Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,90 +1,90 @@
|
|
1 |
-
import os
|
2 |
-
import streamlit as st
|
3 |
-
import pickle
|
4 |
-
import time
|
5 |
-
from langchain.chains import RetrievalQA
|
6 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
-
from langchain.document_loaders import UnstructuredURLLoader
|
8 |
-
#from langchain.vectorstores import FAISS
|
9 |
-
from langchain_community.vectorstores import FAISS
|
10 |
-
from langchain_huggingface import HuggingFaceEndpoint
|
11 |
-
from sentence_transformers import SentenceTransformer
|
12 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
13 |
-
#from langchain import HuggingFaceHub
|
14 |
-
from langchain_community.llms import HuggingFaceHub
|
15 |
-
from dotenv import load_dotenv
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
with st.sidebar:
|
20 |
-
st.image("sriram.jpg", caption="Say cheese :)",
|
21 |
-
|
22 |
-
|
23 |
-
load_dotenv()
|
24 |
-
|
25 |
-
st.title("Sriram’s Q Reflections 🔎")
|
26 |
-
#st.sidebar.title("Article URLs")
|
27 |
-
|
28 |
-
|
29 |
-
# urls=[]
|
30 |
-
# for i in range(3):
|
31 |
-
# url=st.sidebar.text_input(f"URL {i+1}")
|
32 |
-
# urls.append(url)
|
33 |
-
# process_url_clicked=st.sidebar.button("Process URLs")
|
34 |
-
|
35 |
-
|
36 |
-
file_path="faiss_index.pkl"
|
37 |
-
chunk_path="chunks.pkl"
|
38 |
-
placeholder=st.empty()
|
39 |
-
temp=st.empty()
|
40 |
-
query=placeholder.text_input("Search for a Memory :")
|
41 |
-
submit=st.button("Recall it")
|
42 |
-
if query:
|
43 |
-
temp.text("Searching for memories..!")
|
44 |
-
if os.path.exists(file_path):
|
45 |
-
with open(file_path,'rb') as f:
|
46 |
-
index=pickle.load(f)
|
47 |
-
with open(chunk_path,'rb') as f:
|
48 |
-
chunks=pickle.load(f)
|
49 |
-
model = SentenceTransformer("thenlper/gte-large")#'sentence-transformers/paraphrase-MiniLM-L12-v2')
|
50 |
-
temp.text("Searching for memories..!")
|
51 |
-
query_embedding = model.encode(query).astype('float32').reshape(1, -1) # Encode the query
|
52 |
-
k = 6 # Number of nearest neighbors to retrieve
|
53 |
-
distances, indices = index.search(query_embedding, k)
|
54 |
-
retrieved_chunks = [chunks[i] for i in indices[0]]
|
55 |
-
# # Use a prompt to generate a response with your language model
|
56 |
-
# input_prompt = f"""Given the question and
|
57 |
-
# context, Understand the question and give answer based on the context passed.
|
58 |
-
# Question: {query}\nContext: {context}\n Answer: """
|
59 |
-
# response = llm.invoke(input_prompt) # Replace with your LLM call
|
60 |
-
# text=response
|
61 |
-
if query or submit:
|
62 |
-
|
63 |
-
st.header("Q Memories :")
|
64 |
-
temp.text("Memories retrieved..!")
|
65 |
-
cleaned_text_list = []
|
66 |
-
for item in retrieved_chunks:
|
67 |
-
item = item.strip()
|
68 |
-
item = item.replace(" .", ".").replace("\n", " ")
|
69 |
-
item = item.lstrip(". ").strip()
|
70 |
-
item+="."
|
71 |
-
cleaned_text_list.append(item)
|
72 |
-
temp.empty()
|
73 |
-
for item in cleaned_text_list:
|
74 |
-
st.write(item)
|
75 |
-
# start_index = text.find("\nHelpful Answer:")
|
76 |
-
|
77 |
-
# # Extract everything after "\nHelpful Answer:" if it exists
|
78 |
-
# if start_index != -1:
|
79 |
-
# parsed_text =text[start_index + len("\nHelpful Answer:"):]
|
80 |
-
# parsed_text = parsed_text.strip() # Optionally strip any extra whitespace
|
81 |
-
# if query or submit:
|
82 |
-
# st.header("Answer :")
|
83 |
-
# st.write(parsed_text)
|
84 |
-
|
85 |
-
st.markdown("""
|
86 |
-
<hr style="margin-top: 2em;">
|
87 |
-
<p style="text-align: center; color: gray; font-size: small;">
|
88 |
-
Developed by Aditya Hariharan
|
89 |
-
</p>
|
90 |
""", unsafe_allow_html=True)
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import pickle
|
4 |
+
import time
|
5 |
+
from langchain.chains import RetrievalQA
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain.document_loaders import UnstructuredURLLoader
|
8 |
+
#from langchain.vectorstores import FAISS
|
9 |
+
from langchain_community.vectorstores import FAISS
|
10 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
11 |
+
from sentence_transformers import SentenceTransformer
|
12 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
13 |
+
#from langchain import HuggingFaceHub
|
14 |
+
from langchain_community.llms import HuggingFaceHub
|
15 |
+
from dotenv import load_dotenv
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
with st.sidebar:
|
20 |
+
st.image("sriram.jpg", caption="Say cheese :)", use_container_width=True)
|
21 |
+
|
22 |
+
|
23 |
+
load_dotenv()
|
24 |
+
|
25 |
+
st.title("Sriram’s Q Reflections 🔎")
|
26 |
+
#st.sidebar.title("Article URLs")
|
27 |
+
|
28 |
+
|
29 |
+
# urls=[]
|
30 |
+
# for i in range(3):
|
31 |
+
# url=st.sidebar.text_input(f"URL {i+1}")
|
32 |
+
# urls.append(url)
|
33 |
+
# process_url_clicked=st.sidebar.button("Process URLs")
|
34 |
+
|
35 |
+
|
36 |
+
file_path="faiss_index.pkl"
|
37 |
+
chunk_path="chunks.pkl"
|
38 |
+
placeholder=st.empty()
|
39 |
+
temp=st.empty()
|
40 |
+
query=placeholder.text_input("Search for a Memory :")
|
41 |
+
submit=st.button("Recall it")
|
42 |
+
if query:
|
43 |
+
temp.text("Searching for memories..!")
|
44 |
+
if os.path.exists(file_path):
|
45 |
+
with open(file_path,'rb') as f:
|
46 |
+
index=pickle.load(f)
|
47 |
+
with open(chunk_path,'rb') as f:
|
48 |
+
chunks=pickle.load(f)
|
49 |
+
model = SentenceTransformer("thenlper/gte-large")#'sentence-transformers/paraphrase-MiniLM-L12-v2')
|
50 |
+
temp.text("Searching for memories..!")
|
51 |
+
query_embedding = model.encode(query).astype('float32').reshape(1, -1) # Encode the query
|
52 |
+
k = 6 # Number of nearest neighbors to retrieve
|
53 |
+
distances, indices = index.search(query_embedding, k)
|
54 |
+
retrieved_chunks = [chunks[i] for i in indices[0]]
|
55 |
+
# # Use a prompt to generate a response with your language model
|
56 |
+
# input_prompt = f"""Given the question and
|
57 |
+
# context, Understand the question and give answer based on the context passed.
|
58 |
+
# Question: {query}\nContext: {context}\n Answer: """
|
59 |
+
# response = llm.invoke(input_prompt) # Replace with your LLM call
|
60 |
+
# text=response
|
61 |
+
if query or submit:
|
62 |
+
|
63 |
+
st.header("Q Memories :")
|
64 |
+
temp.text("Memories retrieved..!")
|
65 |
+
cleaned_text_list = []
|
66 |
+
for item in retrieved_chunks:
|
67 |
+
item = item.strip()
|
68 |
+
item = item.replace(" .", ".").replace("\n", " ")
|
69 |
+
item = item.lstrip(". ").strip()
|
70 |
+
item+="."
|
71 |
+
cleaned_text_list.append(item)
|
72 |
+
temp.empty()
|
73 |
+
for item in cleaned_text_list:
|
74 |
+
st.write(item)
|
75 |
+
# start_index = text.find("\nHelpful Answer:")
|
76 |
+
|
77 |
+
# # Extract everything after "\nHelpful Answer:" if it exists
|
78 |
+
# if start_index != -1:
|
79 |
+
# parsed_text =text[start_index + len("\nHelpful Answer:"):]
|
80 |
+
# parsed_text = parsed_text.strip() # Optionally strip any extra whitespace
|
81 |
+
# if query or submit:
|
82 |
+
# st.header("Answer :")
|
83 |
+
# st.write(parsed_text)
|
84 |
+
|
85 |
+
st.markdown("""
|
86 |
+
<hr style="margin-top: 2em;">
|
87 |
+
<p style="text-align: center; color: gray; font-size: small;">
|
88 |
+
Developed by Aditya Hariharan
|
89 |
+
</p>
|
90 |
""", unsafe_allow_html=True)
|