef2a feca185 ad6ef2a feca185 19a9439 df33714 811efd0 364ed89 811efd0 7f28832 811efd0 7f28832 df33714 811efd0 df33714 811efd0 df33714 811efd0 df33714 811efd0 df33714 811efd0 df33714 811efd0 df33714 811efd0 df33714 811efd0 df33714 811efd0 7f28832 811efd0 df33714 811efd0 df33714 811efd0 df33714 811efd0 df33714 811efd0 0175ebc 811efd0 0c0b5ad df33714 0c0b5ad df33714 8a2ea33 0e8be63 df33714 0e8be63 8a2ea33 df33714 8a2ea33 0e8be63 df33714 8a2ea33 df33714 8a2ea33 df33714 8a2ea33 0e8be63 df33714 384abd1 ce04c1a df33714 ce04c1a 384abd1 ce04c1a 384abd1 ce04c1a df33714 ce04c1a 384abd1 ce04c1a 384abd1 df33714 d6a0cb3 ce04c1a df33714 384abd1 df33714 384abd1 df33714 384abd1 df33714 384abd1 ce04c1a 8a2ea33 ce04c1a 0e8be63 8a2ea33 384abd1 ce04c1a df33714 8a2ea33 df33714 384abd1 df33714 384abd1 8a2ea33 384abd1 8a2ea33 df33714 8a2ea33 ce04c1a 8a2ea33 df33714 8a2ea33 ce04c1a 2d0a829 ce04c1a 8a2ea33 384abd1 df33714 384abd1 df33714 384abd1 df33714 384abd1 df33714 384abd1 0c0b5ad df33714 0c0b5ad 811efd0 df33714 811efd0 8a2ea33 811efd0 8a2ea33 df33714 8a2ea33 df33714 811efd0 df33714 811efd0 df33714 811efd0 ce04c1a df33714 ce04c1a df33714 ce04c1a 8a2ea33 df33714 8a2ea33 ce04c1a 8a2ea33 ce04c1a 8a2ea33 df33714 8a2ea33 ce04c1a 8a2ea33 df33714 8a2ea33 811efd0 8a2ea33 df33714 811efd0 8a2ea33 811efd0 df33714 811efd0 8a2ea33 811efd0 df33714 811efd0 8a2ea33 df33714 811efd0 8a2ea33 811efd0 df33714 811efd0 8a2ea33 811efd0 df33714 811efd0 88ddc48 df33714 811efd0 88ddc48 df33714 88ddc48 811efd0 88ddc48 811efd0 88ddc48 811efd0 8a2ea33 811efd0 384abd1 df33714 8a2ea33 811efd0 8a2ea33 811efd0 df33714 811efd0 8a2ea33 df33714 8a2ea33 811efd0 df33714 8a2ea33 811efd0 7f28832 811efd0 8a2ea33 811efd0 df33714 811efd0 df33714 811efd0 8a2ea33 7f28832 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 df33714 8a2ea33 df33714 8a2ea33 df33714 8a2ea33 ce04c1a 8a2ea33 ce04c1a 8a2ea33 811efd0 8a2ea33 df33714 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 7f28832 0c0b5ad 7f28832 0c0b5ad 8a2ea33 0c0b5ad 7f28832 8a2ea33 811efd0 8a2ea33 df33714 811efd0 df33714 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 0c0b5ad 8a2ea33 0c0b5ad 811efd0 8a2ea33 811efd0 8a2ea33 df33714 811efd0 8a2ea33 811efd0 df33714 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 7f28832 811efd0 7f28832 811efd0 8a2ea33 811efd0 7f28832 8a2ea33 811efd0 8a2ea33 df33714 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 df33714 8a2ea33 811efd0 8a2ea33 df33714 811efd0 df33714 811efd0 df33714 811efd0 8a2ea33 811efd0 8a2ea33 df33714 811efd0 8a2ea33 811efd0 7f28832 811efd0 7f28832 8a2ea33 7f28832 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 df33714 8a2ea33 df33714 8a2ea33 df33714 8a2ea33 df33714 8a2ea33 df33714 8a2ea33 0c0b5ad df33714 0c0b5ad 811efd0 df33714 811efd0 0c0b5ad 8a2ea33 df33714 0c0b5ad 811efd0 8a2ea33 811efd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 |
import streamlit as st
import requests
from langchain_groq import ChatGroq
from streamlit_chat import message
import plotly.express as px
import pandas as pd
import sqlite3
from datetime import datetime, timedelta
import re
import os
import fitz # PyMuPDF
from bs4 import BeautifulSoup
from streamlit_option_menu import option_menu
# Secrets and API Keys
GROQ_API_KEY = st.secrets["GROQ_API_KEY"]
RAPIDAPI_KEY = st.secrets["RAPIDAPI_KEY"]
YOUTUBE_API_KEY = st.secrets["YOUTUBE_API_KEY"]
THE_MUSE_API_KEY = st.secrets.get("THE_MUSE_API_KEY", "")
BLS_API_KEY = st.secrets.get("BLS_API_KEY", "")
llm = ChatGroq(
temperature=0,
groq_api_key=GROQ_API_KEY,
model_name="llama-3.1-70b-versatile"
)
# -------------------------------
# PDF and HTML Extraction Functions
# -------------------------------
@st.cache_data(ttl=3600)
def extract_text_from_pdf(pdf_file):
"""
Extracts text from an uploaded PDF file.
"""
text = ""
try:
with fitz.open(stream=pdf_file.read(), filetype="pdf") as doc:
for page in doc:
text += page.get_text()
return text
except Exception as e:
st.error(f"Error extracting text from PDF: {e}")
return ""
@st.cache_data(ttl=3600)
def extract_job_description(job_link):
"""
Fetches and extracts job description text from a given URL.
"""
try:
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64)"}
response = requests.get(job_link, headers=headers)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
job_description = soup.get_text(separator='\n')
return job_description.strip()
except Exception as e:
st.error(f"Error fetching job description: {e}")
return ""
@st.cache_data(ttl=3600)
def extract_requirements(job_description):
"""
Uses Groq to extract job requirements from the job description.
"""
prompt = f"""
The following is a job description:
{job_description}
Extract the list of job requirements, qualifications, and skills from the job description. Provide them as a numbered list.
Requirements:
"""
try:
response = llm.invoke(prompt)
return response.content.strip()
except Exception as e:
st.error(f"Error extracting requirements: {e}")
return ""
# -------------------------------
# Email and Cover Letter Generation
# -------------------------------
@st.cache_data(ttl=3600)
def generate_email(job_description, requirements, resume_text):
"""
Generates a personalized cold email using Groq.
"""
prompt = f"""
You are Adithya S Nair, a recent Computer Science graduate specializing in Artificial Intelligence and Machine Learning. Craft a concise and professional cold email to a potential employer based on the following information:
**Job Description:**
{job_description}
**Extracted Requirements:**
{requirements}
**Your Resume:**
{resume_text}
**Email Requirements:**
- Introduction: Briefly introduce yourself and mention the specific job you are applying for.
- Body: Highlight your relevant skills, projects, internships, and leadership experiences.
- Value Proposition: Explain how your fresh perspective can add value to the company.
- Closing: Express enthusiasm and request an interview.
"""
try:
response = llm.invoke(prompt)
return response.content.strip()
except Exception as e:
st.error(f"Error generating email: {e}")
return ""
@st.cache_data(ttl=3600)
def generate_cover_letter(job_description, requirements, resume_text):
"""
Generates a personalized cover letter using Groq.
"""
prompt = f"""
You are Adithya S Nair, a recent Computer Science graduate specializing in Artificial Intelligence and Machine Learning. Compose a professional cover letter based on the following information:
**Job Description:**
{job_description}
**Extracted Requirements:**
{requirements}
**Your Resume:**
{resume_text}
**Cover Letter Requirements:**
1. Greeting: Address the hiring manager.
2. Introduction: Mention the position and your enthusiasm.
3. Body: Highlight skills, experiences, and relevant projects.
4. Value Proposition: Explain how you can contribute to the company.
5. Conclusion: Express interest in an interview and thank the reader.
"""
try:
response = llm.invoke(prompt)
return response.content.strip()
except Exception as e:
st.error(f"Error generating cover letter: {e}")
return ""
# -------------------------------
# Resume Analysis Functions
# -------------------------------
@st.cache_data(ttl=3600)
def extract_skills(text):
"""
Extracts a list of skills from the resume text using Groq.
"""
prompt = f"""
Extract a comprehensive list of technical and soft skills from the following resume text. Provide the skills as a comma-separated list.
Resume Text:
{text}
Skills:
"""
try:
response = llm.invoke(prompt)
skills = response.content.strip()
skills_list = [skill.strip() for skill in re.split(',|\n', skills) if skill.strip()]
return skills_list
except Exception as e:
st.error(f"Error extracting skills: {e}")
return []
@st.cache_data(ttl=3600)
def suggest_keywords(resume_text, job_description=None):
"""
Suggests additional relevant keywords for ATS optimization.
"""
prompt = f"""
Analyze the following resume text and suggest additional relevant keywords that can enhance its compatibility with Applicant Tracking Systems (ATS). If a job description is provided, tailor the keywords accordingly.
Resume Text:
{resume_text}
Job Description:
{job_description if job_description else "N/A"}
Suggested Keywords:
"""
try:
response = llm.invoke(prompt)
keywords = response.content.strip()
keywords_list = [keyword.strip() for keyword in re.split(',|\n', keywords) if keyword.strip()]
return keywords_list
except Exception as e:
st.error(f"Error suggesting keywords: {e}")
return []
def create_skill_distribution_chart(skills):
"""
Creates a bar chart showing the distribution of skills.
"""
skill_counts = {}
for skill in skills:
skill_counts[skill] = skill_counts.get(skill, 0) + 1
df = pd.DataFrame(list(skill_counts.items()), columns=['Skill', 'Count'])
fig = px.bar(df, x='Skill', y='Count', title='Skill Distribution')
return fig
def create_experience_timeline(resume_text):
"""
Creates an experience timeline from the resume text.
"""
prompt = f"""
From the following resume text, extract the job titles, companies, and durations of employment. Provide the information in a table format with columns: Job Title, Company, Duration (in years).
Resume Text:
{resume_text}
Table:
"""
try:
response = llm.invoke(prompt)
table_text = response.content.strip()
data = []
for line in table_text.split('\n'):
if line.strip() and not line.lower().startswith("job title"):
parts = line.split('|')
if len(parts) == 3:
job_title = parts[0].strip()
company = parts[1].strip()
duration = parts[2].strip()
duration_years = parse_duration(duration)
data.append({"Job Title": job_title, "Company": company, "Duration (years)": duration_years})
df = pd.DataFrame(data)
if not df.empty:
df['Start Year'] = df['Duration (years)'].cumsum() - df['Duration (years)']
df['End Year'] = df['Duration (years)'].cumsum()
fig = px.timeline(df, x_start="Start Year", x_end="End Year", y="Job Title", color="Company", title="Experience Timeline")
fig.update_yaxes(categoryorder="total ascending")
return fig
else:
return None
except Exception as e:
st.error(f"Error creating experience timeline: {e}")
return None
def parse_duration(duration_str):
"""
Parses duration strings like '2 years' or '6 months' into float years.
"""
try:
if 'year' in duration_str.lower():
years = float(re.findall(r'\d+\.?\d*', duration_str)[0])
return years
elif 'month' in duration_str.lower():
months = float(re.findall(r'\d+\.?\d*', duration_str)[0])
return months / 12
else:
return 0
except:
return 0
# -------------------------------
# Job API Integration Functions
# -------------------------------
@st.cache_data(ttl=86400)
def fetch_remotive_jobs_api(job_title, location=None, category=None, remote=True, max_results=50):
"""
Fetches job listings from Remotive API.
"""
base_url = "https://remotive.com/api/remote-jobs"
params = {"search": job_title, "limit": max_results}
if category:
params["category"] = category
try:
response = requests.get(base_url, params=params)
response.raise_for_status()
jobs = response.json().get("jobs", [])
if remote:
jobs = [job for job in jobs if job.get("candidate_required_location") == "Worldwide" or job.get("remote") == True]
return jobs
except requests.exceptions.RequestException as e:
st.error(f"Error fetching jobs from Remotive: {e}")
return []
@st.cache_data(ttl=86400)
def fetch_muse_jobs_api(job_title, location=None, category=None, max_results=50):
"""
Fetches job listings from The Muse API.
"""
base_url = "https://www.themuse.com/api/public/jobs"
headers = {"Content-Type": "application/json"}
params = {"page": 1, "per_page": max_results, "category": category, "location": location, "company": None}
try:
response = requests.get(base_url, params=params, headers=headers)
response.raise_for_status()
jobs = response.json().get("results", [])
filtered_jobs = [job for job in jobs if job_title.lower() in job.get("name", "").lower()]
return filtered_jobs
except requests.exceptions.RequestException as e:
st.error(f"Error fetching jobs from The Muse: {e}")
return []
@st.cache_data(ttl=86400)
def fetch_indeed_jobs_list_api(job_title, location="United States", distance="1.0", language="en_GB", remoteOnly="false", datePosted="month", employmentTypes="fulltime;parttime;intern;contractor", index=0, page_size=10):
"""
Fetches a list of job IDs from Indeed API.
"""
url = "https://jobs-api14.p.rapidapi.com/list"
querystring = {
"query": job_title,
"location": location,
"distance": distance,
"language": language,
"remoteOnly": remoteOnly,
"datePosted": datePosted,
"employmentTypes": employmentTypes,
"index": str(index),
"page_size": str(page_size)
}
headers = {"x-rapidapi-key": RAPIDAPI_KEY, "x-rapidapi-host": "jobs-api14.p.rapidapi.com"}
try:
response = requests.get(url, headers=headers, params=querystring)
response.raise_for_status()
data = response.json()
job_ids = [job["id"] for job in data.get("jobs", [])]
return job_ids
except requests.exceptions.RequestException as e:
st.error(f"Error fetching job IDs from Indeed: {e}")
return []
@st.cache_data(ttl=86400)
def fetch_indeed_job_details_api(job_id, language="en_GB"):
"""
Fetches job details from Indeed API.
"""
url = "https://jobs-api14.p.rapidapi.com/get"
querystring = {"id": job_id, "language": language}
headers = {"x-rapidapi-key": RAPIDAPI_KEY, "x-rapidapi-host": "jobs-api14.p.rapidapi.com"}
try:
response = requests.get(url, headers=headers, params=querystring)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
st.error(f"Error fetching job details from Indeed: {e}")
return {}
def recommend_indeed_jobs(user_skills, user_preferences):
"""
Recommends jobs from Indeed API based on user skills and preferences.
"""
job_title = user_preferences.get("job_title", "")
location = user_preferences.get("location", "United States")
category = user_preferences.get("category", "")
language = "en_GB"
job_ids = fetch_indeed_jobs_list_api(job_title, location=location, category=category, page_size=5)
recommended_jobs = []
api_calls_needed = len(job_ids)
if not can_make_api_calls(api_calls_needed):
st.error("❌ You have reached your monthly API request limit. Please try again later.")
return []
for job_id in job_ids:
job_details = fetch_indeed_job_details_api(job_id, language=language)
if job_details and not job_details.get("hasError", True):
job_description = job_details.get("description", "").lower()
match_score = sum(skill.lower() in job_description for skill in user_skills)
if match_score > 0:
recommended_jobs.append((match_score, job_details))
decrement_api_calls(1)
recommended_jobs.sort(reverse=True, key=lambda x: x[0])
return [job for score, job in recommended_jobs[:10]]
def recommend_jobs(user_skills, user_preferences):
"""
Combines job recommendations from Remotive, The Muse, and Indeed.
"""
remotive_jobs = fetch_remotive_jobs_api(user_preferences.get("job_title", ""), user_preferences.get("location"), user_preferences.get("category"))
muse_jobs = fetch_muse_jobs_api(user_preferences.get("job_title", ""), user_preferences.get("location"), user_preferences.get("category"))
indeed_jobs = recommend_indeed_jobs(user_skills, user_preferences)
combined_jobs = remotive_jobs + muse_jobs + indeed_jobs
unique_jobs = {}
for job in combined_jobs:
url = job.get("url") or job.get("redirect_url") or job.get("url_standard")
if url and url not in unique_jobs:
unique_jobs[url] = job
return list(unique_jobs.values())
# -------------------------------
# API Usage Counter Functions
# -------------------------------
def init_api_usage_db():
"""
Initializes the SQLite database and creates the api_usage table if it doesn't exist.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('''
CREATE TABLE IF NOT EXISTS api_usage (
id INTEGER PRIMARY KEY AUTOINCREMENT,
count INTEGER,
last_reset DATE
)
''')
c.execute('SELECT COUNT(*) FROM api_usage')
if c.fetchone()[0] == 0:
c.execute('INSERT INTO api_usage (count, last_reset) VALUES (?, ?)', (25, datetime.now().date()))
conn.commit()
conn.close()
def get_api_usage():
"""
Retrieves the current API usage count and last reset date.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('SELECT count, last_reset FROM api_usage WHERE id = 1')
row = c.fetchone()
conn.close()
if row:
return row[0], datetime.strptime(row[1], "%Y-%m-%d").date()
else:
return 25, datetime.now().date()
def reset_api_usage():
"""
Resets the API usage count to 25.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('UPDATE api_usage SET count = ?, last_reset = ? WHERE id = 1', (25, datetime.now().date()))
conn.commit()
conn.close()
def can_make_api_calls(requests_needed):
"""
Checks if there are enough API calls remaining.
"""
count, last_reset = get_api_usage()
today = datetime.now().date()
if today >= last_reset + timedelta(days=30):
reset_api_usage()
count, last_reset = get_api_usage()
return count >= requests_needed
def decrement_api_calls(requests_used):
"""
Decrements the API usage count.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('SELECT count FROM api_usage WHERE id = 1')
row = c.fetchone()
if row:
new_count = max(row[0] - requests_used, 0)
c.execute('UPDATE api_usage SET count = ? WHERE id = 1', (new_count,))
conn.commit()
conn.close()
# -------------------------------
# Application Tracking Functions
# -------------------------------
def init_db():
"""
Initializes the SQLite database and creates the applications table.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('''
CREATE TABLE IF NOT EXISTS applications (
id INTEGER PRIMARY KEY AUTOINCREMENT,
job_title TEXT,
company TEXT,
application_date TEXT,
status TEXT,
deadline TEXT,
notes TEXT,
job_description TEXT,
resume_text TEXT,
skills TEXT
)
''')
conn.commit()
conn.close()
def add_application(job_title, company, application_date, status, deadline, notes, job_description, resume_text, skills):
"""
Adds a new job application to the database.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('''
INSERT INTO applications (job_title, company, application_date, status, deadline, notes, job_description, resume_text, skills)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
''', (job_title, company, application_date, status, deadline, notes, job_description, resume_text, ', '.join(skills)))
conn.commit()
conn.close()
def fetch_applications():
"""
Fetches all applications from the database.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('SELECT * FROM applications')
data = c.fetchall()
conn.close()
applications = []
for app in data:
applications.append({
"ID": app[0],
"Job Title": app[1],
"Company": app[2],
"Application Date": app[3],
"Status": app[4],
"Deadline": app[5],
"Notes": app[6],
"Job Description": app[7],
"Resume Text": app[8],
"Skills": app[9].split(', ') if app[9] else []
})
return applications
def update_application_status(app_id, new_status):
"""
Updates the status of an application.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('UPDATE applications SET status = ? WHERE id = ?', (new_status, app_id))
conn.commit()
conn.close()
def delete_application(app_id):
"""
Deletes an application from the database.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('DELETE FROM applications WHERE id = ?', (app_id,))
conn.commit()
conn.close()
# -------------------------------
# Learning Path Generation
# -------------------------------
@st.cache_data(ttl=86400)
def generate_learning_path(career_goal, current_skills):
"""
Generates a personalized learning path using Groq.
"""
prompt = f"""
Based on the following career goal and current skills, create a personalized learning path that includes recommended courses, projects, and milestones.
**Career Goal:**
{career_goal}
**Current Skills:**
{current_skills}
**Learning Path:**
"""
try:
response = llm.invoke(prompt)
return response.content.strip()
except Exception as e:
st.error(f"Error generating learning path: {e}")
return ""
# -------------------------------
# YouTube Video Search and Embed Functions
# -------------------------------
@st.cache_data(ttl=86400)
def search_youtube_videos(query, max_results=2, video_duration="long"):
"""
Searches YouTube for videos matching the query.
"""
search_url = "https://www.googleapis.com/youtube/v3/search"
params = {
"part": "snippet",
"q": query,
"type": "video",
"maxResults": max_results,
"videoDuration": video_duration,
"key": YOUTUBE_API_KEY
}
try:
response = requests.get(search_url, params=params)
response.raise_for_status()
results = response.json().get("items", [])
video_urls = [f"https://www.youtube.com/watch?v={item['id']['videoId']}" for item in results]
return video_urls
except requests.exceptions.RequestException as e:
st.error(f"❌ Error fetching YouTube videos: {e}")
return []
def embed_youtube_videos(video_urls, module_name):
"""
Embeds YouTube videos.
"""
for url in video_urls:
st.video(url)
# -------------------------------
# Application Modules (Pages)
# -------------------------------
def email_generator_page():
st.header("📧 Automated Email Generator")
st.write("Generate personalized cold emails based on job postings and your resume.")
col1, col2 = st.columns(2)
with col1:
job_link = st.text_input("🔗 Enter the job link:")
with col2:
uploaded_file = st.file_uploader("📄 Upload your resume (PDF):", type="pdf")
if st.button("Generate Email"):
if not job_link:
st.error("Please enter a job link.")
return
if not uploaded_file:
st.error("Please upload your resume.")
return
with st.spinner("Processing..."):
job_description = extract_job_description(job_link)
if not job_description:
st.error("Failed to extract job description.")
return
requirements = extract_requirements(job_description)
if not requirements:
st.error("Failed to extract requirements.")
return
resume_text = extract_text_from_pdf(uploaded_file)
if not resume_text:
st.error("Failed to extract text from resume.")
return
email_text = generate_email(job_description, requirements, resume_text)
if email_text:
st.subheader("📨 Generated Email:")
st.write(email_text)
st.download_button("Download Email", data=email_text, file_name="generated_email.txt", mime="text/plain")
else:
st.error("Failed to generate email.")
def cover_letter_generator_page():
st.header("📝 Automated Cover Letter Generator")
st.write("Generate personalized cover letters based on job postings and your resume.")
col1, col2 = st.columns(2)
with col1:
job_link = st.text_input("🔗 Enter the job link:")
with col2:
uploaded_file = st.file_uploader("📄 Upload your resume (PDF):", type="pdf")
if st.button("Generate Cover Letter"):
if not job_link:
st.error("Please enter a job link.")
return
if not uploaded_file:
st.error("Please upload your resume.")
return
with st.spinner("Processing..."):
job_description = extract_job_description(job_link)
if not job_description:
st.error("Failed to extract job description.")
return
requirements = extract_requirements(job_description)
if not requirements:
st.error("Failed to extract requirements.")
return
resume_text = extract_text_from_pdf(uploaded_file)
if not resume_text:
st.error("Failed to extract text from resume.")
return
cover_letter = generate_cover_letter(job_description, requirements, resume_text)
if cover_letter:
st.subheader("📝 Generated Cover Letter:")
st.write(cover_letter)
st.download_button("Download Cover Letter", data=cover_letter, file_name="generated_cover_letter.txt", mime="text/plain")
else:
st.error("Failed to generate cover letter.")
def resume_analysis_page():
st.header("📄 Resume Analysis and Optimization")
st.write("Enhance your resume by extracting key information, suggestions, and visual analytics.")
uploaded_file = st.file_uploader("📂 Upload your resume (PDF):", type="pdf")
if uploaded_file:
resume_text = extract_text_from_pdf(uploaded_file)
if resume_text:
st.success("✅ Resume uploaded successfully!")
st.subheader("🔍 Extracted Information")
tabs = st.tabs(["💼 Skills", "🔑 Suggested Keywords"])
with tabs[0]:
skills = extract_skills(resume_text)
if skills:
st.markdown("**Identified Skills:**")
cols = st.columns(4)
for idx, skill in enumerate(skills, 1):
cols[idx % 4].write(f"- {skill}")
else:
st.info("No skills extracted.")
with tabs[1]:
keywords = suggest_keywords(resume_text)
if keywords:
st.markdown("**Suggested Keywords for ATS Optimization:**")
cols = st.columns(4)
for idx, keyword in enumerate(keywords, 1):
cols[idx % 4].write(f"- {keyword}")
else:
st.info("No keywords suggested.")
st.subheader("🛠️ Optimization Suggestions")
st.markdown("""
- **Keyword Optimization:** Incorporate suggested keywords.
- **Highlight Relevant Sections:** Emphasize skills that match job requirements.
- **Consistent Formatting:** Ensure readability and structure.
""")
st.subheader("📊 Visual Resume Analytics")
viz_col1, viz_col2 = st.columns(2)
with viz_col1:
if skills:
st.markdown("**Skill Distribution:**")
fig_skills = create_skill_distribution_chart(skills)
st.plotly_chart(fig_skills, use_container_width=True)
else:
st.info("No skills to display.")
with viz_col2:
fig_experience = create_experience_timeline(resume_text)
if fig_experience:
st.markdown("**Experience Timeline:**")
st.plotly_chart(fig_experience, use_container_width=True)
else:
st.info("Not enough data to generate an experience timeline.")
st.subheader("💾 Save Resume Analysis")
if st.button("Save Resume Analysis"):
add_application(
job_title="N/A",
company="N/A",
application_date=datetime.now().strftime("%Y-%m-%d"),
status="N/A",
deadline="N/A",
notes="Resume Analysis",
job_description="N/A",
resume_text=resume_text,
skills=skills
)
st.success("✅ Resume analysis saved successfully!")
else:
st.error("❌ Failed to extract text from resume.")
def application_tracking_dashboard():
st.header("📋 Application Tracking Dashboard")
init_db()
init_api_usage_db()
st.subheader("➕ Add New Application")
with st.form("add_application"):
job_title = st.text_input("🖇️ Job Title")
company = st.text_input("🏢 Company")
application_date = st.date_input("📅 Application Date", datetime.today())
status = st.selectbox("📈 Status", ["Applied", "Interviewing", "Offered", "Rejected"])
deadline = st.date_input("⏰ Application Deadline", datetime.today() + timedelta(days=30))
notes = st.text_area("📝 Notes")
uploaded_file = st.file_uploader("📂 Upload Job Description (PDF)", type="pdf")
uploaded_resume = st.file_uploader("📄 Upload Resume (PDF)", type="pdf")
submitted = st.form_submit_button("➕ Add Application")
if submitted:
job_description = extract_text_from_pdf(uploaded_file) if uploaded_file else ""
if uploaded_resume:
resume_text = extract_text_from_pdf(uploaded_resume)
skills = extract_skills(resume_text)
else:
resume_text = ""
skills = []
add_application(
job_title=job_title,
company=company,
application_date=application_date.strftime("%Y-%m-%d"),
status=status,
deadline=deadline.strftime("%Y-%m-%d"),
notes=notes,
job_description=job_description,
resume_text=resume_text,
skills=skills
)
st.success("✅ Application added successfully!")
st.subheader("📊 Your Applications")
applications = fetch_applications()
if applications:
df = pd.DataFrame(applications)
df = df.drop(columns=["Job Description", "Resume Text", "Skills"])
st.dataframe(df)
csv = df.to_csv(index=False).encode('utf-8')
st.download_button("💾 Download Applications as CSV", data=csv, file_name='applications.csv', mime='text/csv')
st.subheader("📥 Import Applications")
uploaded_csv = st.file_uploader("📁 Upload a CSV file", type="csv")
if uploaded_csv:
try:
imported_df = pd.read_csv(uploaded_csv)
required_columns = {"Job Title", "Company", "Application Date", "Status", "Deadline", "Notes"}
if not required_columns.issubset(imported_df.columns):
st.error("❌ Uploaded CSV is missing required columns.")
else:
for _, row in imported_df.iterrows():
add_application(
job_title=row.get("Job Title", "N/A"),
company=row.get("Company", "N/A"),
application_date=row.get("Application Date", datetime.now().strftime("%Y-%m-%d")),
status=row.get("Status", "Applied"),
deadline=row.get("Deadline", ""),
notes=row.get("Notes", ""),
job_description=row.get("Job Description", ""),
resume_text=row.get("Resume Text", ""),
skills=row.get("Skills", "").split(', ') if row.get("Skills") else []
)
st.success("✅ Applications imported successfully!")
except Exception as e:
st.error(f"❌ Error importing applications: {e}")
for app in applications:
with st.expander(f"{app['Job Title']} at {app['Company']}"):
st.write(f"**📅 Application Date:** {app['Application Date']}")
st.write(f"**⏰ Deadline:** {app['Deadline']}")
st.write(f"**📈 Status:** {app['Status']}")
st.write(f"**📝 Notes:** {app['Notes']}")
new_status = st.selectbox("🔄 Update Status:", ["Applied", "Interviewing", "Offered", "Rejected"], key=f"status_{app['ID']}")
if st.button("🔁 Update Status", key=f"update_{app['ID']}"):
update_application_status(app['ID'], new_status)
st.success("✅ Status updated successfully!")
if st.button("🗑️ Delete Application", key=f"delete_{app['ID']}"):
delete_application(app['ID'])
st.success("✅ Application deleted successfully!")
else:
st.write("ℹ️ No applications found.")
def job_recommendations_module():
st.header("🔍 Job Matching & Recommendations")
st.write("Discover job opportunities tailored to your skills and preferences.")
st.subheader("🎯 Set Your Preferences")
with st.form("preferences_form"):
job_title = st.text_input("🔍 Desired Job Title", placeholder="e.g., Data Scientist")
location = st.text_input("📍 Preferred Location", placeholder="e.g., New York, USA or Remote")
category = st.selectbox("📂 Job Category", ["", "Engineering", "Marketing", "Design", "Sales", "Finance", "Healthcare", "Education", "Other"])
user_skills_input = st.text_input("💡 Your Skills (comma-separated)", placeholder="e.g., Python, Machine Learning, SQL")
submitted = st.form_submit_button("🚀 Get Recommendations")
if submitted:
if not job_title or not user_skills_input:
st.error("❌ Please enter both job title and your skills.")
return
user_skills = [skill.strip() for skill in user_skills_input.split(",") if skill.strip()]
user_preferences = {"job_title": job_title, "location": location, "category": category}
with st.spinner("🔄 Fetching job recommendations..."):
recommended_jobs = recommend_jobs(user_skills, user_preferences)
if recommended_jobs:
st.subheader("💼 Recommended Jobs:")
for idx, job in enumerate(recommended_jobs, 1):
job_title_display = job.get("title") or job.get("name") or job.get("jobTitle")
company_display = job.get("company", {}).get("name") or job.get("company_name") or job.get("employer", {}).get("name")
location_display = job.get("candidate_required_location") or job.get("location") or job.get("country")
job_url = job.get("url") or job.get("redirect_url") or job.get("url_standard")
st.markdown(f"### {idx}. {job_title_display}")
st.markdown(f"**🏢 Company:** {company_display}")
st.markdown(f"**📍 Location:** {location_display}")
st.markdown(f"**🔗 Job URL:** [Apply Here]({job_url})")
st.write("---")
else:
st.info("ℹ️ No job recommendations found based on your criteria.")
def interview_preparation_module():
st.header("🎤 Interview Preparation")
st.write("Prepare for your interviews with tailored mock questions and answers.")
col1, col2 = st.columns(2)
with col1:
job_title = st.text_input("🔍 Enter the job title you're applying for:")
with col2:
company = st.text_input("🏢 Enter the company name:")
if st.button("🎯 Generate Mock Interview Questions"):
if not job_title or not company:
st.error("❌ Please enter both job title and company name.")
return
with st.spinner("⏳ Generating questions..."):
prompt = f"""
Generate a list of 50 interview questions along with their answers for the position of {job_title} at {company}. Each question should be followed by a concise and professional answer.
"""
try:
qa_text = llm.invoke(prompt).content.strip()
qa_pairs = qa_text.split('\n\n')
st.subheader("🗣️ Mock Interview Questions and Answers:")
for idx, qa in enumerate(qa_pairs, 1):
if qa.strip():
parts = qa.split('\n', 1)
if len(parts) == 2:
question = parts[0].strip()
answer = parts[1].strip()
st.markdown(f"**Q{idx}: {question}**")
st.markdown(f"**A:** {answer}")
st.write("---")
except Exception as e:
st.error(f"❌ Error generating interview questions: {e}")
def personalized_learning_paths_module():
st.header("📚 Personalized Learning Paths")
st.write("Receive tailored learning plans to help you achieve your career goals, complemented with curated video resources.")
col1, col2 = st.columns(2)
with col1:
career_goal = st.text_input("🎯 Enter your career goal (e.g., Data Scientist):")
with col2:
current_skills = st.text_input("💡 Enter your current skills (comma-separated):")
if st.button("🚀 Generate Learning Path"):
if not career_goal or not current_skills:
st.error("❌ Please enter both career goal and current skills.")
return
with st.spinner("🔄 Generating your personalized learning path..."):
learning_path = generate_learning_path(career_goal, current_skills)
if learning_path:
st.subheader("📜 Your Personalized Learning Path:")
st.write(learning_path)
modules = re.split(r'\d+\.\s+', learning_path)
modules = [module.strip() for module in modules if module.strip()]
st.subheader("📹 Recommended YouTube Videos for Each Module:")
for module in modules:
video_urls = search_youtube_videos(query=module, max_results=2, video_duration="long")
if video_urls:
st.markdown(f"### {module}")
embed_youtube_videos(video_urls, module)
else:
st.write(f"No videos found for **{module}**.")
else:
st.error("❌ Failed to generate learning path.")
def networking_opportunities_module():
st.header("🤝 Networking Opportunities")
st.write("Expand your professional network by connecting with relevant industry peers and groups.")
col1, col2 = st.columns(2)
with col1:
user_skills = st.text_input("💡 Enter your key skills (comma-separated):")
with col2:
industry = st.text_input("🏭 Enter your industry (e.g., Technology):")
if st.button("🔍 Find Networking Opportunities"):
if not user_skills or not industry:
st.error("❌ Please enter both key skills and industry.")
return
with st.spinner("🔄 Fetching networking opportunities..."):
prompt = f"""
Based on the following skills: {user_skills}, and industry: {industry}, suggest relevant LinkedIn groups, professional organizations, and industry events for networking.
"""
try:
suggestions = llm.invoke(prompt).content.strip()
st.subheader("🔗 Recommended Networking Groups and Events:")
st.write(suggestions)
except Exception as e:
st.error(f"❌ Error fetching networking opportunities: {e}")
def feedback_and_improvement_module():
st.header("🗣️ Feedback and Continuous Improvement")
st.write("We value your feedback! Let us know how we can improve your experience.")
with st.form("feedback_form"):
name = st.text_input("👤 Your Name")
email = st.text_input("📧 Your Email")
feedback_type = st.selectbox("📂 Type of Feedback", ["Bug Report", "Feature Request", "General Feedback"])
feedback = st.text_area("📝 Your Feedback")
submitted = st.form_submit_button("✅ Submit")
if submitted:
if not name or not email or not feedback:
st.error("❌ Please fill in all the fields.")
else:
# You can store the feedback in a database or send via email
st.success("✅ Thank you for your feedback!")
def resource_library_page():
st.header("📚 Resource Library")
st.write("Access a collection of templates and guides to enhance your job search.")
resources = [
{"title": "Resume Template", "description": "A professional resume template in DOCX format.", "file": "./resume_template.docx"},
{"title": "Cover Letter Template", "description": "A customizable cover letter template.", "file": "./cover_letter_template.docx"},
{"title": "Job Application Checklist", "description": "A checklist to ensure you cover all steps.", "file": "./application_checklist.pdf"}
]
for resource in resources:
st.markdown(f"### {resource['title']}")
st.write(resource['description'])
try:
with open(resource['file'], "rb") as file:
st.download_button("⬇️ Download", data=file, file_name=os.path.basename(resource['file']), mime="application/octet-stream")
except FileNotFoundError:
st.error(f"❌ File {resource['file']} not found. Please ensure the file is in the correct directory.")
st.write("---")
def chatbot_support_page():
st.header("🤖 AI-Powered Chatbot Support")
st.write("Have questions or need assistance? Chat with our AI-powered assistant!")
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
user_input = st.text_input("🗨️ You:", key="user_input")
if st.button("Send"):
if user_input:
st.session_state['chat_history'].append({"message": user_input, "is_user": True})
prompt = f"""
You are a helpful assistant for a Job Application Assistant app. Answer the user's query based on the following context:
{user_input}
"""
try:
response = llm.invoke(prompt)
assistant_message = response.content.strip()
st.session_state['chat_history'].append({"message": assistant_message, "is_user": False})
except Exception as e:
error_message = "❌ Sorry, I encountered an error while processing your request."
st.session_state['chat_history'].append({"message": error_message, "is_user": False})
st.error(f"❌ Error in chatbot: {e}")
for chat in st.session_state['chat_history']:
if chat['is_user']:
message(chat['message'], is_user=True, avatar_style="thumbs")
else:
message(chat['message'], is_user=False, avatar_style="bottts")
def help_page():
st.header("❓ Help & FAQ")
with st.expander("🛠️ How do I generate a cover letter?"):
st.write("Navigate to the **Cover Letter Generator** section, enter the job link, upload your resume, and click **Generate Cover Letter**.")
with st.expander("📋 How do I track my applications?"):
st.write("Use the **Application Tracking Dashboard** to add and manage your job applications.")
with st.expander("📄 How can I optimize my resume?"):
st.write("Upload your resume in the **Resume Analysis** section to extract skills and receive optimization suggestions.")
with st.expander("📥 How do I import my applications?"):
st.write("In the **Application Tracking Dashboard**, use the **Import Applications** section to upload a CSV file with the required columns.")
with st.expander("🗣️ How do I provide feedback?"):
st.write("Go to the **Feedback** section, fill out the form, and submit your feedback.")
# -------------------------------
# Main Application
# -------------------------------
def main_app():
st.markdown(
"""
<style>
.reportview-container { background-color: #f5f5f5; }
.sidebar .sidebar-content { background-image: linear-gradient(#2e7bcf, #2e7bcf); color: white; }
</style>
""",
unsafe_allow_html=True
)
with st.sidebar:
selected = option_menu(
menu_title="📂 Main Menu",
options=[
"Email Generator", "Cover Letter Generator", "Resume Analysis",
"Application Tracking", "Job Recommendations", "Interview Preparation",
"Personalized Learning Paths", "Networking Opportunities",
"Feedback", "Resource Library", "Chatbot Support", "Help"
],
icons=[
"envelope", "file-earmark-text", "file-person", "briefcase",
"search", "microphone", "book", "people",
"chat-left-text", "collection", "robot", "question-circle"
],
menu_icon="cast",
default_index=0,
styles={
"container": {"padding": "5!important", "background-color": "#2e7bcf"},
"icon": {"color": "white", "font-size": "18px"},
"nav-link": {"font-size": "16px", "text-align": "left", "margin": "0px", "--hover-color": "#6b9eff"},
"nav-link-selected": {"background-color": "#1e5aab"},
}
)
if selected == "Email Generator":
email_generator_page()
elif selected == "Cover Letter Generator":
cover_letter_generator_page()
elif selected == "Resume Analysis":
resume_analysis_page()
elif selected == "Application Tracking":
application_tracking_dashboard()
elif selected == "Job Recommendations":
job_recommendations_module()
elif selected == "Interview Preparation":
interview_preparation_module()
elif selected == "Personalized Learning Paths":
personalized_learning_paths_module()
elif selected == "Networking Opportunities":
networking_opportunities_module()
elif selected == "Feedback":
feedback_and_improvement_module()
elif selected == "Resource Library":
resource_library_page()
elif selected == "Chatbot Support":
chatbot_support_page()
elif selected == "Help":
help_page()
if __name__ == "__main__":
main_app()
|