File size: 9,017 Bytes
4042897 e005c1d 4042897 e005c1d 4042897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import os
# import langchain_mistralai
from langchain.agents import AgentType, initialize_agent
import gradio as gr
# from mistralai import Mistral
import pandas as pd
from collections import Counter
from openai import AzureOpenAI
import time
import re
# Memory per persona
structured_memory = {
"π¨βπΌ Scrum Master": {},
"π‘ Product Owner": {},
"π¨βπ» Developer": {},
"π¨ Designer": {},
}
selected_items = []
def prepare_model(selected_model):
if selected_model == 'o4-mini':
client = AzureOpenAI(
api_version="2024-12-01-preview",
azure_endpoint="https://nextgenagilehu4401821853.openai.azure.com/",
api_key="2ziHxIi2Pz511IscFVVjBpgHkm2nDXNfPAvXyFWpsmCHlpHwAOuJJQQJ99BEACHYHv6XJ3w3AAAAACOGmC8m" # Use a string instead of AzureKeyCredential
)
elif selected_model == 'o3-mini':
client = AzureOpenAI(
api_version="2024-12-01-preview",
azure_endpoint="https://nextgenagilehu4401821853.openai.azure.com/",
api_key="2ziHxIi2Pz511IscFVVjBpgHkm2nDXNfPAvXyFWpsmCHlpHwAOuJJQQJ99BEACHYHv6XJ3w3AAAAACOGmC8m" # Use a string instead of AzureKeyCredential
)
return client
def clear_selections():
global selected_items
selected_items.clear()
return ""
def add_selection(option):
global selected_items
selected_items += [option]
flat_list = [item for sublist in selected_items for item in sublist]
counts = Counter(flat_list)
formatted_output = ", ".join(f"{count} {option.lower()}" for option, count in counts.items())
return formatted_output
# Persona system prompts with emojis
persona_prompts = {
"π¨βπΌ Scrum Master": "You are an experienced Scrum Master responsible for creating detailed JIRA tickets across parameters like EPIC, Feature, Story, Tasks, Subtasks, assignee based on job designation,sprint and story points",
"π‘ Product Owner": "You are a Product Owner focused on defining product features, value delivery, and aligning JIRA tickets with business outcomes. Depending on requirements you can focus upon these aspects: Description,Business Context,User Value,Scope,Out of Scope,Dependencies,Acceptance Criteria,Definition of Done,User Impact Metrics,Next Steps",
"π¨βπ» Developer": "You are a Software Developer breaking down technical objectives into implementation tasks, bug fixes, and engineering subtasks.Depending on requirements you can focus upon these aspects: Description, Acceptance Criteria, Technical Details:Frontend,Backend,Database,Integrations,Logging & Monitoring, Component/s, Definition of Done, Sub-tasks,Story Points",
"π¨ Designer": "You are a UX/UI Designer structuring JIRA tickets around user flows, UI components, and design assets."
}
# Default prompt examples
persona_default_prompts = {
"π¨βπΌ Scrum Master": "Objective: Automate JIRA story creation for a new agile project",
"π‘ Product Owner": "Objective: Define user stories for a travel booking feature",
"π¨βπ» Developer": "Objective: Break down the user login system into dev tasks",
"π¨ Designer": "Objective: Create tasks for designing the homepage UI"
}
model_select = {
"O-4 Mini": "o4-mini",
"O-3 Mini" : "o3-mini"
}
# Process function with memory per persona
def process_files(message, chat_history, persona,model):
selected_model = model_select.get(model)
client = prepare_model(selected_model)
system_prompt = persona_prompts.get(persona)
memory = structured_memory[persona]
if message.lower().startswith("objective:"):
objective = message.split(":", 1)[-1].strip()
if len(selected_items) > 0:
flat_list = [item for sublist in selected_items for item in sublist]
counts = Counter(flat_list)
formatted_output = ", ".join(f"{count} {option.lower()}" for option, count in counts.items())
full_prompt = f"Create a complete JIRA ticket for the {objective} where your team structure is: {formatted_output}"
else:
full_prompt = f"Create a complete JIRA ticket for the {objective}"
chat_response = client.chat.completions.create(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": full_prompt}
],
max_completion_tokens=100000,
model=selected_model
)
bot_message = chat_response.choices[0].message.content
memory["current"] = bot_message
elif any(keyword in message.lower() for keyword in ["improve", "update", "change"]):
if "current" not in memory:
bot_message = "Please provide a project objective first using 'Objective: <your project>'."
else:
previous_output = memory["current"]
improvement_prompt = f"Improve the following JIRA ticket structure based on the user's instruction.\n\nStructure:\n{previous_output}\n\nUser Request:\n{message}"
chat_response = client.chat.completions.create(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": improvement_prompt}
],
max_completion_tokens=100000,
model=selected_model
)
bot_message = chat_response.choices[0].message.content
memory["current"] = bot_message
else:
bot_message = "Please start with 'Objective: <project>' or a request to update something."
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": bot_message})
time.sleep(1)
return "", chat_history
def insert_prefix(prefix_text, textbox_content):
if not textbox_content.lower().startswith(prefix_text.lower()):
return f"{prefix_text} {textbox_content}"
else:
return textbox_content
def set_default_prompt(persona):
return persona_default_prompts.get(persona, "")
# Gradio App
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1): # Sidebar
gr.Image("/afh/projects/NextGenAgileTool-aefe44c3-e188-4674-9bd7-fd55842e362e/data/logo-removebg-preview.png", width=135, height=100,show_download_button=False , container= False,show_fullscreen_button=False, show_label=False)
# gr.Markdown("### *NextGenAgile* β AI Jira Assistant")
gr.Markdown("### π½ Choose Model")
model = gr.Dropdown(
choices=[
"O-4 Mini",
"O-3 Mini"
],
value="",
label=""
)
gr.Markdown("### π§ Choose Persona")
persona = gr.Dropdown(
choices=[
"π¨βπΌ Scrum Master",
"π‘ Product Owner",
"π¨βπ» Developer",
"π¨ Designer"
],
value="π¨βπΌ Scrum Master",
label="π§ Persona"
)
with gr.Column(scale=9):
chatbot = gr.Chatbot(
label="Chat History",
type="messages",
height=500,
value=[
{"role": "assistant", "content": "Hello! π Start with an 'Objective' or ask to 'Improve' an earlier ticket."}
]
)
with gr.Row():
objective_btn = gr.Button("β‘οΈ Objective")
improve_btn = gr.Button("βοΈ Improve")
update_btn = gr.Button("β»οΈ Update")
change_btn = gr.Button("π Change")
with gr.Row():
msg = gr.Textbox(
placeholder="Type your request here...",
label="Your Prompt",
lines=2,
submit_btn=True
)
clear = gr.ClearButton([msg, chatbot])
# Hook logic
msg.submit(process_files, [msg, chatbot, persona,model], [msg, chatbot])
persona.change(set_default_prompt, persona, msg)
objective_btn.click(insert_prefix, inputs=[gr.State("Objective:"), msg], outputs=msg)
improve_btn.click(insert_prefix, inputs=[gr.State("Improve:"), msg], outputs=msg)
update_btn.click(insert_prefix, inputs=[gr.State("Update:"), msg], outputs=msg)
change_btn.click(insert_prefix, inputs=[gr.State("Change:"), msg], outputs=msg)
# if __name__ == "__main__":
# demo.launch(debug=True, share=True)
server_info = demo.launch(share=True)
# Extract the public URL using regex
match = re.search(r"Running on public URL: (https?://[^\s]+)", server_info)
public_url = match.group(1) if match else "URL not found"
# Save only the public URL to a file
with open("gradio_link.txt", "w") as f:
f.write(public_url)
|