Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- agent.py +67 -0
- prompts.py +5 -0
- retriever.py +44 -0
- tools.py +112 -0
agent.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""LangGraph Agent"""
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
5 |
+
from langgraph.prebuilt import tools_condition
|
6 |
+
from langgraph.prebuilt import ToolNode
|
7 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
8 |
+
from prompts import SYS_PROMPT
|
9 |
+
from tools import tools
|
10 |
+
from retriever import vector_store
|
11 |
+
from langchain_openai import ChatOpenAI
|
12 |
+
|
13 |
+
load_dotenv()
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
# System message
|
18 |
+
sys_msg = SystemMessage(content=SYS_PROMPT)
|
19 |
+
|
20 |
+
|
21 |
+
# Build graph function
|
22 |
+
def build_graph():
|
23 |
+
"""Build the graph"""
|
24 |
+
llm = ChatOpenAI(temperature=0.1, model="gpt-4o", openai_api_key=os.getenv("OPENAI_API_KEY"))
|
25 |
+
# Bind tools to LLM
|
26 |
+
llm_with_tools = llm.bind_tools(tools)
|
27 |
+
|
28 |
+
# Node
|
29 |
+
def assistant(state: MessagesState):
|
30 |
+
"""Assistant node"""
|
31 |
+
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
32 |
+
|
33 |
+
def retriever(state: MessagesState):
|
34 |
+
"""Retriever node"""
|
35 |
+
similar_question = vector_store.similarity_search(state["messages"][0].content, k=3)
|
36 |
+
similar_question_content = "\n".join([f"{idx+1}. {doc.page_content}" for idx, doc in enumerate(similar_question)])
|
37 |
+
example_msg = HumanMessage(
|
38 |
+
content=f"Here I provide some similar questions and answer for reference in case you can't find answer from tool result: \n\n{similar_question_content}",
|
39 |
+
)
|
40 |
+
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
41 |
+
|
42 |
+
builder = StateGraph(MessagesState)
|
43 |
+
builder.add_node("retriever", retriever)
|
44 |
+
builder.add_node("assistant", assistant)
|
45 |
+
builder.add_node("tools", ToolNode(tools))
|
46 |
+
builder.add_edge(START, "retriever")
|
47 |
+
builder.add_edge("retriever", "assistant")
|
48 |
+
builder.add_conditional_edges(
|
49 |
+
"assistant",
|
50 |
+
tools_condition,
|
51 |
+
)
|
52 |
+
builder.add_edge("tools", "assistant")
|
53 |
+
|
54 |
+
# Compile graph
|
55 |
+
return builder.compile()
|
56 |
+
|
57 |
+
# test
|
58 |
+
if __name__ == "__main__":
|
59 |
+
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
60 |
+
# Build the graph
|
61 |
+
graph = build_graph()
|
62 |
+
# Run the graph
|
63 |
+
messages = [HumanMessage(content=question)]
|
64 |
+
messages = graph.invoke({"messages": messages})
|
65 |
+
answer = messages['messages'][-1].content
|
66 |
+
for m in messages["messages"]:
|
67 |
+
m.pretty_print()
|
prompts.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
SYS_PROMPT = """You are a helpful assistant tasked with answering questions using a set of tools.
|
2 |
+
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
3 |
+
FINAL ANSWER: [YOUR FINAL ANSWER].
|
4 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
5 |
+
Your answer should only start with "FINAL ANSWER: ", then follows with the answer."""
|
retriever.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_chroma import Chroma
|
2 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
3 |
+
from langchain_chroma import Chroma
|
4 |
+
from langchain_core.documents import Document
|
5 |
+
import json
|
6 |
+
|
7 |
+
from uuid import uuid4
|
8 |
+
|
9 |
+
|
10 |
+
print("Loading embedding model...")
|
11 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
12 |
+
|
13 |
+
vector_store = Chroma(
|
14 |
+
collection_name="example_collection",
|
15 |
+
embedding_function=embeddings,
|
16 |
+
persist_directory="./chroma_langchain_db", # Where to save data locally, remove if not necessary
|
17 |
+
)
|
18 |
+
|
19 |
+
# Load the metadata.jsonl file
|
20 |
+
with open('metadata.jsonl', 'r') as jsonl_file:
|
21 |
+
json_list = list(jsonl_file)
|
22 |
+
|
23 |
+
json_QA = []
|
24 |
+
for json_str in json_list:
|
25 |
+
json_data = json.loads(json_str)
|
26 |
+
json_QA.append(json_data)
|
27 |
+
|
28 |
+
docs = []
|
29 |
+
for idx, sample in enumerate(json_QA):
|
30 |
+
content = f"Question: {sample['Question']}\n\nFinal answer: {sample['Final answer']}"
|
31 |
+
doc = Document(
|
32 |
+
page_content=content,
|
33 |
+
metadata={
|
34 |
+
"source": sample['task_id'],
|
35 |
+
},
|
36 |
+
id=str(uuid4()),
|
37 |
+
)
|
38 |
+
docs.append(doc)
|
39 |
+
|
40 |
+
# Add documents to the vector store
|
41 |
+
print("Adding documents to the vector store...")
|
42 |
+
vector_store.add_documents(documents=docs)
|
43 |
+
del docs
|
44 |
+
del json_QA
|
tools.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.tools import DuckDuckGoSearchResults
|
2 |
+
from langchain_community.document_loaders import WikipediaLoader
|
3 |
+
from langchain_community.document_loaders import ArxivLoader
|
4 |
+
|
5 |
+
from langchain_core.documents import Document
|
6 |
+
|
7 |
+
|
8 |
+
SEP_CHAR = "\n\n---\n\n"
|
9 |
+
|
10 |
+
|
11 |
+
def multiply(a: int, b: int) -> int:
|
12 |
+
"""Multiply two numbers.
|
13 |
+
Args:
|
14 |
+
a: first int
|
15 |
+
b: second int
|
16 |
+
"""
|
17 |
+
return a * b
|
18 |
+
|
19 |
+
|
20 |
+
def add(a: int, b: int) -> int:
|
21 |
+
"""Add two numbers.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
a: first int
|
25 |
+
b: second int
|
26 |
+
"""
|
27 |
+
return a + b
|
28 |
+
|
29 |
+
|
30 |
+
def subtract(a: int, b: int) -> int:
|
31 |
+
"""Subtract two numbers.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
a: first int
|
35 |
+
b: second int
|
36 |
+
"""
|
37 |
+
return a - b
|
38 |
+
|
39 |
+
|
40 |
+
def divide(a: int, b: int) -> int:
|
41 |
+
"""Divide two numbers.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
a: first int
|
45 |
+
b: second int
|
46 |
+
"""
|
47 |
+
if b == 0:
|
48 |
+
raise ValueError("Cannot divide by zero.")
|
49 |
+
return a / b
|
50 |
+
|
51 |
+
|
52 |
+
def modulus(a: int, b: int) -> int:
|
53 |
+
"""Get the modulus of two numbers.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
a: first int
|
57 |
+
b: second int
|
58 |
+
"""
|
59 |
+
return a % b
|
60 |
+
|
61 |
+
|
62 |
+
def wiki_search(query: str) -> dict:
|
63 |
+
"""Search Wikipedia for a query and return maximum 2 results.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
query: The search query."""
|
67 |
+
search_docs: list[Document] = WikipediaLoader(query=query, load_max_docs=2).load()
|
68 |
+
formatted_search_docs = SEP_CHAR.join(
|
69 |
+
[
|
70 |
+
f'<Document source="{doc.metadata["source"]}"/>\n{doc.page_content}\n</Document>'
|
71 |
+
for doc in search_docs
|
72 |
+
])
|
73 |
+
return formatted_search_docs
|
74 |
+
|
75 |
+
|
76 |
+
def web_search(query: str) -> dict:
|
77 |
+
"""Search Web for a query and return maximum 3 results.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
query: The search query."""
|
81 |
+
search_docs: list[dict] = DuckDuckGoSearchResults(num_results=3, output_format='list').invoke(input=query)
|
82 |
+
formatted_search_docs = SEP_CHAR.join(
|
83 |
+
[
|
84 |
+
f'<Document source="{doc["link"]}" title="{doc.get("title", "")}"/>\n{doc["snippet"]}\n</Document>'
|
85 |
+
for doc in search_docs
|
86 |
+
])
|
87 |
+
return formatted_search_docs
|
88 |
+
|
89 |
+
|
90 |
+
def arvix_search(query: str) -> dict:
|
91 |
+
"""Search Arxiv for a query and return maximum 3 result.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
query: The search query."""
|
95 |
+
search_docs: list[Document] = ArxivLoader(query=query).load()
|
96 |
+
formatted_search_docs = SEP_CHAR.join(
|
97 |
+
[
|
98 |
+
f'<Document title="{doc.metadata["Title"]}" authors="{doc.metadata.get("Authors", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
99 |
+
for doc in search_docs
|
100 |
+
])
|
101 |
+
return formatted_search_docs
|
102 |
+
|
103 |
+
tools = [
|
104 |
+
multiply,
|
105 |
+
add,
|
106 |
+
subtract,
|
107 |
+
divide,
|
108 |
+
modulus,
|
109 |
+
wiki_search,
|
110 |
+
web_search,
|
111 |
+
arvix_search,
|
112 |
+
]
|