Spaces:
Running
Running
Commit
·
3a76a8c
1
Parent(s):
617d322
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tensorflow as tf
|
3 |
+
os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED'
|
4 |
+
import numpy as np
|
5 |
+
import PIL.Image
|
6 |
+
import gradio as gr
|
7 |
+
import tensorflow_hub as hub
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
|
10 |
+
hub_module = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
|
11 |
+
|
12 |
+
def tensor_to_image(tensor):
|
13 |
+
tensor = tensor*255
|
14 |
+
tensor = np.array(tensor, dtype=np.uint8)
|
15 |
+
if np.ndim(tensor) > 3:
|
16 |
+
assert tensor.shape[0] == 1
|
17 |
+
tensor = tensor[0]
|
18 |
+
return PIL.Image.fromarray(tensor)
|
19 |
+
|
20 |
+
content_image_input = gr.Image(label="Content Image")
|
21 |
+
style_image_input = gr.Image(label="Style Image")
|
22 |
+
|
23 |
+
text = "#Developer: Aditya Jadhav #College: Government Polytechnic Nagpur #Branch: AIML (Artificial Intelligence and Machine Learning), 3rd year #Date: 17th November 2023 #LinkedIn: Aditya Jadhav's LinkedIn #GitHub: Aditya Jadhav's GitHub"
|
24 |
+
my_list = text.split("\n")
|
25 |
+
my_string = "\n".join(my_list)
|
26 |
+
|
27 |
+
text2 = "The application focuses on neural style transfer, where the style from a style image is applied to a content image."
|
28 |
+
|
29 |
+
def perform_neural_transfer(content_image_input, style_image_input):
|
30 |
+
# Load content images
|
31 |
+
content_image = content_image_input.astype(np.float32)[np.newaxis, ...] / 255.
|
32 |
+
style_image = style_image_input.astype(np.float32)[np.newaxis, ...] / 255.
|
33 |
+
|
34 |
+
# Apply neural style transfer
|
35 |
+
outputs = hub_module(tf.constant(content_image), tf.constant(style_image))
|
36 |
+
stylized_image = outputs[0]
|
37 |
+
|
38 |
+
return tensor_to_image(stylized_image)
|
39 |
+
|
40 |
+
|
41 |
+
app_interface = gr.Interface(
|
42 |
+
fn=perform_neural_transfer,
|
43 |
+
inputs=[content_image_input, style_image_input],
|
44 |
+
outputs="image",
|
45 |
+
title="Art Generation with Neural Style Transfer",
|
46 |
+
article=my_string,
|
47 |
+
description=text2,
|
48 |
+
theme = 'Default',
|
49 |
+
concurrency_limit =2,
|
50 |
+
examples=[
|
51 |
+
['content1.jpg','image1.jpg'],
|
52 |
+
[None,'image2.jpg'],
|
53 |
+
[None,'image4.jpg'],
|
54 |
+
[None,'image5.jpg'],
|
55 |
+
[None,'image6.jpg'],
|
56 |
+
]
|
57 |
+
)
|
58 |
+
|
59 |
+
app_interface.launch(debug =True)
|