Spaces:
Sleeping
Sleeping
Create job_recommendations.py
Browse files- job_recommendations.py +29 -0
job_recommendations.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# job_recommendations.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
def job_recommendations_page():
|
6 |
+
st.header("Job Recommendations")
|
7 |
+
|
8 |
+
uploaded_file = st.file_uploader("Upload your resume (PDF format):", type="pdf")
|
9 |
+
|
10 |
+
if uploaded_file:
|
11 |
+
resume_text = extract_text_from_pdf(uploaded_file)
|
12 |
+
if resume_text:
|
13 |
+
st.success("Resume uploaded successfully!")
|
14 |
+
# Fetch job recommendations
|
15 |
+
st.subheader("Recommended Jobs")
|
16 |
+
jobs = get_job_recommendations(resume_text)
|
17 |
+
for job in jobs:
|
18 |
+
st.write(f"**{job['title']}** at {job['company']}")
|
19 |
+
st.write(f"[Apply Here]({job['link']})")
|
20 |
+
else:
|
21 |
+
st.error("Failed to extract text from resume.")
|
22 |
+
|
23 |
+
def get_job_recommendations(resume_text):
|
24 |
+
# Implement job fetching logic
|
25 |
+
# This is a placeholder example
|
26 |
+
return [
|
27 |
+
{"title": "Data Scientist", "company": "TechCorp", "link": "https://example.com/job1"},
|
28 |
+
{"title": "Machine Learning Engineer", "company": "InnovateX", "link": "https://example.com/job2"},
|
29 |
+
]
|