Adityadn commited on
Commit
a443409
·
verified ·
1 Parent(s): d1a2e64

Delete extras

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. extras/BLIP/configs/bert_config.json +0 -21
  2. extras/BLIP/configs/caption_coco.yaml +0 -33
  3. extras/BLIP/configs/med_config.json +0 -21
  4. extras/BLIP/configs/nlvr.yaml +0 -21
  5. extras/BLIP/configs/nocaps.yaml +0 -15
  6. extras/BLIP/configs/pretrain.yaml +0 -27
  7. extras/BLIP/configs/retrieval_coco.yaml +0 -34
  8. extras/BLIP/configs/retrieval_flickr.yaml +0 -34
  9. extras/BLIP/configs/retrieval_msrvtt.yaml +0 -12
  10. extras/BLIP/configs/vqa.yaml +0 -25
  11. extras/BLIP/models/__pycache__/blip.cpython-310.pyc +0 -0
  12. extras/BLIP/models/__pycache__/med.cpython-310.pyc +0 -0
  13. extras/BLIP/models/__pycache__/vit.cpython-310.pyc +0 -0
  14. extras/BLIP/models/bert_tokenizer/config.json +0 -23
  15. extras/BLIP/models/bert_tokenizer/tokenizer.json +0 -0
  16. extras/BLIP/models/bert_tokenizer/tokenizer_config.json +0 -3
  17. extras/BLIP/models/bert_tokenizer/vocab.txt +0 -0
  18. extras/BLIP/models/blip.py +0 -239
  19. extras/BLIP/models/blip_itm.py +0 -76
  20. extras/BLIP/models/blip_nlvr.py +0 -105
  21. extras/BLIP/models/blip_pretrain.py +0 -339
  22. extras/BLIP/models/blip_retrieval.py +0 -319
  23. extras/BLIP/models/blip_vqa.py +0 -186
  24. extras/BLIP/models/med.py +0 -955
  25. extras/BLIP/models/nlvr_encoder.py +0 -843
  26. extras/BLIP/models/vit.py +0 -308
  27. extras/__pycache__/expansion.cpython-310.pyc +0 -0
  28. extras/__pycache__/face_crop.cpython-310.pyc +0 -0
  29. extras/__pycache__/interrogate.cpython-310.pyc +0 -0
  30. extras/__pycache__/ip_adapter.cpython-310.pyc +0 -0
  31. extras/__pycache__/preprocessors.cpython-310.pyc +0 -0
  32. extras/__pycache__/resampler.cpython-310.pyc +0 -0
  33. extras/__pycache__/vae_interpose.cpython-310.pyc +0 -0
  34. extras/__pycache__/wd14tagger.cpython-310.pyc +0 -0
  35. extras/expansion.py +0 -129
  36. extras/face_crop.py +0 -50
  37. extras/facexlib/detection/__init__.py +0 -31
  38. extras/facexlib/detection/align_trans.py +0 -219
  39. extras/facexlib/detection/matlab_cp2tform.py +0 -317
  40. extras/facexlib/detection/retinaface.py +0 -366
  41. extras/facexlib/detection/retinaface_net.py +0 -196
  42. extras/facexlib/detection/retinaface_utils.py +0 -421
  43. extras/facexlib/parsing/__init__.py +0 -24
  44. extras/facexlib/parsing/bisenet.py +0 -140
  45. extras/facexlib/parsing/parsenet.py +0 -194
  46. extras/facexlib/parsing/resnet.py +0 -69
  47. extras/facexlib/utils/__init__.py +0 -7
  48. extras/facexlib/utils/face_restoration_helper.py +0 -374
  49. extras/facexlib/utils/face_utils.py +0 -250
  50. extras/facexlib/utils/misc.py +0 -118
extras/BLIP/configs/bert_config.json DELETED
@@ -1,21 +0,0 @@
1
- {
2
- "architectures": [
3
- "BertModel"
4
- ],
5
- "attention_probs_dropout_prob": 0.1,
6
- "hidden_act": "gelu",
7
- "hidden_dropout_prob": 0.1,
8
- "hidden_size": 768,
9
- "initializer_range": 0.02,
10
- "intermediate_size": 3072,
11
- "layer_norm_eps": 1e-12,
12
- "max_position_embeddings": 512,
13
- "model_type": "bert",
14
- "num_attention_heads": 12,
15
- "num_hidden_layers": 12,
16
- "pad_token_id": 0,
17
- "type_vocab_size": 2,
18
- "vocab_size": 30522,
19
- "encoder_width": 768,
20
- "add_cross_attention": true
21
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/BLIP/configs/caption_coco.yaml DELETED
@@ -1,33 +0,0 @@
1
- image_root: '/export/share/datasets/vision/coco/images/'
2
- ann_root: 'annotation'
3
- coco_gt_root: 'annotation/coco_gt'
4
-
5
- # set pretrained as a file path or an url
6
- pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
7
-
8
- # size of vit model; base or large
9
- vit: 'base'
10
- vit_grad_ckpt: False
11
- vit_ckpt_layer: 0
12
- batch_size: 32
13
- init_lr: 1e-5
14
-
15
- # vit: 'large'
16
- # vit_grad_ckpt: True
17
- # vit_ckpt_layer: 5
18
- # batch_size: 16
19
- # init_lr: 2e-6
20
-
21
- image_size: 384
22
-
23
- # generation configs
24
- max_length: 20
25
- min_length: 5
26
- num_beams: 3
27
- prompt: 'a picture of '
28
-
29
- # optimizer
30
- weight_decay: 0.05
31
- min_lr: 0
32
- max_epoch: 5
33
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/BLIP/configs/med_config.json DELETED
@@ -1,21 +0,0 @@
1
- {
2
- "architectures": [
3
- "BertModel"
4
- ],
5
- "attention_probs_dropout_prob": 0.1,
6
- "hidden_act": "gelu",
7
- "hidden_dropout_prob": 0.1,
8
- "hidden_size": 768,
9
- "initializer_range": 0.02,
10
- "intermediate_size": 3072,
11
- "layer_norm_eps": 1e-12,
12
- "max_position_embeddings": 512,
13
- "model_type": "bert",
14
- "num_attention_heads": 12,
15
- "num_hidden_layers": 12,
16
- "pad_token_id": 0,
17
- "type_vocab_size": 2,
18
- "vocab_size": 30524,
19
- "encoder_width": 768,
20
- "add_cross_attention": true
21
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/BLIP/configs/nlvr.yaml DELETED
@@ -1,21 +0,0 @@
1
- image_root: '/export/share/datasets/vision/NLVR2/'
2
- ann_root: 'annotation'
3
-
4
- # set pretrained as a file path or an url
5
- pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_nlvr.pth'
6
-
7
- #size of vit model; base or large
8
- vit: 'base'
9
- batch_size_train: 16
10
- batch_size_test: 64
11
- vit_grad_ckpt: False
12
- vit_ckpt_layer: 0
13
- max_epoch: 15
14
-
15
- image_size: 384
16
-
17
- # optimizer
18
- weight_decay: 0.05
19
- init_lr: 3e-5
20
- min_lr: 0
21
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/BLIP/configs/nocaps.yaml DELETED
@@ -1,15 +0,0 @@
1
- image_root: '/export/share/datasets/vision/nocaps/'
2
- ann_root: 'annotation'
3
-
4
- # set pretrained as a file path or an url
5
- pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
6
-
7
- vit: 'base'
8
- batch_size: 32
9
-
10
- image_size: 384
11
-
12
- max_length: 20
13
- min_length: 5
14
- num_beams: 3
15
- prompt: 'a picture of '
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/BLIP/configs/pretrain.yaml DELETED
@@ -1,27 +0,0 @@
1
- train_file: ['/export/share/junnan-li/VL_pretrain/annotation/coco_karpathy_train.json',
2
- '/export/share/junnan-li/VL_pretrain/annotation/vg_caption.json',
3
- ]
4
- laion_path: ''
5
-
6
- # size of vit model; base or large
7
- vit: 'base'
8
- vit_grad_ckpt: False
9
- vit_ckpt_layer: 0
10
-
11
- image_size: 224
12
- batch_size: 75
13
-
14
- queue_size: 57600
15
- alpha: 0.4
16
-
17
- # optimizer
18
- weight_decay: 0.05
19
- init_lr: 3e-4
20
- min_lr: 1e-6
21
- warmup_lr: 1e-6
22
- lr_decay_rate: 0.9
23
- max_epoch: 20
24
- warmup_steps: 3000
25
-
26
-
27
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/BLIP/configs/retrieval_coco.yaml DELETED
@@ -1,34 +0,0 @@
1
- image_root: '/export/share/datasets/vision/coco/images/'
2
- ann_root: 'annotation'
3
- dataset: 'coco'
4
-
5
- # set pretrained as a file path or an url
6
- pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'
7
-
8
- # size of vit model; base or large
9
-
10
- vit: 'base'
11
- batch_size_train: 32
12
- batch_size_test: 64
13
- vit_grad_ckpt: True
14
- vit_ckpt_layer: 4
15
- init_lr: 1e-5
16
-
17
- # vit: 'large'
18
- # batch_size_train: 16
19
- # batch_size_test: 32
20
- # vit_grad_ckpt: True
21
- # vit_ckpt_layer: 12
22
- # init_lr: 5e-6
23
-
24
- image_size: 384
25
- queue_size: 57600
26
- alpha: 0.4
27
- k_test: 256
28
- negative_all_rank: True
29
-
30
- # optimizer
31
- weight_decay: 0.05
32
- min_lr: 0
33
- max_epoch: 6
34
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/BLIP/configs/retrieval_flickr.yaml DELETED
@@ -1,34 +0,0 @@
1
- image_root: '/export/share/datasets/vision/flickr30k/'
2
- ann_root: 'annotation'
3
- dataset: 'flickr'
4
-
5
- # set pretrained as a file path or an url
6
- pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_flickr.pth'
7
-
8
- # size of vit model; base or large
9
-
10
- vit: 'base'
11
- batch_size_train: 32
12
- batch_size_test: 64
13
- vit_grad_ckpt: True
14
- vit_ckpt_layer: 4
15
- init_lr: 1e-5
16
-
17
- # vit: 'large'
18
- # batch_size_train: 16
19
- # batch_size_test: 32
20
- # vit_grad_ckpt: True
21
- # vit_ckpt_layer: 10
22
- # init_lr: 5e-6
23
-
24
- image_size: 384
25
- queue_size: 57600
26
- alpha: 0.4
27
- k_test: 128
28
- negative_all_rank: False
29
-
30
- # optimizer
31
- weight_decay: 0.05
32
- min_lr: 0
33
- max_epoch: 6
34
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/BLIP/configs/retrieval_msrvtt.yaml DELETED
@@ -1,12 +0,0 @@
1
- video_root: '/export/share/dongxuli/data/msrvtt_retrieval/videos'
2
- ann_root: 'annotation'
3
-
4
- # set pretrained as a file path or an url
5
- pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'
6
-
7
- # size of vit model; base or large
8
- vit: 'base'
9
- batch_size: 64
10
- k_test: 128
11
- image_size: 384
12
- num_frm_test: 8
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/BLIP/configs/vqa.yaml DELETED
@@ -1,25 +0,0 @@
1
- vqa_root: '/export/share/datasets/vision/VQA/Images/mscoco/' #followed by train2014/
2
- vg_root: '/export/share/datasets/vision/visual-genome/' #followed by image/
3
- train_files: ['vqa_train','vqa_val','vg_qa']
4
- ann_root: 'annotation'
5
-
6
- # set pretrained as a file path or an url
7
- pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'
8
-
9
- # size of vit model; base or large
10
- vit: 'base'
11
- batch_size_train: 16
12
- batch_size_test: 32
13
- vit_grad_ckpt: False
14
- vit_ckpt_layer: 0
15
- init_lr: 2e-5
16
-
17
- image_size: 480
18
-
19
- k_test: 128
20
- inference: 'rank'
21
-
22
- # optimizer
23
- weight_decay: 0.05
24
- min_lr: 0
25
- max_epoch: 10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/BLIP/models/__pycache__/blip.cpython-310.pyc DELETED
Binary file (7.09 kB)
 
extras/BLIP/models/__pycache__/med.cpython-310.pyc DELETED
Binary file (28 kB)
 
extras/BLIP/models/__pycache__/vit.cpython-310.pyc DELETED
Binary file (12.5 kB)
 
extras/BLIP/models/bert_tokenizer/config.json DELETED
@@ -1,23 +0,0 @@
1
- {
2
- "architectures": [
3
- "BertForMaskedLM"
4
- ],
5
- "attention_probs_dropout_prob": 0.1,
6
- "gradient_checkpointing": false,
7
- "hidden_act": "gelu",
8
- "hidden_dropout_prob": 0.1,
9
- "hidden_size": 768,
10
- "initializer_range": 0.02,
11
- "intermediate_size": 3072,
12
- "layer_norm_eps": 1e-12,
13
- "max_position_embeddings": 512,
14
- "model_type": "bert",
15
- "num_attention_heads": 12,
16
- "num_hidden_layers": 12,
17
- "pad_token_id": 0,
18
- "position_embedding_type": "absolute",
19
- "transformers_version": "4.6.0.dev0",
20
- "type_vocab_size": 2,
21
- "use_cache": true,
22
- "vocab_size": 30522
23
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/BLIP/models/bert_tokenizer/tokenizer.json DELETED
The diff for this file is too large to render. See raw diff
 
extras/BLIP/models/bert_tokenizer/tokenizer_config.json DELETED
@@ -1,3 +0,0 @@
1
- {
2
- "do_lower_case": true
3
- }
 
 
 
 
extras/BLIP/models/bert_tokenizer/vocab.txt DELETED
The diff for this file is too large to render. See raw diff
 
extras/BLIP/models/blip.py DELETED
@@ -1,239 +0,0 @@
1
- '''
2
- * Copyright (c) 2022, salesforce.com, inc.
3
- * All rights reserved.
4
- * SPDX-License-Identifier: BSD-3-Clause
5
- * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
- * By Junnan Li
7
- '''
8
- import warnings
9
- warnings.filterwarnings("ignore")
10
-
11
- from extras.BLIP.models.vit import VisionTransformer, interpolate_pos_embed
12
- from extras.BLIP.models.med import BertConfig, BertModel, BertLMHeadModel
13
- from transformers import BertTokenizer
14
-
15
- import torch
16
- from torch import nn
17
- import torch.nn.functional as F
18
-
19
- import os
20
- from urllib.parse import urlparse
21
- from timm.models.hub import download_cached_file
22
-
23
- class BLIP_Base(nn.Module):
24
- def __init__(self,
25
- med_config = 'configs/med_config.json',
26
- image_size = 224,
27
- vit = 'base',
28
- vit_grad_ckpt = False,
29
- vit_ckpt_layer = 0,
30
- ):
31
- """
32
- Args:
33
- med_config (str): path for the mixture of encoder-decoder model's configuration file
34
- image_size (int): input image size
35
- vit (str): model size of vision transformer
36
- """
37
- super().__init__()
38
-
39
- self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
40
- self.tokenizer = init_tokenizer()
41
- med_config = BertConfig.from_json_file(med_config)
42
- med_config.encoder_width = vision_width
43
- self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
44
-
45
-
46
- def forward(self, image, caption, mode):
47
-
48
- assert mode in ['image', 'text', 'multimodal'], "mode parameter must be image, text, or multimodal"
49
- text = self.tokenizer(caption, return_tensors="pt").to(image.device)
50
-
51
- if mode=='image':
52
- # return image features
53
- image_embeds = self.visual_encoder(image)
54
- return image_embeds
55
-
56
- elif mode=='text':
57
- # return text features
58
- text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
59
- return_dict = True, mode = 'text')
60
- return text_output.last_hidden_state
61
-
62
- elif mode=='multimodal':
63
- # return multimodel features
64
- image_embeds = self.visual_encoder(image)
65
- image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
66
-
67
- text.input_ids[:,0] = self.tokenizer.enc_token_id
68
- output = self.text_encoder(text.input_ids,
69
- attention_mask = text.attention_mask,
70
- encoder_hidden_states = image_embeds,
71
- encoder_attention_mask = image_atts,
72
- return_dict = True,
73
- )
74
- return output.last_hidden_state
75
-
76
-
77
-
78
- class BLIP_Decoder(nn.Module):
79
- def __init__(self,
80
- med_config = 'configs/med_config.json',
81
- image_size = 384,
82
- vit = 'base',
83
- vit_grad_ckpt = False,
84
- vit_ckpt_layer = 0,
85
- prompt = 'a picture of ',
86
- ):
87
- """
88
- Args:
89
- med_config (str): path for the mixture of encoder-decoder model's configuration file
90
- image_size (int): input image size
91
- vit (str): model size of vision transformer
92
- """
93
- super().__init__()
94
-
95
- self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
96
- self.tokenizer = init_tokenizer()
97
- med_config = BertConfig.from_json_file(med_config)
98
- med_config.encoder_width = vision_width
99
- self.text_decoder = BertLMHeadModel(config=med_config)
100
-
101
- self.prompt = prompt
102
- self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1
103
-
104
-
105
- def forward(self, image, caption):
106
-
107
- image_embeds = self.visual_encoder(image)
108
- image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
109
-
110
- text = self.tokenizer(caption, padding='longest', truncation=True, max_length=40, return_tensors="pt").to(image.device)
111
-
112
- text.input_ids[:,0] = self.tokenizer.bos_token_id
113
-
114
- decoder_targets = text.input_ids.masked_fill(text.input_ids == self.tokenizer.pad_token_id, -100)
115
- decoder_targets[:,:self.prompt_length] = -100
116
-
117
- decoder_output = self.text_decoder(text.input_ids,
118
- attention_mask = text.attention_mask,
119
- encoder_hidden_states = image_embeds,
120
- encoder_attention_mask = image_atts,
121
- labels = decoder_targets,
122
- return_dict = True,
123
- )
124
- loss_lm = decoder_output.loss
125
-
126
- return loss_lm
127
-
128
- def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0):
129
- image_embeds = self.visual_encoder(image)
130
-
131
- if not sample:
132
- image_embeds = image_embeds.repeat_interleave(num_beams,dim=0)
133
-
134
- image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
135
- model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask":image_atts}
136
-
137
- prompt = [self.prompt] * image.size(0)
138
- input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device)
139
- input_ids[:,0] = self.tokenizer.bos_token_id
140
- input_ids = input_ids[:, :-1]
141
-
142
- if sample:
143
- #nucleus sampling
144
- outputs = self.text_decoder.generate(input_ids=input_ids,
145
- max_length=max_length,
146
- min_length=min_length,
147
- do_sample=True,
148
- top_p=top_p,
149
- num_return_sequences=1,
150
- eos_token_id=self.tokenizer.sep_token_id,
151
- pad_token_id=self.tokenizer.pad_token_id,
152
- repetition_penalty=1.1,
153
- **model_kwargs)
154
- else:
155
- #beam search
156
- outputs = self.text_decoder.generate(input_ids=input_ids,
157
- max_length=max_length,
158
- min_length=min_length,
159
- num_beams=num_beams,
160
- eos_token_id=self.tokenizer.sep_token_id,
161
- pad_token_id=self.tokenizer.pad_token_id,
162
- repetition_penalty=repetition_penalty,
163
- **model_kwargs)
164
-
165
- captions = []
166
- for output in outputs:
167
- caption = self.tokenizer.decode(output, skip_special_tokens=True)
168
- captions.append(caption[len(self.prompt):])
169
- return captions
170
-
171
-
172
- def blip_decoder(pretrained='',**kwargs):
173
- model = BLIP_Decoder(**kwargs)
174
- if pretrained:
175
- model,msg = load_checkpoint(model,pretrained)
176
- assert(len(msg.missing_keys)==0)
177
- return model
178
-
179
- def blip_feature_extractor(pretrained='',**kwargs):
180
- model = BLIP_Base(**kwargs)
181
- if pretrained:
182
- model,msg = load_checkpoint(model,pretrained)
183
- assert(len(msg.missing_keys)==0)
184
- return model
185
-
186
- def init_tokenizer():
187
- tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "bert_tokenizer")
188
- tokenizer = BertTokenizer.from_pretrained(tokenizer_path)
189
- tokenizer.add_special_tokens({'bos_token':'[DEC]'})
190
- tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})
191
- tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
192
- return tokenizer
193
-
194
-
195
- def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
196
-
197
- assert vit in ['base', 'large'], "vit parameter must be base or large"
198
- if vit=='base':
199
- vision_width = 768
200
- visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12,
201
- num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
202
- drop_path_rate=0 or drop_path_rate
203
- )
204
- elif vit=='large':
205
- vision_width = 1024
206
- visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24,
207
- num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
208
- drop_path_rate=0.1 or drop_path_rate
209
- )
210
- return visual_encoder, vision_width
211
-
212
- def is_url(url_or_filename):
213
- parsed = urlparse(url_or_filename)
214
- return parsed.scheme in ("http", "https")
215
-
216
- def load_checkpoint(model,url_or_filename):
217
- if is_url(url_or_filename):
218
- cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
219
- checkpoint = torch.load(cached_file, map_location='cpu')
220
- elif os.path.isfile(url_or_filename):
221
- checkpoint = torch.load(url_or_filename, map_location='cpu')
222
- else:
223
- raise RuntimeError('checkpoint url or path is invalid')
224
-
225
- state_dict = checkpoint['model']
226
-
227
- state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
228
- if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
229
- state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
230
- model.visual_encoder_m)
231
- for key in model.state_dict().keys():
232
- if key in state_dict.keys():
233
- if state_dict[key].shape!=model.state_dict()[key].shape:
234
- del state_dict[key]
235
-
236
- msg = model.load_state_dict(state_dict,strict=False)
237
- print('load checkpoint from %s'%url_or_filename)
238
- return model,msg
239
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/BLIP/models/blip_itm.py DELETED
@@ -1,76 +0,0 @@
1
- from extras.BLIP.models.med import BertConfig, BertModel
2
- from transformers import BertTokenizer
3
-
4
- import torch
5
- from torch import nn
6
- import torch.nn.functional as F
7
-
8
- from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint
9
-
10
- class BLIP_ITM(nn.Module):
11
- def __init__(self,
12
- med_config = 'configs/med_config.json',
13
- image_size = 384,
14
- vit = 'base',
15
- vit_grad_ckpt = False,
16
- vit_ckpt_layer = 0,
17
- embed_dim = 256,
18
- ):
19
- """
20
- Args:
21
- med_config (str): path for the mixture of encoder-decoder model's configuration file
22
- image_size (int): input image size
23
- vit (str): model size of vision transformer
24
- """
25
- super().__init__()
26
-
27
- self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
28
- self.tokenizer = init_tokenizer()
29
- med_config = BertConfig.from_json_file(med_config)
30
- med_config.encoder_width = vision_width
31
- self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
32
-
33
- text_width = self.text_encoder.config.hidden_size
34
-
35
- self.vision_proj = nn.Linear(vision_width, embed_dim)
36
- self.text_proj = nn.Linear(text_width, embed_dim)
37
-
38
- self.itm_head = nn.Linear(text_width, 2)
39
-
40
-
41
- def forward(self, image, caption, match_head='itm'):
42
-
43
- image_embeds = self.visual_encoder(image)
44
- image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
45
-
46
- text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35,
47
- return_tensors="pt").to(image.device)
48
-
49
-
50
- if match_head=='itm':
51
- output = self.text_encoder(text.input_ids,
52
- attention_mask = text.attention_mask,
53
- encoder_hidden_states = image_embeds,
54
- encoder_attention_mask = image_atts,
55
- return_dict = True,
56
- )
57
- itm_output = self.itm_head(output.last_hidden_state[:,0,:])
58
- return itm_output
59
-
60
- elif match_head=='itc':
61
- text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
62
- return_dict = True, mode = 'text')
63
- image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
64
- text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
65
-
66
- sim = image_feat @ text_feat.t()
67
- return sim
68
-
69
-
70
- def blip_itm(pretrained='',**kwargs):
71
- model = BLIP_ITM(**kwargs)
72
- if pretrained:
73
- model,msg = load_checkpoint(model,pretrained)
74
- assert(len(msg.missing_keys)==0)
75
- return model
76
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/BLIP/models/blip_nlvr.py DELETED
@@ -1,105 +0,0 @@
1
- from extras.BLIP.models.med import BertConfig
2
- from extras.BLIP.models.nlvr_encoder import BertModel
3
- from extras.BLIP.models.vit import interpolate_pos_embed
4
- from extras.BLIP.models.blip import create_vit, init_tokenizer, is_url
5
-
6
- from timm.models.hub import download_cached_file
7
-
8
- import torch
9
- from torch import nn
10
- import torch.nn.functional as F
11
- from transformers import BertTokenizer
12
- import numpy as np
13
- import os
14
-
15
-
16
- class BLIP_NLVR(nn.Module):
17
- def __init__(self,
18
- med_config = 'configs/med_config.json',
19
- image_size = 480,
20
- vit = 'base',
21
- vit_grad_ckpt = False,
22
- vit_ckpt_layer = 0,
23
- ):
24
- """
25
- Args:
26
- med_config (str): path for the mixture of encoder-decoder model's configuration file
27
- image_size (int): input image size
28
- vit (str): model size of vision transformer
29
- """
30
- super().__init__()
31
-
32
- self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1)
33
- self.tokenizer = init_tokenizer()
34
- med_config = BertConfig.from_json_file(med_config)
35
- med_config.encoder_width = vision_width
36
- self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
37
-
38
- self.cls_head = nn.Sequential(
39
- nn.Linear(self.text_encoder.config.hidden_size, self.text_encoder.config.hidden_size),
40
- nn.ReLU(),
41
- nn.Linear(self.text_encoder.config.hidden_size, 2)
42
- )
43
-
44
- def forward(self, image, text, targets, train=True):
45
-
46
- image_embeds = self.visual_encoder(image)
47
- image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
48
- image0_embeds, image1_embeds = torch.split(image_embeds,targets.size(0))
49
-
50
- text = self.tokenizer(text, padding='longest', return_tensors="pt").to(image.device)
51
- text.input_ids[:,0] = self.tokenizer.enc_token_id
52
-
53
- output = self.text_encoder(text.input_ids,
54
- attention_mask = text.attention_mask,
55
- encoder_hidden_states = [image0_embeds,image1_embeds],
56
- encoder_attention_mask = [image_atts[:image0_embeds.size(0)],
57
- image_atts[image0_embeds.size(0):]],
58
- return_dict = True,
59
- )
60
- hidden_state = output.last_hidden_state[:,0,:]
61
- prediction = self.cls_head(hidden_state)
62
-
63
- if train:
64
- loss = F.cross_entropy(prediction, targets)
65
- return loss
66
- else:
67
- return prediction
68
-
69
- def blip_nlvr(pretrained='',**kwargs):
70
- model = BLIP_NLVR(**kwargs)
71
- if pretrained:
72
- model,msg = load_checkpoint(model,pretrained)
73
- print("missing keys:")
74
- print(msg.missing_keys)
75
- return model
76
-
77
-
78
- def load_checkpoint(model,url_or_filename):
79
- if is_url(url_or_filename):
80
- cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
81
- checkpoint = torch.load(cached_file, map_location='cpu')
82
- elif os.path.isfile(url_or_filename):
83
- checkpoint = torch.load(url_or_filename, map_location='cpu')
84
- else:
85
- raise RuntimeError('checkpoint url or path is invalid')
86
- state_dict = checkpoint['model']
87
-
88
- state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
89
-
90
- for key in list(state_dict.keys()):
91
- if 'crossattention.self.' in key:
92
- new_key0 = key.replace('self','self0')
93
- new_key1 = key.replace('self','self1')
94
- state_dict[new_key0] = state_dict[key]
95
- state_dict[new_key1] = state_dict[key]
96
- elif 'crossattention.output.dense.' in key:
97
- new_key0 = key.replace('dense','dense0')
98
- new_key1 = key.replace('dense','dense1')
99
- state_dict[new_key0] = state_dict[key]
100
- state_dict[new_key1] = state_dict[key]
101
-
102
- msg = model.load_state_dict(state_dict,strict=False)
103
- print('load checkpoint from %s'%url_or_filename)
104
- return model,msg
105
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/BLIP/models/blip_pretrain.py DELETED
@@ -1,339 +0,0 @@
1
- '''
2
- * Copyright (c) 2022, salesforce.com, inc.
3
- * All rights reserved.
4
- * SPDX-License-Identifier: BSD-3-Clause
5
- * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
- * By Junnan Li
7
- '''
8
- from extras.BLIP.models.med import BertConfig, BertModel, BertLMHeadModel
9
- from transformers import BertTokenizer
10
- import transformers
11
- transformers.logging.set_verbosity_error()
12
-
13
- import torch
14
- from torch import nn
15
- import torch.nn.functional as F
16
-
17
- from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint
18
-
19
- class BLIP_Pretrain(nn.Module):
20
- def __init__(self,
21
- med_config = 'configs/bert_config.json',
22
- image_size = 224,
23
- vit = 'base',
24
- vit_grad_ckpt = False,
25
- vit_ckpt_layer = 0,
26
- embed_dim = 256,
27
- queue_size = 57600,
28
- momentum = 0.995,
29
- ):
30
- """
31
- Args:
32
- med_config (str): path for the mixture of encoder-decoder model's configuration file
33
- image_size (int): input image size
34
- vit (str): model size of vision transformer
35
- """
36
- super().__init__()
37
-
38
- self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, 0)
39
-
40
- if vit=='base':
41
- checkpoint = torch.hub.load_state_dict_from_url(
42
- url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
43
- map_location="cpu", check_hash=True)
44
- state_dict = checkpoint["model"]
45
- msg = self.visual_encoder.load_state_dict(state_dict,strict=False)
46
- elif vit=='large':
47
- from timm.models.helpers import load_custom_pretrained
48
- from timm.models.vision_transformer import default_cfgs
49
- load_custom_pretrained(self.visual_encoder,default_cfgs['vit_large_patch16_224_in21k'])
50
-
51
- self.tokenizer = init_tokenizer()
52
- encoder_config = BertConfig.from_json_file(med_config)
53
- encoder_config.encoder_width = vision_width
54
- self.text_encoder = BertModel.from_pretrained('bert-base-uncased',config=encoder_config, add_pooling_layer=False)
55
- self.text_encoder.resize_token_embeddings(len(self.tokenizer))
56
-
57
- text_width = self.text_encoder.config.hidden_size
58
-
59
- self.vision_proj = nn.Linear(vision_width, embed_dim)
60
- self.text_proj = nn.Linear(text_width, embed_dim)
61
-
62
- self.itm_head = nn.Linear(text_width, 2)
63
-
64
- # create momentum encoders
65
- self.visual_encoder_m, vision_width = create_vit(vit,image_size)
66
- self.vision_proj_m = nn.Linear(vision_width, embed_dim)
67
- self.text_encoder_m = BertModel(config=encoder_config, add_pooling_layer=False)
68
- self.text_proj_m = nn.Linear(text_width, embed_dim)
69
-
70
- self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
71
- [self.vision_proj,self.vision_proj_m],
72
- [self.text_encoder,self.text_encoder_m],
73
- [self.text_proj,self.text_proj_m],
74
- ]
75
- self.copy_params()
76
-
77
- # create the queue
78
- self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
79
- self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
80
- self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
81
-
82
- self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
83
- self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
84
-
85
- self.queue_size = queue_size
86
- self.momentum = momentum
87
- self.temp = nn.Parameter(0.07*torch.ones([]))
88
-
89
- # create the decoder
90
- decoder_config = BertConfig.from_json_file(med_config)
91
- decoder_config.encoder_width = vision_width
92
- self.text_decoder = BertLMHeadModel.from_pretrained('bert-base-uncased',config=decoder_config)
93
- self.text_decoder.resize_token_embeddings(len(self.tokenizer))
94
- tie_encoder_decoder_weights(self.text_encoder,self.text_decoder.bert,'','/attention')
95
-
96
-
97
- def forward(self, image, caption, alpha):
98
- with torch.no_grad():
99
- self.temp.clamp_(0.001,0.5)
100
-
101
- image_embeds = self.visual_encoder(image)
102
- image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
103
- image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
104
-
105
- text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=30,
106
- return_tensors="pt").to(image.device)
107
- text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
108
- return_dict = True, mode = 'text')
109
- text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
110
-
111
- # get momentum features
112
- with torch.no_grad():
113
- self._momentum_update()
114
- image_embeds_m = self.visual_encoder_m(image)
115
- image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)
116
- image_feat_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)
117
-
118
- text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,
119
- return_dict = True, mode = 'text')
120
- text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1)
121
- text_feat_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)
122
-
123
- sim_i2t_m = image_feat_m @ text_feat_all / self.temp
124
- sim_t2i_m = text_feat_m @ image_feat_all / self.temp
125
-
126
- sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device)
127
- sim_targets.fill_diagonal_(1)
128
-
129
- sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
130
- sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
131
-
132
- sim_i2t = image_feat @ text_feat_all / self.temp
133
- sim_t2i = text_feat @ image_feat_all / self.temp
134
-
135
- loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
136
- loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean()
137
-
138
- loss_ita = (loss_i2t+loss_t2i)/2
139
-
140
- self._dequeue_and_enqueue(image_feat_m, text_feat_m)
141
-
142
- ###============== Image-text Matching ===================###
143
- encoder_input_ids = text.input_ids.clone()
144
- encoder_input_ids[:,0] = self.tokenizer.enc_token_id
145
-
146
- # forward the positve image-text pair
147
- bs = image.size(0)
148
- output_pos = self.text_encoder(encoder_input_ids,
149
- attention_mask = text.attention_mask,
150
- encoder_hidden_states = image_embeds,
151
- encoder_attention_mask = image_atts,
152
- return_dict = True,
153
- )
154
- with torch.no_grad():
155
- weights_t2i = F.softmax(sim_t2i[:,:bs],dim=1)+1e-4
156
- weights_t2i.fill_diagonal_(0)
157
- weights_i2t = F.softmax(sim_i2t[:,:bs],dim=1)+1e-4
158
- weights_i2t.fill_diagonal_(0)
159
-
160
- # select a negative image for each text
161
- image_embeds_neg = []
162
- for b in range(bs):
163
- neg_idx = torch.multinomial(weights_t2i[b], 1).item()
164
- image_embeds_neg.append(image_embeds[neg_idx])
165
- image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
166
-
167
- # select a negative text for each image
168
- text_ids_neg = []
169
- text_atts_neg = []
170
- for b in range(bs):
171
- neg_idx = torch.multinomial(weights_i2t[b], 1).item()
172
- text_ids_neg.append(encoder_input_ids[neg_idx])
173
- text_atts_neg.append(text.attention_mask[neg_idx])
174
-
175
- text_ids_neg = torch.stack(text_ids_neg,dim=0)
176
- text_atts_neg = torch.stack(text_atts_neg,dim=0)
177
-
178
- text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)
179
- text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)
180
-
181
- image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
182
- image_atts_all = torch.cat([image_atts,image_atts],dim=0)
183
-
184
- output_neg = self.text_encoder(text_ids_all,
185
- attention_mask = text_atts_all,
186
- encoder_hidden_states = image_embeds_all,
187
- encoder_attention_mask = image_atts_all,
188
- return_dict = True,
189
- )
190
-
191
- vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
192
- vl_output = self.itm_head(vl_embeddings)
193
-
194
- itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
195
- dim=0).to(image.device)
196
- loss_itm = F.cross_entropy(vl_output, itm_labels)
197
-
198
- ##================= LM ========================##
199
- decoder_input_ids = text.input_ids.clone()
200
- decoder_input_ids[:,0] = self.tokenizer.bos_token_id
201
- decoder_targets = decoder_input_ids.masked_fill(decoder_input_ids == self.tokenizer.pad_token_id, -100)
202
-
203
- decoder_output = self.text_decoder(decoder_input_ids,
204
- attention_mask = text.attention_mask,
205
- encoder_hidden_states = image_embeds,
206
- encoder_attention_mask = image_atts,
207
- labels = decoder_targets,
208
- return_dict = True,
209
- )
210
-
211
- loss_lm = decoder_output.loss
212
- return loss_ita, loss_itm, loss_lm
213
-
214
-
215
-
216
- @torch.no_grad()
217
- def copy_params(self):
218
- for model_pair in self.model_pairs:
219
- for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
220
- param_m.data.copy_(param.data) # initialize
221
- param_m.requires_grad = False # not update by gradient
222
-
223
-
224
- @torch.no_grad()
225
- def _momentum_update(self):
226
- for model_pair in self.model_pairs:
227
- for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
228
- param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
229
-
230
-
231
- @torch.no_grad()
232
- def _dequeue_and_enqueue(self, image_feat, text_feat):
233
- # gather keys before updating queue
234
- image_feats = concat_all_gather(image_feat)
235
- text_feats = concat_all_gather(text_feat)
236
-
237
- batch_size = image_feats.shape[0]
238
-
239
- ptr = int(self.queue_ptr)
240
- assert self.queue_size % batch_size == 0 # for simplicity
241
-
242
- # replace the keys at ptr (dequeue and enqueue)
243
- self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
244
- self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
245
- ptr = (ptr + batch_size) % self.queue_size # move pointer
246
-
247
- self.queue_ptr[0] = ptr
248
-
249
-
250
- def blip_pretrain(**kwargs):
251
- model = BLIP_Pretrain(**kwargs)
252
- return model
253
-
254
-
255
- @torch.no_grad()
256
- def concat_all_gather(tensor):
257
- """
258
- Performs all_gather operation on the provided tensors.
259
- *** Warning ***: torch.distributed.all_gather has no gradient.
260
- """
261
- tensors_gather = [torch.ones_like(tensor)
262
- for _ in range(torch.distributed.get_world_size())]
263
- torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
264
-
265
- output = torch.cat(tensors_gather, dim=0)
266
- return output
267
-
268
-
269
- from typing import List
270
- def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key:str):
271
- uninitialized_encoder_weights: List[str] = []
272
- if decoder.__class__ != encoder.__class__:
273
- print(
274
- f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
275
- )
276
-
277
- def tie_encoder_to_decoder_recursively(
278
- decoder_pointer: nn.Module,
279
- encoder_pointer: nn.Module,
280
- module_name: str,
281
- uninitialized_encoder_weights: List[str],
282
- skip_key: str,
283
- depth=0,
284
- ):
285
- assert isinstance(decoder_pointer, nn.Module) and isinstance(
286
- encoder_pointer, nn.Module
287
- ), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
288
- if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
289
- assert hasattr(encoder_pointer, "weight")
290
- encoder_pointer.weight = decoder_pointer.weight
291
- if hasattr(decoder_pointer, "bias"):
292
- assert hasattr(encoder_pointer, "bias")
293
- encoder_pointer.bias = decoder_pointer.bias
294
- print(module_name+' is tied')
295
- return
296
-
297
- encoder_modules = encoder_pointer._modules
298
- decoder_modules = decoder_pointer._modules
299
- if len(decoder_modules) > 0:
300
- assert (
301
- len(encoder_modules) > 0
302
- ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
303
-
304
- all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
305
- encoder_layer_pos = 0
306
- for name, module in decoder_modules.items():
307
- if name.isdigit():
308
- encoder_name = str(int(name) + encoder_layer_pos)
309
- decoder_name = name
310
- if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
311
- encoder_modules
312
- ) != len(decoder_modules):
313
- # this can happen if the name corresponds to the position in a list module list of layers
314
- # in this case the decoder has added a cross-attention that the encoder does not have
315
- # thus skip this step and subtract one layer pos from encoder
316
- encoder_layer_pos -= 1
317
- continue
318
- elif name not in encoder_modules:
319
- continue
320
- elif depth > 500:
321
- raise ValueError(
322
- "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
323
- )
324
- else:
325
- decoder_name = encoder_name = name
326
- tie_encoder_to_decoder_recursively(
327
- decoder_modules[decoder_name],
328
- encoder_modules[encoder_name],
329
- module_name + "/" + name,
330
- uninitialized_encoder_weights,
331
- skip_key,
332
- depth=depth + 1,
333
- )
334
- all_encoder_weights.remove(module_name + "/" + encoder_name)
335
-
336
- uninitialized_encoder_weights += list(all_encoder_weights)
337
-
338
- # tie weights recursively
339
- tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/BLIP/models/blip_retrieval.py DELETED
@@ -1,319 +0,0 @@
1
- from extras.BLIP.models.med import BertConfig, BertModel
2
- from transformers import BertTokenizer
3
-
4
- import torch
5
- from torch import nn
6
- import torch.nn.functional as F
7
-
8
- from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint
9
-
10
- class BLIP_Retrieval(nn.Module):
11
- def __init__(self,
12
- med_config = 'configs/med_config.json',
13
- image_size = 384,
14
- vit = 'base',
15
- vit_grad_ckpt = False,
16
- vit_ckpt_layer = 0,
17
- embed_dim = 256,
18
- queue_size = 57600,
19
- momentum = 0.995,
20
- negative_all_rank = False,
21
- ):
22
- """
23
- Args:
24
- med_config (str): path for the mixture of encoder-decoder model's configuration file
25
- image_size (int): input image size
26
- vit (str): model size of vision transformer
27
- """
28
- super().__init__()
29
-
30
- self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
31
- self.tokenizer = init_tokenizer()
32
- med_config = BertConfig.from_json_file(med_config)
33
- med_config.encoder_width = vision_width
34
- self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
35
-
36
- text_width = self.text_encoder.config.hidden_size
37
-
38
- self.vision_proj = nn.Linear(vision_width, embed_dim)
39
- self.text_proj = nn.Linear(text_width, embed_dim)
40
-
41
- self.itm_head = nn.Linear(text_width, 2)
42
-
43
- # create momentum encoders
44
- self.visual_encoder_m, vision_width = create_vit(vit,image_size)
45
- self.vision_proj_m = nn.Linear(vision_width, embed_dim)
46
- self.text_encoder_m = BertModel(config=med_config, add_pooling_layer=False)
47
- self.text_proj_m = nn.Linear(text_width, embed_dim)
48
-
49
- self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
50
- [self.vision_proj,self.vision_proj_m],
51
- [self.text_encoder,self.text_encoder_m],
52
- [self.text_proj,self.text_proj_m],
53
- ]
54
- self.copy_params()
55
-
56
- # create the queue
57
- self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
58
- self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
59
- self.register_buffer("idx_queue", torch.full((1,queue_size),-100))
60
- self.register_buffer("ptr_queue", torch.zeros(1, dtype=torch.long))
61
-
62
- self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
63
- self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
64
-
65
- self.queue_size = queue_size
66
- self.momentum = momentum
67
- self.temp = nn.Parameter(0.07*torch.ones([]))
68
-
69
- self.negative_all_rank = negative_all_rank
70
-
71
-
72
- def forward(self, image, caption, alpha, idx):
73
- with torch.no_grad():
74
- self.temp.clamp_(0.001,0.5)
75
-
76
- image_embeds = self.visual_encoder(image)
77
- image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
78
- image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
79
-
80
- text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35,
81
- return_tensors="pt").to(image.device)
82
-
83
- text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
84
- return_dict = True, mode = 'text')
85
- text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
86
-
87
- ###============== Image-text Contrastive Learning ===================###
88
- idx = idx.view(-1,1)
89
- idx_all = torch.cat([idx.t(), self.idx_queue.clone().detach()],dim=1)
90
- pos_idx = torch.eq(idx, idx_all).float()
91
- sim_targets = pos_idx / pos_idx.sum(1,keepdim=True)
92
-
93
- # get momentum features
94
- with torch.no_grad():
95
- self._momentum_update()
96
- image_embeds_m = self.visual_encoder_m(image)
97
- image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)
98
- image_feat_m_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)
99
-
100
- text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,
101
- return_dict = True, mode = 'text')
102
- text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1)
103
- text_feat_m_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)
104
-
105
- sim_i2t_m = image_feat_m @ text_feat_m_all / self.temp
106
- sim_t2i_m = text_feat_m @ image_feat_m_all / self.temp
107
-
108
- sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
109
- sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
110
-
111
- sim_i2t = image_feat @ text_feat_m_all / self.temp
112
- sim_t2i = text_feat @ image_feat_m_all / self.temp
113
-
114
- loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
115
- loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean()
116
-
117
- loss_ita = (loss_i2t+loss_t2i)/2
118
-
119
- idxs = concat_all_gather(idx)
120
- self._dequeue_and_enqueue(image_feat_m, text_feat_m, idxs)
121
-
122
- ###============== Image-text Matching ===================###
123
- encoder_input_ids = text.input_ids.clone()
124
- encoder_input_ids[:,0] = self.tokenizer.enc_token_id
125
-
126
- # forward the positve image-text pair
127
- bs = image.size(0)
128
- output_pos = self.text_encoder(encoder_input_ids,
129
- attention_mask = text.attention_mask,
130
- encoder_hidden_states = image_embeds,
131
- encoder_attention_mask = image_atts,
132
- return_dict = True,
133
- )
134
-
135
-
136
- if self.negative_all_rank:
137
- # compute sample similarity
138
- with torch.no_grad():
139
- mask = torch.eq(idx, idxs.t())
140
-
141
- image_feat_world = concat_all_gather(image_feat)
142
- text_feat_world = concat_all_gather(text_feat)
143
-
144
- sim_i2t = image_feat @ text_feat_world.t() / self.temp
145
- sim_t2i = text_feat @ image_feat_world.t() / self.temp
146
-
147
- weights_i2t = F.softmax(sim_i2t,dim=1)
148
- weights_i2t.masked_fill_(mask, 0)
149
-
150
- weights_t2i = F.softmax(sim_t2i,dim=1)
151
- weights_t2i.masked_fill_(mask, 0)
152
-
153
- image_embeds_world = all_gather_with_grad(image_embeds)
154
-
155
- # select a negative image (from all ranks) for each text
156
- image_embeds_neg = []
157
- for b in range(bs):
158
- neg_idx = torch.multinomial(weights_t2i[b], 1).item()
159
- image_embeds_neg.append(image_embeds_world[neg_idx])
160
- image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
161
-
162
- # select a negative text (from all ranks) for each image
163
- input_ids_world = concat_all_gather(encoder_input_ids)
164
- att_mask_world = concat_all_gather(text.attention_mask)
165
-
166
- text_ids_neg = []
167
- text_atts_neg = []
168
- for b in range(bs):
169
- neg_idx = torch.multinomial(weights_i2t[b], 1).item()
170
- text_ids_neg.append(input_ids_world[neg_idx])
171
- text_atts_neg.append(att_mask_world[neg_idx])
172
-
173
- else:
174
- with torch.no_grad():
175
- mask = torch.eq(idx, idx.t())
176
-
177
- sim_i2t = image_feat @ text_feat.t() / self.temp
178
- sim_t2i = text_feat @ image_feat.t() / self.temp
179
-
180
- weights_i2t = F.softmax(sim_i2t,dim=1)
181
- weights_i2t.masked_fill_(mask, 0)
182
-
183
- weights_t2i = F.softmax(sim_t2i,dim=1)
184
- weights_t2i.masked_fill_(mask, 0)
185
-
186
- # select a negative image (from same rank) for each text
187
- image_embeds_neg = []
188
- for b in range(bs):
189
- neg_idx = torch.multinomial(weights_t2i[b], 1).item()
190
- image_embeds_neg.append(image_embeds[neg_idx])
191
- image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
192
-
193
- # select a negative text (from same rank) for each image
194
- text_ids_neg = []
195
- text_atts_neg = []
196
- for b in range(bs):
197
- neg_idx = torch.multinomial(weights_i2t[b], 1).item()
198
- text_ids_neg.append(encoder_input_ids[neg_idx])
199
- text_atts_neg.append(text.attention_mask[neg_idx])
200
-
201
- text_ids_neg = torch.stack(text_ids_neg,dim=0)
202
- text_atts_neg = torch.stack(text_atts_neg,dim=0)
203
-
204
- text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)
205
- text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)
206
-
207
- image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
208
- image_atts_all = torch.cat([image_atts,image_atts],dim=0)
209
-
210
- output_neg = self.text_encoder(text_ids_all,
211
- attention_mask = text_atts_all,
212
- encoder_hidden_states = image_embeds_all,
213
- encoder_attention_mask = image_atts_all,
214
- return_dict = True,
215
- )
216
-
217
-
218
- vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
219
- vl_output = self.itm_head(vl_embeddings)
220
-
221
- itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
222
- dim=0).to(image.device)
223
- loss_itm = F.cross_entropy(vl_output, itm_labels)
224
-
225
- return loss_ita, loss_itm
226
-
227
-
228
- @torch.no_grad()
229
- def copy_params(self):
230
- for model_pair in self.model_pairs:
231
- for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
232
- param_m.data.copy_(param.data) # initialize
233
- param_m.requires_grad = False # not update by gradient
234
-
235
-
236
- @torch.no_grad()
237
- def _momentum_update(self):
238
- for model_pair in self.model_pairs:
239
- for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
240
- param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
241
-
242
-
243
- @torch.no_grad()
244
- def _dequeue_and_enqueue(self, image_feat, text_feat, idxs):
245
- # gather keys before updating queue
246
- image_feats = concat_all_gather(image_feat)
247
- text_feats = concat_all_gather(text_feat)
248
-
249
-
250
- batch_size = image_feats.shape[0]
251
-
252
- ptr = int(self.ptr_queue)
253
- assert self.queue_size % batch_size == 0 # for simplicity
254
-
255
- # replace the keys at ptr (dequeue and enqueue)
256
- self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
257
- self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
258
- self.idx_queue[:, ptr:ptr + batch_size] = idxs.T
259
- ptr = (ptr + batch_size) % self.queue_size # move pointer
260
-
261
- self.ptr_queue[0] = ptr
262
-
263
-
264
- def blip_retrieval(pretrained='',**kwargs):
265
- model = BLIP_Retrieval(**kwargs)
266
- if pretrained:
267
- model,msg = load_checkpoint(model,pretrained)
268
- print("missing keys:")
269
- print(msg.missing_keys)
270
- return model
271
-
272
-
273
- @torch.no_grad()
274
- def concat_all_gather(tensor):
275
- """
276
- Performs all_gather operation on the provided tensors.
277
- *** Warning ***: torch.distributed.all_gather has no gradient.
278
- """
279
- tensors_gather = [torch.ones_like(tensor)
280
- for _ in range(torch.distributed.get_world_size())]
281
- torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
282
-
283
- output = torch.cat(tensors_gather, dim=0)
284
- return output
285
-
286
-
287
- class GatherLayer(torch.autograd.Function):
288
- """
289
- Gather tensors from all workers with support for backward propagation:
290
- This implementation does not cut the gradients as torch.distributed.all_gather does.
291
- """
292
-
293
- @staticmethod
294
- def forward(ctx, x):
295
- output = [torch.zeros_like(x) for _ in range(torch.distributed.get_world_size())]
296
- torch.distributed.all_gather(output, x)
297
- return tuple(output)
298
-
299
- @staticmethod
300
- def backward(ctx, *grads):
301
- all_gradients = torch.stack(grads)
302
- torch.distributed.all_reduce(all_gradients)
303
- return all_gradients[torch.distributed.get_rank()]
304
-
305
-
306
- def all_gather_with_grad(tensors):
307
- """
308
- Performs all_gather operation on the provided tensors.
309
- Graph remains connected for backward grad computation.
310
- """
311
- # Queue the gathered tensors
312
- world_size = torch.distributed.get_world_size()
313
- # There is no need for reduction in the single-proc case
314
- if world_size == 1:
315
- return tensors
316
-
317
- tensor_all = GatherLayer.apply(tensors)
318
-
319
- return torch.cat(tensor_all, dim=0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/BLIP/models/blip_vqa.py DELETED
@@ -1,186 +0,0 @@
1
- from extras.BLIP.models.med import BertConfig, BertModel, BertLMHeadModel
2
- from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint
3
-
4
- import torch
5
- from torch import nn
6
- import torch.nn.functional as F
7
- from transformers import BertTokenizer
8
- import numpy as np
9
-
10
- class BLIP_VQA(nn.Module):
11
- def __init__(self,
12
- med_config = 'configs/med_config.json',
13
- image_size = 480,
14
- vit = 'base',
15
- vit_grad_ckpt = False,
16
- vit_ckpt_layer = 0,
17
- ):
18
- """
19
- Args:
20
- med_config (str): path for the mixture of encoder-decoder model's configuration file
21
- image_size (int): input image size
22
- vit (str): model size of vision transformer
23
- """
24
- super().__init__()
25
-
26
- self.visual_encoder, vision_width = create_vit(vit, image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1)
27
- self.tokenizer = init_tokenizer()
28
-
29
- encoder_config = BertConfig.from_json_file(med_config)
30
- encoder_config.encoder_width = vision_width
31
- self.text_encoder = BertModel(config=encoder_config, add_pooling_layer=False)
32
-
33
- decoder_config = BertConfig.from_json_file(med_config)
34
- self.text_decoder = BertLMHeadModel(config=decoder_config)
35
-
36
-
37
- def forward(self, image, question, answer=None, n=None, weights=None, train=True, inference='rank', k_test=128):
38
-
39
- image_embeds = self.visual_encoder(image)
40
- image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
41
-
42
- question = self.tokenizer(question, padding='longest', truncation=True, max_length=35,
43
- return_tensors="pt").to(image.device)
44
- question.input_ids[:,0] = self.tokenizer.enc_token_id
45
-
46
- if train:
47
- '''
48
- n: number of answers for each question
49
- weights: weight for each answer
50
- '''
51
- answer = self.tokenizer(answer, padding='longest', return_tensors="pt").to(image.device)
52
- answer.input_ids[:,0] = self.tokenizer.bos_token_id
53
- answer_targets = answer.input_ids.masked_fill(answer.input_ids == self.tokenizer.pad_token_id, -100)
54
-
55
- question_output = self.text_encoder(question.input_ids,
56
- attention_mask = question.attention_mask,
57
- encoder_hidden_states = image_embeds,
58
- encoder_attention_mask = image_atts,
59
- return_dict = True)
60
-
61
- question_states = []
62
- question_atts = []
63
- for b, n in enumerate(n):
64
- question_states += [question_output.last_hidden_state[b]]*n
65
- question_atts += [question.attention_mask[b]]*n
66
- question_states = torch.stack(question_states,0)
67
- question_atts = torch.stack(question_atts,0)
68
-
69
- answer_output = self.text_decoder(answer.input_ids,
70
- attention_mask = answer.attention_mask,
71
- encoder_hidden_states = question_states,
72
- encoder_attention_mask = question_atts,
73
- labels = answer_targets,
74
- return_dict = True,
75
- reduction = 'none',
76
- )
77
-
78
- loss = weights * answer_output.loss
79
- loss = loss.sum()/image.size(0)
80
-
81
- return loss
82
-
83
-
84
- else:
85
- question_output = self.text_encoder(question.input_ids,
86
- attention_mask = question.attention_mask,
87
- encoder_hidden_states = image_embeds,
88
- encoder_attention_mask = image_atts,
89
- return_dict = True)
90
-
91
- if inference=='generate':
92
- num_beams = 3
93
- question_states = question_output.last_hidden_state.repeat_interleave(num_beams,dim=0)
94
- question_atts = torch.ones(question_states.size()[:-1],dtype=torch.long).to(question_states.device)
95
- model_kwargs = {"encoder_hidden_states": question_states, "encoder_attention_mask":question_atts}
96
-
97
- bos_ids = torch.full((image.size(0),1),fill_value=self.tokenizer.bos_token_id,device=image.device)
98
-
99
- outputs = self.text_decoder.generate(input_ids=bos_ids,
100
- max_length=10,
101
- min_length=1,
102
- num_beams=num_beams,
103
- eos_token_id=self.tokenizer.sep_token_id,
104
- pad_token_id=self.tokenizer.pad_token_id,
105
- **model_kwargs)
106
-
107
- answers = []
108
- for output in outputs:
109
- answer = self.tokenizer.decode(output, skip_special_tokens=True)
110
- answers.append(answer)
111
- return answers
112
-
113
- elif inference=='rank':
114
- max_ids = self.rank_answer(question_output.last_hidden_state, question.attention_mask,
115
- answer.input_ids, answer.attention_mask, k_test)
116
- return max_ids
117
-
118
-
119
-
120
- def rank_answer(self, question_states, question_atts, answer_ids, answer_atts, k):
121
-
122
- num_ques = question_states.size(0)
123
- start_ids = answer_ids[0,0].repeat(num_ques,1) # bos token
124
-
125
- start_output = self.text_decoder(start_ids,
126
- encoder_hidden_states = question_states,
127
- encoder_attention_mask = question_atts,
128
- return_dict = True,
129
- reduction = 'none')
130
- logits = start_output.logits[:,0,:] # first token's logit
131
-
132
- # topk_probs: top-k probability
133
- # topk_ids: [num_question, k]
134
- answer_first_token = answer_ids[:,1]
135
- prob_first_token = F.softmax(logits,dim=1).index_select(dim=1, index=answer_first_token)
136
- topk_probs, topk_ids = prob_first_token.topk(k,dim=1)
137
-
138
- # answer input: [num_question*k, answer_len]
139
- input_ids = []
140
- input_atts = []
141
- for b, topk_id in enumerate(topk_ids):
142
- input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
143
- input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
144
- input_ids = torch.cat(input_ids,dim=0)
145
- input_atts = torch.cat(input_atts,dim=0)
146
-
147
- targets_ids = input_ids.masked_fill(input_ids == self.tokenizer.pad_token_id, -100)
148
-
149
- # repeat encoder's output for top-k answers
150
- question_states = tile(question_states, 0, k)
151
- question_atts = tile(question_atts, 0, k)
152
-
153
- output = self.text_decoder(input_ids,
154
- attention_mask = input_atts,
155
- encoder_hidden_states = question_states,
156
- encoder_attention_mask = question_atts,
157
- labels = targets_ids,
158
- return_dict = True,
159
- reduction = 'none')
160
-
161
- log_probs_sum = -output.loss
162
- log_probs_sum = log_probs_sum.view(num_ques,k)
163
-
164
- max_topk_ids = log_probs_sum.argmax(dim=1)
165
- max_ids = topk_ids[max_topk_ids>=0,max_topk_ids]
166
-
167
- return max_ids
168
-
169
-
170
- def blip_vqa(pretrained='',**kwargs):
171
- model = BLIP_VQA(**kwargs)
172
- if pretrained:
173
- model,msg = load_checkpoint(model,pretrained)
174
- # assert(len(msg.missing_keys)==0)
175
- return model
176
-
177
-
178
- def tile(x, dim, n_tile):
179
- init_dim = x.size(dim)
180
- repeat_idx = [1] * x.dim()
181
- repeat_idx[dim] = n_tile
182
- x = x.repeat(*(repeat_idx))
183
- order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)]))
184
- return torch.index_select(x, dim, order_index.to(x.device))
185
-
186
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/BLIP/models/med.py DELETED
@@ -1,955 +0,0 @@
1
- '''
2
- * Copyright (c) 2022, salesforce.com, inc.
3
- * All rights reserved.
4
- * SPDX-License-Identifier: BSD-3-Clause
5
- * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
- * By Junnan Li
7
- * Based on huggingface code base
8
- * https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
9
- '''
10
-
11
- import math
12
- import os
13
- import warnings
14
- from dataclasses import dataclass
15
- from typing import Optional, Tuple
16
-
17
- import torch
18
- from torch import Tensor, device, dtype, nn
19
- import torch.utils.checkpoint
20
- from torch import nn
21
- from torch.nn import CrossEntropyLoss
22
- import torch.nn.functional as F
23
-
24
- from transformers.activations import ACT2FN
25
- from transformers.file_utils import (
26
- ModelOutput,
27
- )
28
- from transformers.modeling_outputs import (
29
- BaseModelOutputWithPastAndCrossAttentions,
30
- BaseModelOutputWithPoolingAndCrossAttentions,
31
- CausalLMOutputWithCrossAttentions,
32
- MaskedLMOutput,
33
- MultipleChoiceModelOutput,
34
- NextSentencePredictorOutput,
35
- QuestionAnsweringModelOutput,
36
- SequenceClassifierOutput,
37
- TokenClassifierOutput,
38
- )
39
- from transformers.modeling_utils import (
40
- PreTrainedModel,
41
- apply_chunking_to_forward,
42
- find_pruneable_heads_and_indices,
43
- prune_linear_layer,
44
- )
45
- from transformers.utils import logging
46
- from transformers.models.bert.configuration_bert import BertConfig
47
-
48
-
49
- logger = logging.get_logger(__name__)
50
-
51
-
52
- class BertEmbeddings(nn.Module):
53
- """Construct the embeddings from word and position embeddings."""
54
-
55
- def __init__(self, config):
56
- super().__init__()
57
- self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
58
- self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
59
-
60
- # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
61
- # any TensorFlow checkpoint file
62
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
63
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
64
-
65
- # position_ids (1, len position emb) is contiguous in memory and exported when serialized
66
- self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
67
- self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
68
-
69
- self.config = config
70
-
71
- def forward(
72
- self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
73
- ):
74
- if input_ids is not None:
75
- input_shape = input_ids.size()
76
- else:
77
- input_shape = inputs_embeds.size()[:-1]
78
-
79
- seq_length = input_shape[1]
80
-
81
- if position_ids is None:
82
- position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
83
-
84
- if inputs_embeds is None:
85
- inputs_embeds = self.word_embeddings(input_ids)
86
-
87
- embeddings = inputs_embeds
88
-
89
- if self.position_embedding_type == "absolute":
90
- position_embeddings = self.position_embeddings(position_ids)
91
- embeddings += position_embeddings
92
- embeddings = self.LayerNorm(embeddings)
93
- embeddings = self.dropout(embeddings)
94
- return embeddings
95
-
96
-
97
- class BertSelfAttention(nn.Module):
98
- def __init__(self, config, is_cross_attention):
99
- super().__init__()
100
- self.config = config
101
- if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
102
- raise ValueError(
103
- "The hidden size (%d) is not a multiple of the number of attention "
104
- "heads (%d)" % (config.hidden_size, config.num_attention_heads)
105
- )
106
-
107
- self.num_attention_heads = config.num_attention_heads
108
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
109
- self.all_head_size = self.num_attention_heads * self.attention_head_size
110
-
111
- self.query = nn.Linear(config.hidden_size, self.all_head_size)
112
- if is_cross_attention:
113
- self.key = nn.Linear(config.encoder_width, self.all_head_size)
114
- self.value = nn.Linear(config.encoder_width, self.all_head_size)
115
- else:
116
- self.key = nn.Linear(config.hidden_size, self.all_head_size)
117
- self.value = nn.Linear(config.hidden_size, self.all_head_size)
118
-
119
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
120
- self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
121
- if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
122
- self.max_position_embeddings = config.max_position_embeddings
123
- self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
124
- self.save_attention = False
125
-
126
- def save_attn_gradients(self, attn_gradients):
127
- self.attn_gradients = attn_gradients
128
-
129
- def get_attn_gradients(self):
130
- return self.attn_gradients
131
-
132
- def save_attention_map(self, attention_map):
133
- self.attention_map = attention_map
134
-
135
- def get_attention_map(self):
136
- return self.attention_map
137
-
138
- def transpose_for_scores(self, x):
139
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
140
- x = x.view(*new_x_shape)
141
- return x.permute(0, 2, 1, 3)
142
-
143
- def forward(
144
- self,
145
- hidden_states,
146
- attention_mask=None,
147
- head_mask=None,
148
- encoder_hidden_states=None,
149
- encoder_attention_mask=None,
150
- past_key_value=None,
151
- output_attentions=False,
152
- ):
153
- mixed_query_layer = self.query(hidden_states)
154
-
155
- # If this is instantiated as a cross-attention module, the keys
156
- # and values come from an encoder; the attention mask needs to be
157
- # such that the encoder's padding tokens are not attended to.
158
- is_cross_attention = encoder_hidden_states is not None
159
-
160
- if is_cross_attention:
161
- key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
162
- value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
163
- attention_mask = encoder_attention_mask
164
- elif past_key_value is not None:
165
- key_layer = self.transpose_for_scores(self.key(hidden_states))
166
- value_layer = self.transpose_for_scores(self.value(hidden_states))
167
- key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
168
- value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
169
- else:
170
- key_layer = self.transpose_for_scores(self.key(hidden_states))
171
- value_layer = self.transpose_for_scores(self.value(hidden_states))
172
-
173
- query_layer = self.transpose_for_scores(mixed_query_layer)
174
-
175
- past_key_value = (key_layer, value_layer)
176
-
177
- # Take the dot product between "query" and "key" to get the raw attention scores.
178
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
179
-
180
- if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
181
- seq_length = hidden_states.size()[1]
182
- position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
183
- position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
184
- distance = position_ids_l - position_ids_r
185
- positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
186
- positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
187
-
188
- if self.position_embedding_type == "relative_key":
189
- relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
190
- attention_scores = attention_scores + relative_position_scores
191
- elif self.position_embedding_type == "relative_key_query":
192
- relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
193
- relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
194
- attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
195
-
196
- attention_scores = attention_scores / math.sqrt(self.attention_head_size)
197
- if attention_mask is not None:
198
- # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
199
- attention_scores = attention_scores + attention_mask
200
-
201
- # Normalize the attention scores to probabilities.
202
- attention_probs = nn.Softmax(dim=-1)(attention_scores)
203
-
204
- if is_cross_attention and self.save_attention:
205
- self.save_attention_map(attention_probs)
206
- attention_probs.register_hook(self.save_attn_gradients)
207
-
208
- # This is actually dropping out entire tokens to attend to, which might
209
- # seem a bit unusual, but is taken from the original Transformer paper.
210
- attention_probs_dropped = self.dropout(attention_probs)
211
-
212
- # Mask heads if we want to
213
- if head_mask is not None:
214
- attention_probs_dropped = attention_probs_dropped * head_mask
215
-
216
- context_layer = torch.matmul(attention_probs_dropped, value_layer)
217
-
218
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
219
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
220
- context_layer = context_layer.view(*new_context_layer_shape)
221
-
222
- outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
223
-
224
- outputs = outputs + (past_key_value,)
225
- return outputs
226
-
227
-
228
- class BertSelfOutput(nn.Module):
229
- def __init__(self, config):
230
- super().__init__()
231
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
232
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
233
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
234
-
235
- def forward(self, hidden_states, input_tensor):
236
- hidden_states = self.dense(hidden_states)
237
- hidden_states = self.dropout(hidden_states)
238
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
239
- return hidden_states
240
-
241
-
242
- class BertAttention(nn.Module):
243
- def __init__(self, config, is_cross_attention=False):
244
- super().__init__()
245
- self.self = BertSelfAttention(config, is_cross_attention)
246
- self.output = BertSelfOutput(config)
247
- self.pruned_heads = set()
248
-
249
- def prune_heads(self, heads):
250
- if len(heads) == 0:
251
- return
252
- heads, index = find_pruneable_heads_and_indices(
253
- heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
254
- )
255
-
256
- # Prune linear layers
257
- self.self.query = prune_linear_layer(self.self.query, index)
258
- self.self.key = prune_linear_layer(self.self.key, index)
259
- self.self.value = prune_linear_layer(self.self.value, index)
260
- self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
261
-
262
- # Update hyper params and store pruned heads
263
- self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
264
- self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
265
- self.pruned_heads = self.pruned_heads.union(heads)
266
-
267
- def forward(
268
- self,
269
- hidden_states,
270
- attention_mask=None,
271
- head_mask=None,
272
- encoder_hidden_states=None,
273
- encoder_attention_mask=None,
274
- past_key_value=None,
275
- output_attentions=False,
276
- ):
277
- self_outputs = self.self(
278
- hidden_states,
279
- attention_mask,
280
- head_mask,
281
- encoder_hidden_states,
282
- encoder_attention_mask,
283
- past_key_value,
284
- output_attentions,
285
- )
286
- attention_output = self.output(self_outputs[0], hidden_states)
287
- outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
288
- return outputs
289
-
290
-
291
- class BertIntermediate(nn.Module):
292
- def __init__(self, config):
293
- super().__init__()
294
- self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
295
- if isinstance(config.hidden_act, str):
296
- self.intermediate_act_fn = ACT2FN[config.hidden_act]
297
- else:
298
- self.intermediate_act_fn = config.hidden_act
299
-
300
- def forward(self, hidden_states):
301
- hidden_states = self.dense(hidden_states)
302
- hidden_states = self.intermediate_act_fn(hidden_states)
303
- return hidden_states
304
-
305
-
306
- class BertOutput(nn.Module):
307
- def __init__(self, config):
308
- super().__init__()
309
- self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
310
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
311
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
312
-
313
- def forward(self, hidden_states, input_tensor):
314
- hidden_states = self.dense(hidden_states)
315
- hidden_states = self.dropout(hidden_states)
316
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
317
- return hidden_states
318
-
319
-
320
- class BertLayer(nn.Module):
321
- def __init__(self, config, layer_num):
322
- super().__init__()
323
- self.config = config
324
- self.chunk_size_feed_forward = config.chunk_size_feed_forward
325
- self.seq_len_dim = 1
326
- self.attention = BertAttention(config)
327
- self.layer_num = layer_num
328
- if self.config.add_cross_attention:
329
- self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention)
330
- self.intermediate = BertIntermediate(config)
331
- self.output = BertOutput(config)
332
-
333
- def forward(
334
- self,
335
- hidden_states,
336
- attention_mask=None,
337
- head_mask=None,
338
- encoder_hidden_states=None,
339
- encoder_attention_mask=None,
340
- past_key_value=None,
341
- output_attentions=False,
342
- mode=None,
343
- ):
344
- # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
345
- self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
346
- self_attention_outputs = self.attention(
347
- hidden_states,
348
- attention_mask,
349
- head_mask,
350
- output_attentions=output_attentions,
351
- past_key_value=self_attn_past_key_value,
352
- )
353
- attention_output = self_attention_outputs[0]
354
-
355
- outputs = self_attention_outputs[1:-1]
356
- present_key_value = self_attention_outputs[-1]
357
-
358
- if mode=='multimodal':
359
- assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
360
-
361
- cross_attention_outputs = self.crossattention(
362
- attention_output,
363
- attention_mask,
364
- head_mask,
365
- encoder_hidden_states,
366
- encoder_attention_mask,
367
- output_attentions=output_attentions,
368
- )
369
- attention_output = cross_attention_outputs[0]
370
- outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
371
- layer_output = apply_chunking_to_forward(
372
- self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
373
- )
374
- outputs = (layer_output,) + outputs
375
-
376
- outputs = outputs + (present_key_value,)
377
-
378
- return outputs
379
-
380
- def feed_forward_chunk(self, attention_output):
381
- intermediate_output = self.intermediate(attention_output)
382
- layer_output = self.output(intermediate_output, attention_output)
383
- return layer_output
384
-
385
-
386
- class BertEncoder(nn.Module):
387
- def __init__(self, config):
388
- super().__init__()
389
- self.config = config
390
- self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
391
- self.gradient_checkpointing = False
392
-
393
- def forward(
394
- self,
395
- hidden_states,
396
- attention_mask=None,
397
- head_mask=None,
398
- encoder_hidden_states=None,
399
- encoder_attention_mask=None,
400
- past_key_values=None,
401
- use_cache=None,
402
- output_attentions=False,
403
- output_hidden_states=False,
404
- return_dict=True,
405
- mode='multimodal',
406
- ):
407
- all_hidden_states = () if output_hidden_states else None
408
- all_self_attentions = () if output_attentions else None
409
- all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
410
-
411
- next_decoder_cache = () if use_cache else None
412
-
413
- for i in range(self.config.num_hidden_layers):
414
- layer_module = self.layer[i]
415
- if output_hidden_states:
416
- all_hidden_states = all_hidden_states + (hidden_states,)
417
-
418
- layer_head_mask = head_mask[i] if head_mask is not None else None
419
- past_key_value = past_key_values[i] if past_key_values is not None else None
420
-
421
- if self.gradient_checkpointing and self.training:
422
-
423
- if use_cache:
424
- logger.warn(
425
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
426
- )
427
- use_cache = False
428
-
429
- def create_custom_forward(module):
430
- def custom_forward(*inputs):
431
- return module(*inputs, past_key_value, output_attentions)
432
-
433
- return custom_forward
434
-
435
- layer_outputs = torch.utils.checkpoint.checkpoint(
436
- create_custom_forward(layer_module),
437
- hidden_states,
438
- attention_mask,
439
- layer_head_mask,
440
- encoder_hidden_states,
441
- encoder_attention_mask,
442
- mode=mode,
443
- )
444
- else:
445
- layer_outputs = layer_module(
446
- hidden_states,
447
- attention_mask,
448
- layer_head_mask,
449
- encoder_hidden_states,
450
- encoder_attention_mask,
451
- past_key_value,
452
- output_attentions,
453
- mode=mode,
454
- )
455
-
456
- hidden_states = layer_outputs[0]
457
- if use_cache:
458
- next_decoder_cache += (layer_outputs[-1],)
459
- if output_attentions:
460
- all_self_attentions = all_self_attentions + (layer_outputs[1],)
461
-
462
- if output_hidden_states:
463
- all_hidden_states = all_hidden_states + (hidden_states,)
464
-
465
- if not return_dict:
466
- return tuple(
467
- v
468
- for v in [
469
- hidden_states,
470
- next_decoder_cache,
471
- all_hidden_states,
472
- all_self_attentions,
473
- all_cross_attentions,
474
- ]
475
- if v is not None
476
- )
477
- return BaseModelOutputWithPastAndCrossAttentions(
478
- last_hidden_state=hidden_states,
479
- past_key_values=next_decoder_cache,
480
- hidden_states=all_hidden_states,
481
- attentions=all_self_attentions,
482
- cross_attentions=all_cross_attentions,
483
- )
484
-
485
-
486
- class BertPooler(nn.Module):
487
- def __init__(self, config):
488
- super().__init__()
489
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
490
- self.activation = nn.Tanh()
491
-
492
- def forward(self, hidden_states):
493
- # We "pool" the model by simply taking the hidden state corresponding
494
- # to the first token.
495
- first_token_tensor = hidden_states[:, 0]
496
- pooled_output = self.dense(first_token_tensor)
497
- pooled_output = self.activation(pooled_output)
498
- return pooled_output
499
-
500
-
501
- class BertPredictionHeadTransform(nn.Module):
502
- def __init__(self, config):
503
- super().__init__()
504
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
505
- if isinstance(config.hidden_act, str):
506
- self.transform_act_fn = ACT2FN[config.hidden_act]
507
- else:
508
- self.transform_act_fn = config.hidden_act
509
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
510
-
511
- def forward(self, hidden_states):
512
- hidden_states = self.dense(hidden_states)
513
- hidden_states = self.transform_act_fn(hidden_states)
514
- hidden_states = self.LayerNorm(hidden_states)
515
- return hidden_states
516
-
517
-
518
- class BertLMPredictionHead(nn.Module):
519
- def __init__(self, config):
520
- super().__init__()
521
- self.transform = BertPredictionHeadTransform(config)
522
-
523
- # The output weights are the same as the input embeddings, but there is
524
- # an output-only bias for each token.
525
- self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
526
-
527
- self.bias = nn.Parameter(torch.zeros(config.vocab_size))
528
-
529
- # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
530
- self.decoder.bias = self.bias
531
-
532
- def forward(self, hidden_states):
533
- hidden_states = self.transform(hidden_states)
534
- hidden_states = self.decoder(hidden_states)
535
- return hidden_states
536
-
537
-
538
- class BertOnlyMLMHead(nn.Module):
539
- def __init__(self, config):
540
- super().__init__()
541
- self.predictions = BertLMPredictionHead(config)
542
-
543
- def forward(self, sequence_output):
544
- prediction_scores = self.predictions(sequence_output)
545
- return prediction_scores
546
-
547
-
548
- class BertPreTrainedModel(PreTrainedModel):
549
- """
550
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
551
- models.
552
- """
553
-
554
- config_class = BertConfig
555
- base_model_prefix = "bert"
556
- _keys_to_ignore_on_load_missing = [r"position_ids"]
557
-
558
- def _init_weights(self, module):
559
- """ Initialize the weights """
560
- if isinstance(module, (nn.Linear, nn.Embedding)):
561
- # Slightly different from the TF version which uses truncated_normal for initialization
562
- # cf https://github.com/pytorch/pytorch/pull/5617
563
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
564
- elif isinstance(module, nn.LayerNorm):
565
- module.bias.data.zero_()
566
- module.weight.data.fill_(1.0)
567
- if isinstance(module, nn.Linear) and module.bias is not None:
568
- module.bias.data.zero_()
569
-
570
-
571
- class BertModel(BertPreTrainedModel):
572
- """
573
- The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
574
- cross-attention is added between the self-attention layers, following the architecture described in `Attention is
575
- all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
576
- Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
577
- argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
578
- input to the forward pass.
579
- """
580
-
581
- def __init__(self, config, add_pooling_layer=True):
582
- super().__init__(config)
583
- self.config = config
584
-
585
- self.embeddings = BertEmbeddings(config)
586
-
587
- self.encoder = BertEncoder(config)
588
-
589
- self.pooler = BertPooler(config) if add_pooling_layer else None
590
-
591
- self.init_weights()
592
-
593
-
594
- def get_input_embeddings(self):
595
- return self.embeddings.word_embeddings
596
-
597
- def set_input_embeddings(self, value):
598
- self.embeddings.word_embeddings = value
599
-
600
- def _prune_heads(self, heads_to_prune):
601
- """
602
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
603
- class PreTrainedModel
604
- """
605
- for layer, heads in heads_to_prune.items():
606
- self.encoder.layer[layer].attention.prune_heads(heads)
607
-
608
-
609
- def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
610
- """
611
- Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
612
-
613
- Arguments:
614
- attention_mask (:obj:`torch.Tensor`):
615
- Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
616
- input_shape (:obj:`Tuple[int]`):
617
- The shape of the input to the model.
618
- device: (:obj:`torch.device`):
619
- The device of the input to the model.
620
-
621
- Returns:
622
- :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
623
- """
624
- # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
625
- # ourselves in which case we just need to make it broadcastable to all heads.
626
- if attention_mask.dim() == 3:
627
- extended_attention_mask = attention_mask[:, None, :, :]
628
- elif attention_mask.dim() == 2:
629
- # Provided a padding mask of dimensions [batch_size, seq_length]
630
- # - if the model is a decoder, apply a causal mask in addition to the padding mask
631
- # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
632
- if is_decoder:
633
- batch_size, seq_length = input_shape
634
-
635
- seq_ids = torch.arange(seq_length, device=device)
636
- causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
637
- # in case past_key_values are used we need to add a prefix ones mask to the causal mask
638
- # causal and attention masks must have same type with pytorch version < 1.3
639
- causal_mask = causal_mask.to(attention_mask.dtype)
640
-
641
- if causal_mask.shape[1] < attention_mask.shape[1]:
642
- prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
643
- causal_mask = torch.cat(
644
- [
645
- torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
646
- causal_mask,
647
- ],
648
- axis=-1,
649
- )
650
-
651
- extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
652
- else:
653
- extended_attention_mask = attention_mask[:, None, None, :]
654
- else:
655
- raise ValueError(
656
- "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
657
- input_shape, attention_mask.shape
658
- )
659
- )
660
-
661
- # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
662
- # masked positions, this operation will create a tensor which is 0.0 for
663
- # positions we want to attend and -10000.0 for masked positions.
664
- # Since we are adding it to the raw scores before the softmax, this is
665
- # effectively the same as removing these entirely.
666
- extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
667
- extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
668
- return extended_attention_mask
669
-
670
- def forward(
671
- self,
672
- input_ids=None,
673
- attention_mask=None,
674
- position_ids=None,
675
- head_mask=None,
676
- inputs_embeds=None,
677
- encoder_embeds=None,
678
- encoder_hidden_states=None,
679
- encoder_attention_mask=None,
680
- past_key_values=None,
681
- use_cache=None,
682
- output_attentions=None,
683
- output_hidden_states=None,
684
- return_dict=None,
685
- is_decoder=False,
686
- mode='multimodal',
687
- ):
688
- r"""
689
- encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
690
- Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
691
- the model is configured as a decoder.
692
- encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
693
- Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
694
- the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
695
- - 1 for tokens that are **not masked**,
696
- - 0 for tokens that are **masked**.
697
- past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
698
- Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
699
- If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
700
- (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
701
- instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
702
- use_cache (:obj:`bool`, `optional`):
703
- If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
704
- decoding (see :obj:`past_key_values`).
705
- """
706
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
707
- output_hidden_states = (
708
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
709
- )
710
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
711
-
712
- if is_decoder:
713
- use_cache = use_cache if use_cache is not None else self.config.use_cache
714
- else:
715
- use_cache = False
716
-
717
- if input_ids is not None and inputs_embeds is not None:
718
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
719
- elif input_ids is not None:
720
- input_shape = input_ids.size()
721
- batch_size, seq_length = input_shape
722
- device = input_ids.device
723
- elif inputs_embeds is not None:
724
- input_shape = inputs_embeds.size()[:-1]
725
- batch_size, seq_length = input_shape
726
- device = inputs_embeds.device
727
- elif encoder_embeds is not None:
728
- input_shape = encoder_embeds.size()[:-1]
729
- batch_size, seq_length = input_shape
730
- device = encoder_embeds.device
731
- else:
732
- raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
733
-
734
- # past_key_values_length
735
- past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
736
-
737
- if attention_mask is None:
738
- attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
739
-
740
- # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
741
- # ourselves in which case we just need to make it broadcastable to all heads.
742
- extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
743
- device, is_decoder)
744
-
745
- # If a 2D or 3D attention mask is provided for the cross-attention
746
- # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
747
- if encoder_hidden_states is not None:
748
- if type(encoder_hidden_states) == list:
749
- encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
750
- else:
751
- encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
752
- encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
753
-
754
- if type(encoder_attention_mask) == list:
755
- encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
756
- elif encoder_attention_mask is None:
757
- encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
758
- encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
759
- else:
760
- encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
761
- else:
762
- encoder_extended_attention_mask = None
763
-
764
- # Prepare head mask if needed
765
- # 1.0 in head_mask indicate we keep the head
766
- # attention_probs has shape bsz x n_heads x N x N
767
- # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
768
- # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
769
- head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
770
-
771
- if encoder_embeds is None:
772
- embedding_output = self.embeddings(
773
- input_ids=input_ids,
774
- position_ids=position_ids,
775
- inputs_embeds=inputs_embeds,
776
- past_key_values_length=past_key_values_length,
777
- )
778
- else:
779
- embedding_output = encoder_embeds
780
-
781
- encoder_outputs = self.encoder(
782
- embedding_output,
783
- attention_mask=extended_attention_mask,
784
- head_mask=head_mask,
785
- encoder_hidden_states=encoder_hidden_states,
786
- encoder_attention_mask=encoder_extended_attention_mask,
787
- past_key_values=past_key_values,
788
- use_cache=use_cache,
789
- output_attentions=output_attentions,
790
- output_hidden_states=output_hidden_states,
791
- return_dict=return_dict,
792
- mode=mode,
793
- )
794
- sequence_output = encoder_outputs[0]
795
- pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
796
-
797
- if not return_dict:
798
- return (sequence_output, pooled_output) + encoder_outputs[1:]
799
-
800
- return BaseModelOutputWithPoolingAndCrossAttentions(
801
- last_hidden_state=sequence_output,
802
- pooler_output=pooled_output,
803
- past_key_values=encoder_outputs.past_key_values,
804
- hidden_states=encoder_outputs.hidden_states,
805
- attentions=encoder_outputs.attentions,
806
- cross_attentions=encoder_outputs.cross_attentions,
807
- )
808
-
809
-
810
-
811
- class BertLMHeadModel(BertPreTrainedModel):
812
-
813
- _keys_to_ignore_on_load_unexpected = [r"pooler"]
814
- _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
815
-
816
- def __init__(self, config):
817
- super().__init__(config)
818
-
819
- self.bert = BertModel(config, add_pooling_layer=False)
820
- self.cls = BertOnlyMLMHead(config)
821
-
822
- self.init_weights()
823
-
824
- def get_output_embeddings(self):
825
- return self.cls.predictions.decoder
826
-
827
- def set_output_embeddings(self, new_embeddings):
828
- self.cls.predictions.decoder = new_embeddings
829
-
830
- def forward(
831
- self,
832
- input_ids=None,
833
- attention_mask=None,
834
- position_ids=None,
835
- head_mask=None,
836
- inputs_embeds=None,
837
- encoder_hidden_states=None,
838
- encoder_attention_mask=None,
839
- labels=None,
840
- past_key_values=None,
841
- use_cache=None,
842
- output_attentions=None,
843
- output_hidden_states=None,
844
- return_dict=None,
845
- return_logits=False,
846
- is_decoder=True,
847
- reduction='mean',
848
- mode='multimodal',
849
- ):
850
- r"""
851
- encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
852
- Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
853
- the model is configured as a decoder.
854
- encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
855
- Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
856
- the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
857
- - 1 for tokens that are **not masked**,
858
- - 0 for tokens that are **masked**.
859
- labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
860
- Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
861
- ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
862
- ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
863
- past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
864
- Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
865
- If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
866
- (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
867
- instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
868
- use_cache (:obj:`bool`, `optional`):
869
- If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
870
- decoding (see :obj:`past_key_values`).
871
- Returns:
872
- Example::
873
- >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
874
- >>> import torch
875
- >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
876
- >>> config = BertConfig.from_pretrained("bert-base-cased")
877
- >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
878
- >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
879
- >>> outputs = model(**inputs)
880
- >>> prediction_logits = outputs.logits
881
- """
882
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
883
- if labels is not None:
884
- use_cache = False
885
-
886
- outputs = self.bert(
887
- input_ids,
888
- attention_mask=attention_mask,
889
- position_ids=position_ids,
890
- head_mask=head_mask,
891
- inputs_embeds=inputs_embeds,
892
- encoder_hidden_states=encoder_hidden_states,
893
- encoder_attention_mask=encoder_attention_mask,
894
- past_key_values=past_key_values,
895
- use_cache=use_cache,
896
- output_attentions=output_attentions,
897
- output_hidden_states=output_hidden_states,
898
- return_dict=return_dict,
899
- is_decoder=is_decoder,
900
- mode=mode,
901
- )
902
-
903
- sequence_output = outputs[0]
904
- prediction_scores = self.cls(sequence_output)
905
-
906
- if return_logits:
907
- return prediction_scores[:, :-1, :].contiguous()
908
-
909
- lm_loss = None
910
- if labels is not None:
911
- # we are doing next-token prediction; shift prediction scores and input ids by one
912
- shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
913
- labels = labels[:, 1:].contiguous()
914
- loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
915
- lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
916
- if reduction=='none':
917
- lm_loss = lm_loss.view(prediction_scores.size(0),-1).sum(1)
918
-
919
- if not return_dict:
920
- output = (prediction_scores,) + outputs[2:]
921
- return ((lm_loss,) + output) if lm_loss is not None else output
922
-
923
- return CausalLMOutputWithCrossAttentions(
924
- loss=lm_loss,
925
- logits=prediction_scores,
926
- past_key_values=outputs.past_key_values,
927
- hidden_states=outputs.hidden_states,
928
- attentions=outputs.attentions,
929
- cross_attentions=outputs.cross_attentions,
930
- )
931
-
932
- def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
933
- input_shape = input_ids.shape
934
- # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
935
- if attention_mask is None:
936
- attention_mask = input_ids.new_ones(input_shape)
937
-
938
- # cut decoder_input_ids if past is used
939
- if past is not None:
940
- input_ids = input_ids[:, -1:]
941
-
942
- return {
943
- "input_ids": input_ids,
944
- "attention_mask": attention_mask,
945
- "past_key_values": past,
946
- "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
947
- "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
948
- "is_decoder": True,
949
- }
950
-
951
- def _reorder_cache(self, past, beam_idx):
952
- reordered_past = ()
953
- for layer_past in past:
954
- reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
955
- return reordered_past
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/BLIP/models/nlvr_encoder.py DELETED
@@ -1,843 +0,0 @@
1
- import math
2
- import os
3
- import warnings
4
- from dataclasses import dataclass
5
- from typing import Optional, Tuple
6
-
7
- import torch
8
- from torch import Tensor, device, dtype, nn
9
- import torch.utils.checkpoint
10
- from torch import nn
11
- from torch.nn import CrossEntropyLoss
12
- import torch.nn.functional as F
13
-
14
- from transformers.activations import ACT2FN
15
- from transformers.file_utils import (
16
- ModelOutput,
17
- )
18
- from transformers.modeling_outputs import (
19
- BaseModelOutputWithPastAndCrossAttentions,
20
- BaseModelOutputWithPoolingAndCrossAttentions,
21
- CausalLMOutputWithCrossAttentions,
22
- MaskedLMOutput,
23
- MultipleChoiceModelOutput,
24
- NextSentencePredictorOutput,
25
- QuestionAnsweringModelOutput,
26
- SequenceClassifierOutput,
27
- TokenClassifierOutput,
28
- )
29
- from transformers.modeling_utils import (
30
- PreTrainedModel,
31
- apply_chunking_to_forward,
32
- find_pruneable_heads_and_indices,
33
- prune_linear_layer,
34
- )
35
- from transformers.utils import logging
36
- from transformers.models.bert.configuration_bert import BertConfig
37
-
38
-
39
- logger = logging.get_logger(__name__)
40
-
41
-
42
- class BertEmbeddings(nn.Module):
43
- """Construct the embeddings from word and position embeddings."""
44
-
45
- def __init__(self, config):
46
- super().__init__()
47
- self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
48
- self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
49
-
50
- # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
51
- # any TensorFlow checkpoint file
52
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
53
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
54
-
55
- # position_ids (1, len position emb) is contiguous in memory and exported when serialized
56
- self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
57
- self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
58
-
59
- self.config = config
60
-
61
- def forward(
62
- self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
63
- ):
64
- if input_ids is not None:
65
- input_shape = input_ids.size()
66
- else:
67
- input_shape = inputs_embeds.size()[:-1]
68
-
69
- seq_length = input_shape[1]
70
-
71
- if position_ids is None:
72
- position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
73
-
74
- if inputs_embeds is None:
75
- inputs_embeds = self.word_embeddings(input_ids)
76
-
77
- embeddings = inputs_embeds
78
-
79
- if self.position_embedding_type == "absolute":
80
- position_embeddings = self.position_embeddings(position_ids)
81
- embeddings += position_embeddings
82
- embeddings = self.LayerNorm(embeddings)
83
- embeddings = self.dropout(embeddings)
84
- return embeddings
85
-
86
-
87
- class BertSelfAttention(nn.Module):
88
- def __init__(self, config, is_cross_attention):
89
- super().__init__()
90
- self.config = config
91
- if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
92
- raise ValueError(
93
- "The hidden size (%d) is not a multiple of the number of attention "
94
- "heads (%d)" % (config.hidden_size, config.num_attention_heads)
95
- )
96
-
97
- self.num_attention_heads = config.num_attention_heads
98
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
99
- self.all_head_size = self.num_attention_heads * self.attention_head_size
100
-
101
- self.query = nn.Linear(config.hidden_size, self.all_head_size)
102
- if is_cross_attention:
103
- self.key = nn.Linear(config.encoder_width, self.all_head_size)
104
- self.value = nn.Linear(config.encoder_width, self.all_head_size)
105
- else:
106
- self.key = nn.Linear(config.hidden_size, self.all_head_size)
107
- self.value = nn.Linear(config.hidden_size, self.all_head_size)
108
-
109
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
110
- self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
111
- if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
112
- self.max_position_embeddings = config.max_position_embeddings
113
- self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
114
- self.save_attention = False
115
-
116
- def save_attn_gradients(self, attn_gradients):
117
- self.attn_gradients = attn_gradients
118
-
119
- def get_attn_gradients(self):
120
- return self.attn_gradients
121
-
122
- def save_attention_map(self, attention_map):
123
- self.attention_map = attention_map
124
-
125
- def get_attention_map(self):
126
- return self.attention_map
127
-
128
- def transpose_for_scores(self, x):
129
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
130
- x = x.view(*new_x_shape)
131
- return x.permute(0, 2, 1, 3)
132
-
133
- def forward(
134
- self,
135
- hidden_states,
136
- attention_mask=None,
137
- head_mask=None,
138
- encoder_hidden_states=None,
139
- encoder_attention_mask=None,
140
- past_key_value=None,
141
- output_attentions=False,
142
- ):
143
- mixed_query_layer = self.query(hidden_states)
144
-
145
- # If this is instantiated as a cross-attention module, the keys
146
- # and values come from an encoder; the attention mask needs to be
147
- # such that the encoder's padding tokens are not attended to.
148
- is_cross_attention = encoder_hidden_states is not None
149
-
150
- if is_cross_attention:
151
- key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
152
- value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
153
- attention_mask = encoder_attention_mask
154
- elif past_key_value is not None:
155
- key_layer = self.transpose_for_scores(self.key(hidden_states))
156
- value_layer = self.transpose_for_scores(self.value(hidden_states))
157
- key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
158
- value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
159
- else:
160
- key_layer = self.transpose_for_scores(self.key(hidden_states))
161
- value_layer = self.transpose_for_scores(self.value(hidden_states))
162
-
163
- query_layer = self.transpose_for_scores(mixed_query_layer)
164
-
165
- past_key_value = (key_layer, value_layer)
166
-
167
- # Take the dot product between "query" and "key" to get the raw attention scores.
168
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
169
-
170
- if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
171
- seq_length = hidden_states.size()[1]
172
- position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
173
- position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
174
- distance = position_ids_l - position_ids_r
175
- positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
176
- positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
177
-
178
- if self.position_embedding_type == "relative_key":
179
- relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
180
- attention_scores = attention_scores + relative_position_scores
181
- elif self.position_embedding_type == "relative_key_query":
182
- relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
183
- relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
184
- attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
185
-
186
- attention_scores = attention_scores / math.sqrt(self.attention_head_size)
187
- if attention_mask is not None:
188
- # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
189
- attention_scores = attention_scores + attention_mask
190
-
191
- # Normalize the attention scores to probabilities.
192
- attention_probs = nn.Softmax(dim=-1)(attention_scores)
193
-
194
- if is_cross_attention and self.save_attention:
195
- self.save_attention_map(attention_probs)
196
- attention_probs.register_hook(self.save_attn_gradients)
197
-
198
- # This is actually dropping out entire tokens to attend to, which might
199
- # seem a bit unusual, but is taken from the original Transformer paper.
200
- attention_probs_dropped = self.dropout(attention_probs)
201
-
202
- # Mask heads if we want to
203
- if head_mask is not None:
204
- attention_probs_dropped = attention_probs_dropped * head_mask
205
-
206
- context_layer = torch.matmul(attention_probs_dropped, value_layer)
207
-
208
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
209
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
210
- context_layer = context_layer.view(*new_context_layer_shape)
211
-
212
- outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
213
-
214
- outputs = outputs + (past_key_value,)
215
- return outputs
216
-
217
-
218
- class BertSelfOutput(nn.Module):
219
- def __init__(self, config, twin=False, merge=False):
220
- super().__init__()
221
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
222
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
223
- if twin:
224
- self.dense0 = nn.Linear(config.hidden_size, config.hidden_size)
225
- self.dense1 = nn.Linear(config.hidden_size, config.hidden_size)
226
- else:
227
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
228
- if merge:
229
- self.act = ACT2FN[config.hidden_act]
230
- self.merge_layer = nn.Linear(config.hidden_size * 2, config.hidden_size)
231
- self.merge = True
232
- else:
233
- self.merge = False
234
-
235
- def forward(self, hidden_states, input_tensor):
236
- if type(hidden_states) == list:
237
- hidden_states0 = self.dense0(hidden_states[0])
238
- hidden_states1 = self.dense1(hidden_states[1])
239
- if self.merge:
240
- #hidden_states = self.merge_layer(self.act(torch.cat([hidden_states0,hidden_states1],dim=-1)))
241
- hidden_states = self.merge_layer(torch.cat([hidden_states0,hidden_states1],dim=-1))
242
- else:
243
- hidden_states = (hidden_states0+hidden_states1)/2
244
- else:
245
- hidden_states = self.dense(hidden_states)
246
- hidden_states = self.dropout(hidden_states)
247
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
248
- return hidden_states
249
-
250
-
251
- class BertAttention(nn.Module):
252
- def __init__(self, config, is_cross_attention=False, layer_num=-1):
253
- super().__init__()
254
- if is_cross_attention:
255
- self.self0 = BertSelfAttention(config, is_cross_attention)
256
- self.self1 = BertSelfAttention(config, is_cross_attention)
257
- else:
258
- self.self = BertSelfAttention(config, is_cross_attention)
259
- self.output = BertSelfOutput(config, twin=is_cross_attention, merge=(is_cross_attention and layer_num>=6))
260
- self.pruned_heads = set()
261
-
262
- def prune_heads(self, heads):
263
- if len(heads) == 0:
264
- return
265
- heads, index = find_pruneable_heads_and_indices(
266
- heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
267
- )
268
-
269
- # Prune linear layers
270
- self.self.query = prune_linear_layer(self.self.query, index)
271
- self.self.key = prune_linear_layer(self.self.key, index)
272
- self.self.value = prune_linear_layer(self.self.value, index)
273
- self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
274
-
275
- # Update hyper params and store pruned heads
276
- self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
277
- self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
278
- self.pruned_heads = self.pruned_heads.union(heads)
279
-
280
- def forward(
281
- self,
282
- hidden_states,
283
- attention_mask=None,
284
- head_mask=None,
285
- encoder_hidden_states=None,
286
- encoder_attention_mask=None,
287
- past_key_value=None,
288
- output_attentions=False,
289
- ):
290
- if type(encoder_hidden_states)==list:
291
- self_outputs0 = self.self0(
292
- hidden_states,
293
- attention_mask,
294
- head_mask,
295
- encoder_hidden_states[0],
296
- encoder_attention_mask[0],
297
- past_key_value,
298
- output_attentions,
299
- )
300
- self_outputs1 = self.self1(
301
- hidden_states,
302
- attention_mask,
303
- head_mask,
304
- encoder_hidden_states[1],
305
- encoder_attention_mask[1],
306
- past_key_value,
307
- output_attentions,
308
- )
309
- attention_output = self.output([self_outputs0[0],self_outputs1[0]], hidden_states)
310
-
311
- outputs = (attention_output,) + self_outputs0[1:] # add attentions if we output them
312
- else:
313
- self_outputs = self.self(
314
- hidden_states,
315
- attention_mask,
316
- head_mask,
317
- encoder_hidden_states,
318
- encoder_attention_mask,
319
- past_key_value,
320
- output_attentions,
321
- )
322
- attention_output = self.output(self_outputs[0], hidden_states)
323
- outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
324
- return outputs
325
-
326
-
327
- class BertIntermediate(nn.Module):
328
- def __init__(self, config):
329
- super().__init__()
330
- self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
331
- if isinstance(config.hidden_act, str):
332
- self.intermediate_act_fn = ACT2FN[config.hidden_act]
333
- else:
334
- self.intermediate_act_fn = config.hidden_act
335
-
336
- def forward(self, hidden_states):
337
- hidden_states = self.dense(hidden_states)
338
- hidden_states = self.intermediate_act_fn(hidden_states)
339
- return hidden_states
340
-
341
-
342
- class BertOutput(nn.Module):
343
- def __init__(self, config):
344
- super().__init__()
345
- self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
346
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
347
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
348
-
349
- def forward(self, hidden_states, input_tensor):
350
- hidden_states = self.dense(hidden_states)
351
- hidden_states = self.dropout(hidden_states)
352
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
353
- return hidden_states
354
-
355
-
356
- class BertLayer(nn.Module):
357
- def __init__(self, config, layer_num):
358
- super().__init__()
359
- self.config = config
360
- self.chunk_size_feed_forward = config.chunk_size_feed_forward
361
- self.seq_len_dim = 1
362
- self.attention = BertAttention(config)
363
- self.layer_num = layer_num
364
- if self.config.add_cross_attention:
365
- self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention, layer_num=layer_num)
366
- self.intermediate = BertIntermediate(config)
367
- self.output = BertOutput(config)
368
-
369
- def forward(
370
- self,
371
- hidden_states,
372
- attention_mask=None,
373
- head_mask=None,
374
- encoder_hidden_states=None,
375
- encoder_attention_mask=None,
376
- past_key_value=None,
377
- output_attentions=False,
378
- mode=None,
379
- ):
380
- # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
381
- self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
382
- self_attention_outputs = self.attention(
383
- hidden_states,
384
- attention_mask,
385
- head_mask,
386
- output_attentions=output_attentions,
387
- past_key_value=self_attn_past_key_value,
388
- )
389
- attention_output = self_attention_outputs[0]
390
-
391
- outputs = self_attention_outputs[1:-1]
392
- present_key_value = self_attention_outputs[-1]
393
-
394
- if mode=='multimodal':
395
- assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
396
- cross_attention_outputs = self.crossattention(
397
- attention_output,
398
- attention_mask,
399
- head_mask,
400
- encoder_hidden_states,
401
- encoder_attention_mask,
402
- output_attentions=output_attentions,
403
- )
404
- attention_output = cross_attention_outputs[0]
405
- outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
406
- layer_output = apply_chunking_to_forward(
407
- self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
408
- )
409
- outputs = (layer_output,) + outputs
410
-
411
- outputs = outputs + (present_key_value,)
412
-
413
- return outputs
414
-
415
- def feed_forward_chunk(self, attention_output):
416
- intermediate_output = self.intermediate(attention_output)
417
- layer_output = self.output(intermediate_output, attention_output)
418
- return layer_output
419
-
420
-
421
- class BertEncoder(nn.Module):
422
- def __init__(self, config):
423
- super().__init__()
424
- self.config = config
425
- self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
426
- self.gradient_checkpointing = False
427
-
428
- def forward(
429
- self,
430
- hidden_states,
431
- attention_mask=None,
432
- head_mask=None,
433
- encoder_hidden_states=None,
434
- encoder_attention_mask=None,
435
- past_key_values=None,
436
- use_cache=None,
437
- output_attentions=False,
438
- output_hidden_states=False,
439
- return_dict=True,
440
- mode='multimodal',
441
- ):
442
- all_hidden_states = () if output_hidden_states else None
443
- all_self_attentions = () if output_attentions else None
444
- all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
445
-
446
- next_decoder_cache = () if use_cache else None
447
-
448
- for i in range(self.config.num_hidden_layers):
449
- layer_module = self.layer[i]
450
- if output_hidden_states:
451
- all_hidden_states = all_hidden_states + (hidden_states,)
452
-
453
- layer_head_mask = head_mask[i] if head_mask is not None else None
454
- past_key_value = past_key_values[i] if past_key_values is not None else None
455
-
456
- if self.gradient_checkpointing and self.training:
457
-
458
- if use_cache:
459
- logger.warn(
460
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
461
- )
462
- use_cache = False
463
-
464
- def create_custom_forward(module):
465
- def custom_forward(*inputs):
466
- return module(*inputs, past_key_value, output_attentions)
467
-
468
- return custom_forward
469
-
470
- layer_outputs = torch.utils.checkpoint.checkpoint(
471
- create_custom_forward(layer_module),
472
- hidden_states,
473
- attention_mask,
474
- layer_head_mask,
475
- encoder_hidden_states,
476
- encoder_attention_mask,
477
- mode=mode,
478
- )
479
- else:
480
- layer_outputs = layer_module(
481
- hidden_states,
482
- attention_mask,
483
- layer_head_mask,
484
- encoder_hidden_states,
485
- encoder_attention_mask,
486
- past_key_value,
487
- output_attentions,
488
- mode=mode,
489
- )
490
-
491
- hidden_states = layer_outputs[0]
492
- if use_cache:
493
- next_decoder_cache += (layer_outputs[-1],)
494
- if output_attentions:
495
- all_self_attentions = all_self_attentions + (layer_outputs[1],)
496
-
497
- if output_hidden_states:
498
- all_hidden_states = all_hidden_states + (hidden_states,)
499
-
500
- if not return_dict:
501
- return tuple(
502
- v
503
- for v in [
504
- hidden_states,
505
- next_decoder_cache,
506
- all_hidden_states,
507
- all_self_attentions,
508
- all_cross_attentions,
509
- ]
510
- if v is not None
511
- )
512
- return BaseModelOutputWithPastAndCrossAttentions(
513
- last_hidden_state=hidden_states,
514
- past_key_values=next_decoder_cache,
515
- hidden_states=all_hidden_states,
516
- attentions=all_self_attentions,
517
- cross_attentions=all_cross_attentions,
518
- )
519
-
520
-
521
- class BertPooler(nn.Module):
522
- def __init__(self, config):
523
- super().__init__()
524
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
525
- self.activation = nn.Tanh()
526
-
527
- def forward(self, hidden_states):
528
- # We "pool" the model by simply taking the hidden state corresponding
529
- # to the first token.
530
- first_token_tensor = hidden_states[:, 0]
531
- pooled_output = self.dense(first_token_tensor)
532
- pooled_output = self.activation(pooled_output)
533
- return pooled_output
534
-
535
-
536
- class BertPredictionHeadTransform(nn.Module):
537
- def __init__(self, config):
538
- super().__init__()
539
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
540
- if isinstance(config.hidden_act, str):
541
- self.transform_act_fn = ACT2FN[config.hidden_act]
542
- else:
543
- self.transform_act_fn = config.hidden_act
544
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
545
-
546
- def forward(self, hidden_states):
547
- hidden_states = self.dense(hidden_states)
548
- hidden_states = self.transform_act_fn(hidden_states)
549
- hidden_states = self.LayerNorm(hidden_states)
550
- return hidden_states
551
-
552
-
553
- class BertLMPredictionHead(nn.Module):
554
- def __init__(self, config):
555
- super().__init__()
556
- self.transform = BertPredictionHeadTransform(config)
557
-
558
- # The output weights are the same as the input embeddings, but there is
559
- # an output-only bias for each token.
560
- self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
561
-
562
- self.bias = nn.Parameter(torch.zeros(config.vocab_size))
563
-
564
- # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
565
- self.decoder.bias = self.bias
566
-
567
- def forward(self, hidden_states):
568
- hidden_states = self.transform(hidden_states)
569
- hidden_states = self.decoder(hidden_states)
570
- return hidden_states
571
-
572
-
573
- class BertOnlyMLMHead(nn.Module):
574
- def __init__(self, config):
575
- super().__init__()
576
- self.predictions = BertLMPredictionHead(config)
577
-
578
- def forward(self, sequence_output):
579
- prediction_scores = self.predictions(sequence_output)
580
- return prediction_scores
581
-
582
-
583
- class BertPreTrainedModel(PreTrainedModel):
584
- """
585
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
586
- models.
587
- """
588
-
589
- config_class = BertConfig
590
- base_model_prefix = "bert"
591
- _keys_to_ignore_on_load_missing = [r"position_ids"]
592
-
593
- def _init_weights(self, module):
594
- """ Initialize the weights """
595
- if isinstance(module, (nn.Linear, nn.Embedding)):
596
- # Slightly different from the TF version which uses truncated_normal for initialization
597
- # cf https://github.com/pytorch/pytorch/pull/5617
598
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
599
- elif isinstance(module, nn.LayerNorm):
600
- module.bias.data.zero_()
601
- module.weight.data.fill_(1.0)
602
- if isinstance(module, nn.Linear) and module.bias is not None:
603
- module.bias.data.zero_()
604
-
605
-
606
- class BertModel(BertPreTrainedModel):
607
- """
608
- The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
609
- cross-attention is added between the self-attention layers, following the architecture described in `Attention is
610
- all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
611
- Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
612
- argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
613
- input to the forward pass.
614
- """
615
-
616
- def __init__(self, config, add_pooling_layer=True):
617
- super().__init__(config)
618
- self.config = config
619
-
620
- self.embeddings = BertEmbeddings(config)
621
-
622
- self.encoder = BertEncoder(config)
623
-
624
- self.pooler = BertPooler(config) if add_pooling_layer else None
625
-
626
- self.init_weights()
627
-
628
-
629
- def get_input_embeddings(self):
630
- return self.embeddings.word_embeddings
631
-
632
- def set_input_embeddings(self, value):
633
- self.embeddings.word_embeddings = value
634
-
635
- def _prune_heads(self, heads_to_prune):
636
- """
637
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
638
- class PreTrainedModel
639
- """
640
- for layer, heads in heads_to_prune.items():
641
- self.encoder.layer[layer].attention.prune_heads(heads)
642
-
643
-
644
- def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
645
- """
646
- Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
647
-
648
- Arguments:
649
- attention_mask (:obj:`torch.Tensor`):
650
- Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
651
- input_shape (:obj:`Tuple[int]`):
652
- The shape of the input to the model.
653
- device: (:obj:`torch.device`):
654
- The device of the input to the model.
655
-
656
- Returns:
657
- :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
658
- """
659
- # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
660
- # ourselves in which case we just need to make it broadcastable to all heads.
661
- if attention_mask.dim() == 3:
662
- extended_attention_mask = attention_mask[:, None, :, :]
663
- elif attention_mask.dim() == 2:
664
- # Provided a padding mask of dimensions [batch_size, seq_length]
665
- # - if the model is a decoder, apply a causal mask in addition to the padding mask
666
- # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
667
- if is_decoder:
668
- batch_size, seq_length = input_shape
669
-
670
- seq_ids = torch.arange(seq_length, device=device)
671
- causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
672
- # in case past_key_values are used we need to add a prefix ones mask to the causal mask
673
- # causal and attention masks must have same type with pytorch version < 1.3
674
- causal_mask = causal_mask.to(attention_mask.dtype)
675
-
676
- if causal_mask.shape[1] < attention_mask.shape[1]:
677
- prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
678
- causal_mask = torch.cat(
679
- [
680
- torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
681
- causal_mask,
682
- ],
683
- axis=-1,
684
- )
685
-
686
- extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
687
- else:
688
- extended_attention_mask = attention_mask[:, None, None, :]
689
- else:
690
- raise ValueError(
691
- "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
692
- input_shape, attention_mask.shape
693
- )
694
- )
695
-
696
- # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
697
- # masked positions, this operation will create a tensor which is 0.0 for
698
- # positions we want to attend and -10000.0 for masked positions.
699
- # Since we are adding it to the raw scores before the softmax, this is
700
- # effectively the same as removing these entirely.
701
- extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
702
- extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
703
- return extended_attention_mask
704
-
705
- def forward(
706
- self,
707
- input_ids=None,
708
- attention_mask=None,
709
- position_ids=None,
710
- head_mask=None,
711
- inputs_embeds=None,
712
- encoder_embeds=None,
713
- encoder_hidden_states=None,
714
- encoder_attention_mask=None,
715
- past_key_values=None,
716
- use_cache=None,
717
- output_attentions=None,
718
- output_hidden_states=None,
719
- return_dict=None,
720
- is_decoder=False,
721
- mode='multimodal',
722
- ):
723
- r"""
724
- encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
725
- Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
726
- the model is configured as a decoder.
727
- encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
728
- Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
729
- the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
730
- - 1 for tokens that are **not masked**,
731
- - 0 for tokens that are **masked**.
732
- past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
733
- Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
734
- If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
735
- (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
736
- instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
737
- use_cache (:obj:`bool`, `optional`):
738
- If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
739
- decoding (see :obj:`past_key_values`).
740
- """
741
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
742
- output_hidden_states = (
743
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
744
- )
745
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
746
-
747
- if is_decoder:
748
- use_cache = use_cache if use_cache is not None else self.config.use_cache
749
- else:
750
- use_cache = False
751
-
752
- if input_ids is not None and inputs_embeds is not None:
753
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
754
- elif input_ids is not None:
755
- input_shape = input_ids.size()
756
- batch_size, seq_length = input_shape
757
- device = input_ids.device
758
- elif inputs_embeds is not None:
759
- input_shape = inputs_embeds.size()[:-1]
760
- batch_size, seq_length = input_shape
761
- device = inputs_embeds.device
762
- elif encoder_embeds is not None:
763
- input_shape = encoder_embeds.size()[:-1]
764
- batch_size, seq_length = input_shape
765
- device = encoder_embeds.device
766
- else:
767
- raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
768
-
769
- # past_key_values_length
770
- past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
771
-
772
- if attention_mask is None:
773
- attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
774
-
775
- # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
776
- # ourselves in which case we just need to make it broadcastable to all heads.
777
- extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
778
- device, is_decoder)
779
-
780
- # If a 2D or 3D attention mask is provided for the cross-attention
781
- # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
782
- if encoder_hidden_states is not None:
783
- if type(encoder_hidden_states) == list:
784
- encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
785
- else:
786
- encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
787
- encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
788
-
789
- if type(encoder_attention_mask) == list:
790
- encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
791
- elif encoder_attention_mask is None:
792
- encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
793
- encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
794
- else:
795
- encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
796
- else:
797
- encoder_extended_attention_mask = None
798
-
799
- # Prepare head mask if needed
800
- # 1.0 in head_mask indicate we keep the head
801
- # attention_probs has shape bsz x n_heads x N x N
802
- # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
803
- # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
804
- head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
805
-
806
- if encoder_embeds is None:
807
- embedding_output = self.embeddings(
808
- input_ids=input_ids,
809
- position_ids=position_ids,
810
- inputs_embeds=inputs_embeds,
811
- past_key_values_length=past_key_values_length,
812
- )
813
- else:
814
- embedding_output = encoder_embeds
815
-
816
- encoder_outputs = self.encoder(
817
- embedding_output,
818
- attention_mask=extended_attention_mask,
819
- head_mask=head_mask,
820
- encoder_hidden_states=encoder_hidden_states,
821
- encoder_attention_mask=encoder_extended_attention_mask,
822
- past_key_values=past_key_values,
823
- use_cache=use_cache,
824
- output_attentions=output_attentions,
825
- output_hidden_states=output_hidden_states,
826
- return_dict=return_dict,
827
- mode=mode,
828
- )
829
- sequence_output = encoder_outputs[0]
830
- pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
831
-
832
- if not return_dict:
833
- return (sequence_output, pooled_output) + encoder_outputs[1:]
834
-
835
- return BaseModelOutputWithPoolingAndCrossAttentions(
836
- last_hidden_state=sequence_output,
837
- pooler_output=pooled_output,
838
- past_key_values=encoder_outputs.past_key_values,
839
- hidden_states=encoder_outputs.hidden_states,
840
- attentions=encoder_outputs.attentions,
841
- cross_attentions=encoder_outputs.cross_attentions,
842
- )
843
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/BLIP/models/vit.py DELETED
@@ -1,308 +0,0 @@
1
- '''
2
- * Copyright (c) 2022, salesforce.com, inc.
3
- * All rights reserved.
4
- * SPDX-License-Identifier: BSD-3-Clause
5
- * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
- * By Junnan Li
7
- * Based on timm code base
8
- * https://github.com/rwightman/pytorch-image-models/tree/master/timm
9
- '''
10
-
11
- import torch
12
- import torch.nn as nn
13
- import torch.nn.functional as F
14
- from functools import partial
15
-
16
- from timm.models.vision_transformer import _cfg, PatchEmbed
17
- from timm.models.registry import register_model
18
- from timm.models.layers import trunc_normal_, DropPath
19
- from timm.models.helpers import named_apply, adapt_input_conv
20
-
21
-
22
- def checkpoint_wrapper(x):
23
- return x
24
-
25
-
26
- class Mlp(nn.Module):
27
- """ MLP as used in Vision Transformer, MLP-Mixer and related networks
28
- """
29
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
30
- super().__init__()
31
- out_features = out_features or in_features
32
- hidden_features = hidden_features or in_features
33
- self.fc1 = nn.Linear(in_features, hidden_features)
34
- self.act = act_layer()
35
- self.fc2 = nn.Linear(hidden_features, out_features)
36
- self.drop = nn.Dropout(drop)
37
-
38
- def forward(self, x):
39
- x = self.fc1(x)
40
- x = self.act(x)
41
- x = self.drop(x)
42
- x = self.fc2(x)
43
- x = self.drop(x)
44
- return x
45
-
46
-
47
- class Attention(nn.Module):
48
- def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
49
- super().__init__()
50
- self.num_heads = num_heads
51
- head_dim = dim // num_heads
52
- # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
53
- self.scale = qk_scale or head_dim ** -0.5
54
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
55
- self.attn_drop = nn.Dropout(attn_drop)
56
- self.proj = nn.Linear(dim, dim)
57
- self.proj_drop = nn.Dropout(proj_drop)
58
- self.attn_gradients = None
59
- self.attention_map = None
60
-
61
- def save_attn_gradients(self, attn_gradients):
62
- self.attn_gradients = attn_gradients
63
-
64
- def get_attn_gradients(self):
65
- return self.attn_gradients
66
-
67
- def save_attention_map(self, attention_map):
68
- self.attention_map = attention_map
69
-
70
- def get_attention_map(self):
71
- return self.attention_map
72
-
73
- def forward(self, x, register_hook=False):
74
- B, N, C = x.shape
75
- qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
76
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
77
-
78
- attn = (q @ k.transpose(-2, -1)) * self.scale
79
- attn = attn.softmax(dim=-1)
80
- attn = self.attn_drop(attn)
81
-
82
- if register_hook:
83
- self.save_attention_map(attn)
84
- attn.register_hook(self.save_attn_gradients)
85
-
86
- x = (attn @ v).transpose(1, 2).reshape(B, N, C)
87
- x = self.proj(x)
88
- x = self.proj_drop(x)
89
- return x
90
-
91
-
92
- class Block(nn.Module):
93
-
94
- def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
95
- drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False):
96
- super().__init__()
97
- self.norm1 = norm_layer(dim)
98
- self.attn = Attention(
99
- dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
100
- # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
101
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
102
- self.norm2 = norm_layer(dim)
103
- mlp_hidden_dim = int(dim * mlp_ratio)
104
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
105
-
106
- if use_grad_checkpointing:
107
- self.attn = checkpoint_wrapper(self.attn)
108
- self.mlp = checkpoint_wrapper(self.mlp)
109
-
110
- def forward(self, x, register_hook=False):
111
- x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
112
- x = x + self.drop_path(self.mlp(self.norm2(x)))
113
- return x
114
-
115
-
116
- class VisionTransformer(nn.Module):
117
- """ Vision Transformer
118
- A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
119
- https://arxiv.org/abs/2010.11929
120
- """
121
- def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
122
- num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
123
- drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None,
124
- use_grad_checkpointing=False, ckpt_layer=0):
125
- """
126
- Args:
127
- img_size (int, tuple): input image size
128
- patch_size (int, tuple): patch size
129
- in_chans (int): number of input channels
130
- num_classes (int): number of classes for classification head
131
- embed_dim (int): embedding dimension
132
- depth (int): depth of transformer
133
- num_heads (int): number of attention heads
134
- mlp_ratio (int): ratio of mlp hidden dim to embedding dim
135
- qkv_bias (bool): enable bias for qkv if True
136
- qk_scale (float): override default qk scale of head_dim ** -0.5 if set
137
- representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
138
- drop_rate (float): dropout rate
139
- attn_drop_rate (float): attention dropout rate
140
- drop_path_rate (float): stochastic depth rate
141
- norm_layer: (nn.Module): normalization layer
142
- """
143
- super().__init__()
144
- self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
145
- norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
146
-
147
- self.patch_embed = PatchEmbed(
148
- img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
149
-
150
- num_patches = self.patch_embed.num_patches
151
-
152
- self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
153
- self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
154
- self.pos_drop = nn.Dropout(p=drop_rate)
155
-
156
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
157
- self.blocks = nn.ModuleList([
158
- Block(
159
- dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
160
- drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
161
- use_grad_checkpointing=(use_grad_checkpointing and i>=depth-ckpt_layer)
162
- )
163
- for i in range(depth)])
164
- self.norm = norm_layer(embed_dim)
165
-
166
- trunc_normal_(self.pos_embed, std=.02)
167
- trunc_normal_(self.cls_token, std=.02)
168
- self.apply(self._init_weights)
169
-
170
- def _init_weights(self, m):
171
- if isinstance(m, nn.Linear):
172
- trunc_normal_(m.weight, std=.02)
173
- if isinstance(m, nn.Linear) and m.bias is not None:
174
- nn.init.constant_(m.bias, 0)
175
- elif isinstance(m, nn.LayerNorm):
176
- nn.init.constant_(m.bias, 0)
177
- nn.init.constant_(m.weight, 1.0)
178
-
179
- @torch.jit.ignore
180
- def no_weight_decay(self):
181
- return {'pos_embed', 'cls_token'}
182
-
183
- def forward(self, x, register_blk=-1):
184
- B = x.shape[0]
185
- x = self.patch_embed(x)
186
-
187
- cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
188
- x = torch.cat((cls_tokens, x), dim=1)
189
-
190
- x = x + self.pos_embed[:,:x.size(1),:]
191
- x = self.pos_drop(x)
192
-
193
- for i,blk in enumerate(self.blocks):
194
- x = blk(x, register_blk==i)
195
- x = self.norm(x)
196
-
197
- return x
198
-
199
- @torch.jit.ignore()
200
- def load_pretrained(self, checkpoint_path, prefix=''):
201
- _load_weights(self, checkpoint_path, prefix)
202
-
203
-
204
- @torch.no_grad()
205
- def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''):
206
- """ Load weights from .npz checkpoints for official Google Brain Flax implementation
207
- """
208
- import numpy as np
209
-
210
- def _n2p(w, t=True):
211
- if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
212
- w = w.flatten()
213
- if t:
214
- if w.ndim == 4:
215
- w = w.transpose([3, 2, 0, 1])
216
- elif w.ndim == 3:
217
- w = w.transpose([2, 0, 1])
218
- elif w.ndim == 2:
219
- w = w.transpose([1, 0])
220
- return torch.from_numpy(w)
221
-
222
- w = np.load(checkpoint_path)
223
- if not prefix and 'opt/target/embedding/kernel' in w:
224
- prefix = 'opt/target/'
225
-
226
- if hasattr(model.patch_embed, 'backbone'):
227
- # hybrid
228
- backbone = model.patch_embed.backbone
229
- stem_only = not hasattr(backbone, 'stem')
230
- stem = backbone if stem_only else backbone.stem
231
- stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel'])))
232
- stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale']))
233
- stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias']))
234
- if not stem_only:
235
- for i, stage in enumerate(backbone.stages):
236
- for j, block in enumerate(stage.blocks):
237
- bp = f'{prefix}block{i + 1}/unit{j + 1}/'
238
- for r in range(3):
239
- getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel']))
240
- getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale']))
241
- getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias']))
242
- if block.downsample is not None:
243
- block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel']))
244
- block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale']))
245
- block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias']))
246
- embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
247
- else:
248
- embed_conv_w = adapt_input_conv(
249
- model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel']))
250
- model.patch_embed.proj.weight.copy_(embed_conv_w)
251
- model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
252
- model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
253
- pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False)
254
- if pos_embed_w.shape != model.pos_embed.shape:
255
- pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights
256
- pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
257
- model.pos_embed.copy_(pos_embed_w)
258
- model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
259
- model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
260
- # if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
261
- # model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
262
- # model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
263
- # if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
264
- # model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
265
- # model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
266
- for i, block in enumerate(model.blocks.children()):
267
- block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
268
- mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/'
269
- block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
270
- block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
271
- block.attn.qkv.weight.copy_(torch.cat([
272
- _n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
273
- block.attn.qkv.bias.copy_(torch.cat([
274
- _n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
275
- block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
276
- block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
277
- for r in range(2):
278
- getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel']))
279
- getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias']))
280
- block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale']))
281
- block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias']))
282
-
283
-
284
- def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
285
- # interpolate position embedding
286
- embedding_size = pos_embed_checkpoint.shape[-1]
287
- num_patches = visual_encoder.patch_embed.num_patches
288
- num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
289
- # height (== width) for the checkpoint position embedding
290
- orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
291
- # height (== width) for the new position embedding
292
- new_size = int(num_patches ** 0.5)
293
-
294
- if orig_size!=new_size:
295
- # class_token and dist_token are kept unchanged
296
- extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
297
- # only the position tokens are interpolated
298
- pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
299
- pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
300
- pos_tokens = torch.nn.functional.interpolate(
301
- pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
302
- pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
303
- new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
304
- print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2))
305
-
306
- return new_pos_embed
307
- else:
308
- return pos_embed_checkpoint
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/__pycache__/expansion.cpython-310.pyc DELETED
Binary file (3.76 kB)
 
extras/__pycache__/face_crop.cpython-310.pyc DELETED
Binary file (1.57 kB)
 
extras/__pycache__/interrogate.cpython-310.pyc DELETED
Binary file (2.47 kB)
 
extras/__pycache__/ip_adapter.cpython-310.pyc DELETED
Binary file (8.66 kB)
 
extras/__pycache__/preprocessors.cpython-310.pyc DELETED
Binary file (2.65 kB)
 
extras/__pycache__/resampler.cpython-310.pyc DELETED
Binary file (3.27 kB)
 
extras/__pycache__/vae_interpose.cpython-310.pyc DELETED
Binary file (2.7 kB)
 
extras/__pycache__/wd14tagger.cpython-310.pyc DELETED
Binary file (3.02 kB)
 
extras/expansion.py DELETED
@@ -1,129 +0,0 @@
1
- # Fooocus GPT2 Expansion
2
- # Algorithm created by Lvmin Zhang at 2023, Stanford
3
- # If used inside Fooocus, any use is permitted.
4
- # If used outside Fooocus, only non-commercial use is permitted (CC-By NC 4.0).
5
- # This applies to the word list, vocab, model, and algorithm.
6
-
7
-
8
- import os
9
- import torch
10
- import math
11
- import ldm_patched.modules.model_management as model_management
12
-
13
- from transformers.generation.logits_process import LogitsProcessorList
14
- from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
15
- from modules.config import path_fooocus_expansion
16
- from ldm_patched.modules.model_patcher import ModelPatcher
17
-
18
-
19
- # limitation of np.random.seed(), called from transformers.set_seed()
20
- SEED_LIMIT_NUMPY = 2**32
21
- neg_inf = - 8192.0
22
-
23
-
24
- def safe_str(x):
25
- x = str(x)
26
- for _ in range(16):
27
- x = x.replace(' ', ' ')
28
- return x.strip(",. \r\n")
29
-
30
-
31
- def remove_pattern(x, pattern):
32
- for p in pattern:
33
- x = x.replace(p, '')
34
- return x
35
-
36
-
37
- class FooocusExpansion:
38
- def __init__(self):
39
- self.tokenizer = AutoTokenizer.from_pretrained(path_fooocus_expansion)
40
-
41
- positive_words = open(os.path.join(path_fooocus_expansion, 'positive.txt'),
42
- encoding='utf-8').read().splitlines()
43
- positive_words = ['Ġ' + x.lower() for x in positive_words if x != '']
44
-
45
- self.logits_bias = torch.zeros((1, len(self.tokenizer.vocab)), dtype=torch.float32) + neg_inf
46
-
47
- debug_list = []
48
- for k, v in self.tokenizer.vocab.items():
49
- if k in positive_words:
50
- self.logits_bias[0, v] = 0
51
- debug_list.append(k[1:])
52
-
53
- print(f'Fooocus V2 Expansion: Vocab with {len(debug_list)} words.')
54
-
55
- # debug_list = '\n'.join(sorted(debug_list))
56
- # print(debug_list)
57
-
58
- # t11 = self.tokenizer(',', return_tensors="np")
59
- # t198 = self.tokenizer('\n', return_tensors="np")
60
- # eos = self.tokenizer.eos_token_id
61
-
62
- self.model = AutoModelForCausalLM.from_pretrained(path_fooocus_expansion)
63
- self.model.eval()
64
-
65
- load_device = model_management.text_encoder_device()
66
- offload_device = model_management.text_encoder_offload_device()
67
-
68
- # MPS hack
69
- if model_management.is_device_mps(load_device):
70
- load_device = torch.device('cpu')
71
- offload_device = torch.device('cpu')
72
-
73
- use_fp16 = model_management.should_use_fp16(device=load_device)
74
-
75
- if use_fp16:
76
- self.model.half()
77
-
78
- self.patcher = ModelPatcher(self.model, load_device=load_device, offload_device=offload_device)
79
- print(f'Fooocus Expansion engine loaded for {load_device}, use_fp16 = {use_fp16}.')
80
-
81
- @torch.no_grad()
82
- @torch.inference_mode()
83
- def logits_processor(self, input_ids, scores):
84
- assert scores.ndim == 2 and scores.shape[0] == 1
85
- self.logits_bias = self.logits_bias.to(scores)
86
-
87
- bias = self.logits_bias.clone()
88
- bias[0, input_ids[0].to(bias.device).long()] = neg_inf
89
- bias[0, 11] = 0
90
-
91
- return scores + bias
92
-
93
- @torch.no_grad()
94
- @torch.inference_mode()
95
- def __call__(self, prompt, seed):
96
- if prompt == '':
97
- return ''
98
-
99
- if self.patcher.current_device != self.patcher.load_device:
100
- print('Fooocus Expansion loaded by itself.')
101
- model_management.load_model_gpu(self.patcher)
102
-
103
- seed = int(seed) % SEED_LIMIT_NUMPY
104
- set_seed(seed)
105
- prompt = safe_str(prompt) + ','
106
-
107
- tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt")
108
- tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device)
109
- tokenized_kwargs.data['attention_mask'] = tokenized_kwargs.data['attention_mask'].to(self.patcher.load_device)
110
-
111
- current_token_length = int(tokenized_kwargs.data['input_ids'].shape[1])
112
- max_token_length = 75 * int(math.ceil(float(current_token_length) / 75.0))
113
- max_new_tokens = max_token_length - current_token_length
114
-
115
- if max_new_tokens == 0:
116
- return prompt[:-1]
117
-
118
- # https://huggingface.co/blog/introducing-csearch
119
- # https://huggingface.co/docs/transformers/generation_strategies
120
- features = self.model.generate(**tokenized_kwargs,
121
- top_k=100,
122
- max_new_tokens=max_new_tokens,
123
- do_sample=True,
124
- logits_processor=LogitsProcessorList([self.logits_processor]))
125
-
126
- response = self.tokenizer.batch_decode(features, skip_special_tokens=True)
127
- result = safe_str(response[0])
128
-
129
- return result
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/face_crop.py DELETED
@@ -1,50 +0,0 @@
1
- import cv2
2
- import numpy as np
3
- import modules.config
4
-
5
-
6
- faceRestoreHelper = None
7
-
8
-
9
- def align_warp_face(self, landmark, border_mode='constant'):
10
- affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0]
11
- self.affine_matrices.append(affine_matrix)
12
- if border_mode == 'constant':
13
- border_mode = cv2.BORDER_CONSTANT
14
- elif border_mode == 'reflect101':
15
- border_mode = cv2.BORDER_REFLECT101
16
- elif border_mode == 'reflect':
17
- border_mode = cv2.BORDER_REFLECT
18
- input_img = self.input_img
19
- cropped_face = cv2.warpAffine(input_img, affine_matrix, self.face_size,
20
- borderMode=border_mode, borderValue=(135, 133, 132))
21
- return cropped_face
22
-
23
-
24
- def crop_image(img_rgb):
25
- global faceRestoreHelper
26
-
27
- if faceRestoreHelper is None:
28
- from extras.facexlib.utils.face_restoration_helper import FaceRestoreHelper
29
- faceRestoreHelper = FaceRestoreHelper(
30
- upscale_factor=1,
31
- model_rootpath=modules.config.path_controlnet,
32
- device='cpu' # use cpu is safer since we are out of memory management
33
- )
34
-
35
- faceRestoreHelper.clean_all()
36
- faceRestoreHelper.read_image(np.ascontiguousarray(img_rgb[:, :, ::-1].copy()))
37
- faceRestoreHelper.get_face_landmarks_5()
38
-
39
- landmarks = faceRestoreHelper.all_landmarks_5
40
- # landmarks are already sorted with confidence.
41
-
42
- if len(landmarks) == 0:
43
- print('No face detected')
44
- return img_rgb
45
- else:
46
- print(f'Detected {len(landmarks)} faces')
47
-
48
- result = align_warp_face(faceRestoreHelper, landmarks[0])
49
-
50
- return np.ascontiguousarray(result[:, :, ::-1].copy())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/facexlib/detection/__init__.py DELETED
@@ -1,31 +0,0 @@
1
- import torch
2
- from copy import deepcopy
3
-
4
- from extras.facexlib.utils import load_file_from_url
5
- from .retinaface import RetinaFace
6
-
7
-
8
- def init_detection_model(model_name, half=False, device='cuda', model_rootpath=None):
9
- if model_name == 'retinaface_resnet50':
10
- model = RetinaFace(network_name='resnet50', half=half, device=device)
11
- model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth'
12
- elif model_name == 'retinaface_mobile0.25':
13
- model = RetinaFace(network_name='mobile0.25', half=half, device=device)
14
- model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_mobilenet0.25_Final.pth'
15
- else:
16
- raise NotImplementedError(f'{model_name} is not implemented.')
17
-
18
- model_path = load_file_from_url(
19
- url=model_url, model_dir='facexlib/weights', progress=True, file_name=None, save_dir=model_rootpath)
20
-
21
- # TODO: clean pretrained model
22
- load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
23
- # remove unnecessary 'module.'
24
- for k, v in deepcopy(load_net).items():
25
- if k.startswith('module.'):
26
- load_net[k[7:]] = v
27
- load_net.pop(k)
28
- model.load_state_dict(load_net, strict=True)
29
- model.eval()
30
- model = model.to(device)
31
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/facexlib/detection/align_trans.py DELETED
@@ -1,219 +0,0 @@
1
- import cv2
2
- import numpy as np
3
-
4
- from .matlab_cp2tform import get_similarity_transform_for_cv2
5
-
6
- # reference facial points, a list of coordinates (x,y)
7
- REFERENCE_FACIAL_POINTS = [[30.29459953, 51.69630051], [65.53179932, 51.50139999], [48.02519989, 71.73660278],
8
- [33.54930115, 92.3655014], [62.72990036, 92.20410156]]
9
-
10
- DEFAULT_CROP_SIZE = (96, 112)
11
-
12
-
13
- class FaceWarpException(Exception):
14
-
15
- def __str__(self):
16
- return 'In File {}:{}'.format(__file__, super.__str__(self))
17
-
18
-
19
- def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, outer_padding=(0, 0), default_square=False):
20
- """
21
- Function:
22
- ----------
23
- get reference 5 key points according to crop settings:
24
- 0. Set default crop_size:
25
- if default_square:
26
- crop_size = (112, 112)
27
- else:
28
- crop_size = (96, 112)
29
- 1. Pad the crop_size by inner_padding_factor in each side;
30
- 2. Resize crop_size into (output_size - outer_padding*2),
31
- pad into output_size with outer_padding;
32
- 3. Output reference_5point;
33
- Parameters:
34
- ----------
35
- @output_size: (w, h) or None
36
- size of aligned face image
37
- @inner_padding_factor: (w_factor, h_factor)
38
- padding factor for inner (w, h)
39
- @outer_padding: (w_pad, h_pad)
40
- each row is a pair of coordinates (x, y)
41
- @default_square: True or False
42
- if True:
43
- default crop_size = (112, 112)
44
- else:
45
- default crop_size = (96, 112);
46
- !!! make sure, if output_size is not None:
47
- (output_size - outer_padding)
48
- = some_scale * (default crop_size * (1.0 +
49
- inner_padding_factor))
50
- Returns:
51
- ----------
52
- @reference_5point: 5x2 np.array
53
- each row is a pair of transformed coordinates (x, y)
54
- """
55
-
56
- tmp_5pts = np.array(REFERENCE_FACIAL_POINTS)
57
- tmp_crop_size = np.array(DEFAULT_CROP_SIZE)
58
-
59
- # 0) make the inner region a square
60
- if default_square:
61
- size_diff = max(tmp_crop_size) - tmp_crop_size
62
- tmp_5pts += size_diff / 2
63
- tmp_crop_size += size_diff
64
-
65
- if (output_size and output_size[0] == tmp_crop_size[0] and output_size[1] == tmp_crop_size[1]):
66
-
67
- return tmp_5pts
68
-
69
- if (inner_padding_factor == 0 and outer_padding == (0, 0)):
70
- if output_size is None:
71
- return tmp_5pts
72
- else:
73
- raise FaceWarpException('No paddings to do, output_size must be None or {}'.format(tmp_crop_size))
74
-
75
- # check output size
76
- if not (0 <= inner_padding_factor <= 1.0):
77
- raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)')
78
-
79
- if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0) and output_size is None):
80
- output_size = tmp_crop_size * \
81
- (1 + inner_padding_factor * 2).astype(np.int32)
82
- output_size += np.array(outer_padding)
83
- if not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1]):
84
- raise FaceWarpException('Not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1])')
85
-
86
- # 1) pad the inner region according inner_padding_factor
87
- if inner_padding_factor > 0:
88
- size_diff = tmp_crop_size * inner_padding_factor * 2
89
- tmp_5pts += size_diff / 2
90
- tmp_crop_size += np.round(size_diff).astype(np.int32)
91
-
92
- # 2) resize the padded inner region
93
- size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2
94
-
95
- if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]:
96
- raise FaceWarpException('Must have (output_size - outer_padding)'
97
- '= some_scale * (crop_size * (1.0 + inner_padding_factor)')
98
-
99
- scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0]
100
- tmp_5pts = tmp_5pts * scale_factor
101
- # size_diff = tmp_crop_size * (scale_factor - min(scale_factor))
102
- # tmp_5pts = tmp_5pts + size_diff / 2
103
- tmp_crop_size = size_bf_outer_pad
104
-
105
- # 3) add outer_padding to make output_size
106
- reference_5point = tmp_5pts + np.array(outer_padding)
107
- tmp_crop_size = output_size
108
-
109
- return reference_5point
110
-
111
-
112
- def get_affine_transform_matrix(src_pts, dst_pts):
113
- """
114
- Function:
115
- ----------
116
- get affine transform matrix 'tfm' from src_pts to dst_pts
117
- Parameters:
118
- ----------
119
- @src_pts: Kx2 np.array
120
- source points matrix, each row is a pair of coordinates (x, y)
121
- @dst_pts: Kx2 np.array
122
- destination points matrix, each row is a pair of coordinates (x, y)
123
- Returns:
124
- ----------
125
- @tfm: 2x3 np.array
126
- transform matrix from src_pts to dst_pts
127
- """
128
-
129
- tfm = np.float32([[1, 0, 0], [0, 1, 0]])
130
- n_pts = src_pts.shape[0]
131
- ones = np.ones((n_pts, 1), src_pts.dtype)
132
- src_pts_ = np.hstack([src_pts, ones])
133
- dst_pts_ = np.hstack([dst_pts, ones])
134
-
135
- A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_)
136
-
137
- if rank == 3:
138
- tfm = np.float32([[A[0, 0], A[1, 0], A[2, 0]], [A[0, 1], A[1, 1], A[2, 1]]])
139
- elif rank == 2:
140
- tfm = np.float32([[A[0, 0], A[1, 0], 0], [A[0, 1], A[1, 1], 0]])
141
-
142
- return tfm
143
-
144
-
145
- def warp_and_crop_face(src_img, facial_pts, reference_pts=None, crop_size=(96, 112), align_type='smilarity'):
146
- """
147
- Function:
148
- ----------
149
- apply affine transform 'trans' to uv
150
- Parameters:
151
- ----------
152
- @src_img: 3x3 np.array
153
- input image
154
- @facial_pts: could be
155
- 1)a list of K coordinates (x,y)
156
- or
157
- 2) Kx2 or 2xK np.array
158
- each row or col is a pair of coordinates (x, y)
159
- @reference_pts: could be
160
- 1) a list of K coordinates (x,y)
161
- or
162
- 2) Kx2 or 2xK np.array
163
- each row or col is a pair of coordinates (x, y)
164
- or
165
- 3) None
166
- if None, use default reference facial points
167
- @crop_size: (w, h)
168
- output face image size
169
- @align_type: transform type, could be one of
170
- 1) 'similarity': use similarity transform
171
- 2) 'cv2_affine': use the first 3 points to do affine transform,
172
- by calling cv2.getAffineTransform()
173
- 3) 'affine': use all points to do affine transform
174
- Returns:
175
- ----------
176
- @face_img: output face image with size (w, h) = @crop_size
177
- """
178
-
179
- if reference_pts is None:
180
- if crop_size[0] == 96 and crop_size[1] == 112:
181
- reference_pts = REFERENCE_FACIAL_POINTS
182
- else:
183
- default_square = False
184
- inner_padding_factor = 0
185
- outer_padding = (0, 0)
186
- output_size = crop_size
187
-
188
- reference_pts = get_reference_facial_points(output_size, inner_padding_factor, outer_padding,
189
- default_square)
190
-
191
- ref_pts = np.float32(reference_pts)
192
- ref_pts_shp = ref_pts.shape
193
- if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2:
194
- raise FaceWarpException('reference_pts.shape must be (K,2) or (2,K) and K>2')
195
-
196
- if ref_pts_shp[0] == 2:
197
- ref_pts = ref_pts.T
198
-
199
- src_pts = np.float32(facial_pts)
200
- src_pts_shp = src_pts.shape
201
- if max(src_pts_shp) < 3 or min(src_pts_shp) != 2:
202
- raise FaceWarpException('facial_pts.shape must be (K,2) or (2,K) and K>2')
203
-
204
- if src_pts_shp[0] == 2:
205
- src_pts = src_pts.T
206
-
207
- if src_pts.shape != ref_pts.shape:
208
- raise FaceWarpException('facial_pts and reference_pts must have the same shape')
209
-
210
- if align_type == 'cv2_affine':
211
- tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3])
212
- elif align_type == 'affine':
213
- tfm = get_affine_transform_matrix(src_pts, ref_pts)
214
- else:
215
- tfm = get_similarity_transform_for_cv2(src_pts, ref_pts)
216
-
217
- face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1]))
218
-
219
- return face_img
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/facexlib/detection/matlab_cp2tform.py DELETED
@@ -1,317 +0,0 @@
1
- import numpy as np
2
- from numpy.linalg import inv, lstsq
3
- from numpy.linalg import matrix_rank as rank
4
- from numpy.linalg import norm
5
-
6
-
7
- class MatlabCp2tormException(Exception):
8
-
9
- def __str__(self):
10
- return 'In File {}:{}'.format(__file__, super.__str__(self))
11
-
12
-
13
- def tformfwd(trans, uv):
14
- """
15
- Function:
16
- ----------
17
- apply affine transform 'trans' to uv
18
-
19
- Parameters:
20
- ----------
21
- @trans: 3x3 np.array
22
- transform matrix
23
- @uv: Kx2 np.array
24
- each row is a pair of coordinates (x, y)
25
-
26
- Returns:
27
- ----------
28
- @xy: Kx2 np.array
29
- each row is a pair of transformed coordinates (x, y)
30
- """
31
- uv = np.hstack((uv, np.ones((uv.shape[0], 1))))
32
- xy = np.dot(uv, trans)
33
- xy = xy[:, 0:-1]
34
- return xy
35
-
36
-
37
- def tforminv(trans, uv):
38
- """
39
- Function:
40
- ----------
41
- apply the inverse of affine transform 'trans' to uv
42
-
43
- Parameters:
44
- ----------
45
- @trans: 3x3 np.array
46
- transform matrix
47
- @uv: Kx2 np.array
48
- each row is a pair of coordinates (x, y)
49
-
50
- Returns:
51
- ----------
52
- @xy: Kx2 np.array
53
- each row is a pair of inverse-transformed coordinates (x, y)
54
- """
55
- Tinv = inv(trans)
56
- xy = tformfwd(Tinv, uv)
57
- return xy
58
-
59
-
60
- def findNonreflectiveSimilarity(uv, xy, options=None):
61
- options = {'K': 2}
62
-
63
- K = options['K']
64
- M = xy.shape[0]
65
- x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
66
- y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
67
-
68
- tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
69
- tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
70
- X = np.vstack((tmp1, tmp2))
71
-
72
- u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
73
- v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
74
- U = np.vstack((u, v))
75
-
76
- # We know that X * r = U
77
- if rank(X) >= 2 * K:
78
- r, _, _, _ = lstsq(X, U, rcond=-1)
79
- r = np.squeeze(r)
80
- else:
81
- raise Exception('cp2tform:twoUniquePointsReq')
82
- sc = r[0]
83
- ss = r[1]
84
- tx = r[2]
85
- ty = r[3]
86
-
87
- Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]])
88
- T = inv(Tinv)
89
- T[:, 2] = np.array([0, 0, 1])
90
-
91
- return T, Tinv
92
-
93
-
94
- def findSimilarity(uv, xy, options=None):
95
- options = {'K': 2}
96
-
97
- # uv = np.array(uv)
98
- # xy = np.array(xy)
99
-
100
- # Solve for trans1
101
- trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)
102
-
103
- # Solve for trans2
104
-
105
- # manually reflect the xy data across the Y-axis
106
- xyR = xy
107
- xyR[:, 0] = -1 * xyR[:, 0]
108
-
109
- trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options)
110
-
111
- # manually reflect the tform to undo the reflection done on xyR
112
- TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]])
113
-
114
- trans2 = np.dot(trans2r, TreflectY)
115
-
116
- # Figure out if trans1 or trans2 is better
117
- xy1 = tformfwd(trans1, uv)
118
- norm1 = norm(xy1 - xy)
119
-
120
- xy2 = tformfwd(trans2, uv)
121
- norm2 = norm(xy2 - xy)
122
-
123
- if norm1 <= norm2:
124
- return trans1, trans1_inv
125
- else:
126
- trans2_inv = inv(trans2)
127
- return trans2, trans2_inv
128
-
129
-
130
- def get_similarity_transform(src_pts, dst_pts, reflective=True):
131
- """
132
- Function:
133
- ----------
134
- Find Similarity Transform Matrix 'trans':
135
- u = src_pts[:, 0]
136
- v = src_pts[:, 1]
137
- x = dst_pts[:, 0]
138
- y = dst_pts[:, 1]
139
- [x, y, 1] = [u, v, 1] * trans
140
-
141
- Parameters:
142
- ----------
143
- @src_pts: Kx2 np.array
144
- source points, each row is a pair of coordinates (x, y)
145
- @dst_pts: Kx2 np.array
146
- destination points, each row is a pair of transformed
147
- coordinates (x, y)
148
- @reflective: True or False
149
- if True:
150
- use reflective similarity transform
151
- else:
152
- use non-reflective similarity transform
153
-
154
- Returns:
155
- ----------
156
- @trans: 3x3 np.array
157
- transform matrix from uv to xy
158
- trans_inv: 3x3 np.array
159
- inverse of trans, transform matrix from xy to uv
160
- """
161
-
162
- if reflective:
163
- trans, trans_inv = findSimilarity(src_pts, dst_pts)
164
- else:
165
- trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts)
166
-
167
- return trans, trans_inv
168
-
169
-
170
- def cvt_tform_mat_for_cv2(trans):
171
- """
172
- Function:
173
- ----------
174
- Convert Transform Matrix 'trans' into 'cv2_trans' which could be
175
- directly used by cv2.warpAffine():
176
- u = src_pts[:, 0]
177
- v = src_pts[:, 1]
178
- x = dst_pts[:, 0]
179
- y = dst_pts[:, 1]
180
- [x, y].T = cv_trans * [u, v, 1].T
181
-
182
- Parameters:
183
- ----------
184
- @trans: 3x3 np.array
185
- transform matrix from uv to xy
186
-
187
- Returns:
188
- ----------
189
- @cv2_trans: 2x3 np.array
190
- transform matrix from src_pts to dst_pts, could be directly used
191
- for cv2.warpAffine()
192
- """
193
- cv2_trans = trans[:, 0:2].T
194
-
195
- return cv2_trans
196
-
197
-
198
- def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True):
199
- """
200
- Function:
201
- ----------
202
- Find Similarity Transform Matrix 'cv2_trans' which could be
203
- directly used by cv2.warpAffine():
204
- u = src_pts[:, 0]
205
- v = src_pts[:, 1]
206
- x = dst_pts[:, 0]
207
- y = dst_pts[:, 1]
208
- [x, y].T = cv_trans * [u, v, 1].T
209
-
210
- Parameters:
211
- ----------
212
- @src_pts: Kx2 np.array
213
- source points, each row is a pair of coordinates (x, y)
214
- @dst_pts: Kx2 np.array
215
- destination points, each row is a pair of transformed
216
- coordinates (x, y)
217
- reflective: True or False
218
- if True:
219
- use reflective similarity transform
220
- else:
221
- use non-reflective similarity transform
222
-
223
- Returns:
224
- ----------
225
- @cv2_trans: 2x3 np.array
226
- transform matrix from src_pts to dst_pts, could be directly used
227
- for cv2.warpAffine()
228
- """
229
- trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective)
230
- cv2_trans = cvt_tform_mat_for_cv2(trans)
231
-
232
- return cv2_trans
233
-
234
-
235
- if __name__ == '__main__':
236
- """
237
- u = [0, 6, -2]
238
- v = [0, 3, 5]
239
- x = [-1, 0, 4]
240
- y = [-1, -10, 4]
241
-
242
- # In Matlab, run:
243
- #
244
- # uv = [u'; v'];
245
- # xy = [x'; y'];
246
- # tform_sim=cp2tform(uv,xy,'similarity');
247
- #
248
- # trans = tform_sim.tdata.T
249
- # ans =
250
- # -0.0764 -1.6190 0
251
- # 1.6190 -0.0764 0
252
- # -3.2156 0.0290 1.0000
253
- # trans_inv = tform_sim.tdata.Tinv
254
- # ans =
255
- #
256
- # -0.0291 0.6163 0
257
- # -0.6163 -0.0291 0
258
- # -0.0756 1.9826 1.0000
259
- # xy_m=tformfwd(tform_sim, u,v)
260
- #
261
- # xy_m =
262
- #
263
- # -3.2156 0.0290
264
- # 1.1833 -9.9143
265
- # 5.0323 2.8853
266
- # uv_m=tforminv(tform_sim, x,y)
267
- #
268
- # uv_m =
269
- #
270
- # 0.5698 1.3953
271
- # 6.0872 2.2733
272
- # -2.6570 4.3314
273
- """
274
- u = [0, 6, -2]
275
- v = [0, 3, 5]
276
- x = [-1, 0, 4]
277
- y = [-1, -10, 4]
278
-
279
- uv = np.array((u, v)).T
280
- xy = np.array((x, y)).T
281
-
282
- print('\n--->uv:')
283
- print(uv)
284
- print('\n--->xy:')
285
- print(xy)
286
-
287
- trans, trans_inv = get_similarity_transform(uv, xy)
288
-
289
- print('\n--->trans matrix:')
290
- print(trans)
291
-
292
- print('\n--->trans_inv matrix:')
293
- print(trans_inv)
294
-
295
- print('\n---> apply transform to uv')
296
- print('\nxy_m = uv_augmented * trans')
297
- uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1))))
298
- xy_m = np.dot(uv_aug, trans)
299
- print(xy_m)
300
-
301
- print('\nxy_m = tformfwd(trans, uv)')
302
- xy_m = tformfwd(trans, uv)
303
- print(xy_m)
304
-
305
- print('\n---> apply inverse transform to xy')
306
- print('\nuv_m = xy_augmented * trans_inv')
307
- xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1))))
308
- uv_m = np.dot(xy_aug, trans_inv)
309
- print(uv_m)
310
-
311
- print('\nuv_m = tformfwd(trans_inv, xy)')
312
- uv_m = tformfwd(trans_inv, xy)
313
- print(uv_m)
314
-
315
- uv_m = tforminv(trans, xy)
316
- print('\nuv_m = tforminv(trans, xy)')
317
- print(uv_m)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/facexlib/detection/retinaface.py DELETED
@@ -1,366 +0,0 @@
1
- import cv2
2
- import numpy as np
3
- import torch
4
- import torch.nn as nn
5
- import torch.nn.functional as F
6
- from PIL import Image
7
- from torchvision.models._utils import IntermediateLayerGetter as IntermediateLayerGetter
8
-
9
- from extras.facexlib.detection.align_trans import get_reference_facial_points, warp_and_crop_face
10
- from extras.facexlib.detection.retinaface_net import FPN, SSH, MobileNetV1, make_bbox_head, make_class_head, make_landmark_head
11
- from extras.facexlib.detection.retinaface_utils import (PriorBox, batched_decode, batched_decode_landm, decode, decode_landm,
12
- py_cpu_nms)
13
-
14
-
15
- def generate_config(network_name):
16
-
17
- cfg_mnet = {
18
- 'name': 'mobilenet0.25',
19
- 'min_sizes': [[16, 32], [64, 128], [256, 512]],
20
- 'steps': [8, 16, 32],
21
- 'variance': [0.1, 0.2],
22
- 'clip': False,
23
- 'loc_weight': 2.0,
24
- 'gpu_train': True,
25
- 'batch_size': 32,
26
- 'ngpu': 1,
27
- 'epoch': 250,
28
- 'decay1': 190,
29
- 'decay2': 220,
30
- 'image_size': 640,
31
- 'return_layers': {
32
- 'stage1': 1,
33
- 'stage2': 2,
34
- 'stage3': 3
35
- },
36
- 'in_channel': 32,
37
- 'out_channel': 64
38
- }
39
-
40
- cfg_re50 = {
41
- 'name': 'Resnet50',
42
- 'min_sizes': [[16, 32], [64, 128], [256, 512]],
43
- 'steps': [8, 16, 32],
44
- 'variance': [0.1, 0.2],
45
- 'clip': False,
46
- 'loc_weight': 2.0,
47
- 'gpu_train': True,
48
- 'batch_size': 24,
49
- 'ngpu': 4,
50
- 'epoch': 100,
51
- 'decay1': 70,
52
- 'decay2': 90,
53
- 'image_size': 840,
54
- 'return_layers': {
55
- 'layer2': 1,
56
- 'layer3': 2,
57
- 'layer4': 3
58
- },
59
- 'in_channel': 256,
60
- 'out_channel': 256
61
- }
62
-
63
- if network_name == 'mobile0.25':
64
- return cfg_mnet
65
- elif network_name == 'resnet50':
66
- return cfg_re50
67
- else:
68
- raise NotImplementedError(f'network_name={network_name}')
69
-
70
-
71
- class RetinaFace(nn.Module):
72
-
73
- def __init__(self, network_name='resnet50', half=False, phase='test', device=None):
74
- self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
75
-
76
- super(RetinaFace, self).__init__()
77
- self.half_inference = half
78
- cfg = generate_config(network_name)
79
- self.backbone = cfg['name']
80
-
81
- self.model_name = f'retinaface_{network_name}'
82
- self.cfg = cfg
83
- self.phase = phase
84
- self.target_size, self.max_size = 1600, 2150
85
- self.resize, self.scale, self.scale1 = 1., None, None
86
- self.mean_tensor = torch.tensor([[[[104.]], [[117.]], [[123.]]]], device=self.device)
87
- self.reference = get_reference_facial_points(default_square=True)
88
- # Build network.
89
- backbone = None
90
- if cfg['name'] == 'mobilenet0.25':
91
- backbone = MobileNetV1()
92
- self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
93
- elif cfg['name'] == 'Resnet50':
94
- import torchvision.models as models
95
- backbone = models.resnet50(weights=None)
96
- self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
97
-
98
- in_channels_stage2 = cfg['in_channel']
99
- in_channels_list = [
100
- in_channels_stage2 * 2,
101
- in_channels_stage2 * 4,
102
- in_channels_stage2 * 8,
103
- ]
104
-
105
- out_channels = cfg['out_channel']
106
- self.fpn = FPN(in_channels_list, out_channels)
107
- self.ssh1 = SSH(out_channels, out_channels)
108
- self.ssh2 = SSH(out_channels, out_channels)
109
- self.ssh3 = SSH(out_channels, out_channels)
110
-
111
- self.ClassHead = make_class_head(fpn_num=3, inchannels=cfg['out_channel'])
112
- self.BboxHead = make_bbox_head(fpn_num=3, inchannels=cfg['out_channel'])
113
- self.LandmarkHead = make_landmark_head(fpn_num=3, inchannels=cfg['out_channel'])
114
-
115
- self.to(self.device)
116
- self.eval()
117
- if self.half_inference:
118
- self.half()
119
-
120
- def forward(self, inputs):
121
- out = self.body(inputs)
122
-
123
- if self.backbone == 'mobilenet0.25' or self.backbone == 'Resnet50':
124
- out = list(out.values())
125
- # FPN
126
- fpn = self.fpn(out)
127
-
128
- # SSH
129
- feature1 = self.ssh1(fpn[0])
130
- feature2 = self.ssh2(fpn[1])
131
- feature3 = self.ssh3(fpn[2])
132
- features = [feature1, feature2, feature3]
133
-
134
- bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1)
135
- classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)], dim=1)
136
- tmp = [self.LandmarkHead[i](feature) for i, feature in enumerate(features)]
137
- ldm_regressions = (torch.cat(tmp, dim=1))
138
-
139
- if self.phase == 'train':
140
- output = (bbox_regressions, classifications, ldm_regressions)
141
- else:
142
- output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions)
143
- return output
144
-
145
- def __detect_faces(self, inputs):
146
- # get scale
147
- height, width = inputs.shape[2:]
148
- self.scale = torch.tensor([width, height, width, height], dtype=torch.float32, device=self.device)
149
- tmp = [width, height, width, height, width, height, width, height, width, height]
150
- self.scale1 = torch.tensor(tmp, dtype=torch.float32, device=self.device)
151
-
152
- # forawrd
153
- inputs = inputs.to(self.device)
154
- if self.half_inference:
155
- inputs = inputs.half()
156
- loc, conf, landmarks = self(inputs)
157
-
158
- # get priorbox
159
- priorbox = PriorBox(self.cfg, image_size=inputs.shape[2:])
160
- priors = priorbox.forward().to(self.device)
161
-
162
- return loc, conf, landmarks, priors
163
-
164
- # single image detection
165
- def transform(self, image, use_origin_size):
166
- # convert to opencv format
167
- if isinstance(image, Image.Image):
168
- image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
169
- image = image.astype(np.float32)
170
-
171
- # testing scale
172
- im_size_min = np.min(image.shape[0:2])
173
- im_size_max = np.max(image.shape[0:2])
174
- resize = float(self.target_size) / float(im_size_min)
175
-
176
- # prevent bigger axis from being more than max_size
177
- if np.round(resize * im_size_max) > self.max_size:
178
- resize = float(self.max_size) / float(im_size_max)
179
- resize = 1 if use_origin_size else resize
180
-
181
- # resize
182
- if resize != 1:
183
- image = cv2.resize(image, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
184
-
185
- # convert to torch.tensor format
186
- # image -= (104, 117, 123)
187
- image = image.transpose(2, 0, 1)
188
- image = torch.from_numpy(image).unsqueeze(0)
189
-
190
- return image, resize
191
-
192
- def detect_faces(
193
- self,
194
- image,
195
- conf_threshold=0.8,
196
- nms_threshold=0.4,
197
- use_origin_size=True,
198
- ):
199
- image, self.resize = self.transform(image, use_origin_size)
200
- image = image.to(self.device)
201
- if self.half_inference:
202
- image = image.half()
203
- image = image - self.mean_tensor
204
-
205
- loc, conf, landmarks, priors = self.__detect_faces(image)
206
-
207
- boxes = decode(loc.data.squeeze(0), priors.data, self.cfg['variance'])
208
- boxes = boxes * self.scale / self.resize
209
- boxes = boxes.cpu().numpy()
210
-
211
- scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
212
-
213
- landmarks = decode_landm(landmarks.squeeze(0), priors, self.cfg['variance'])
214
- landmarks = landmarks * self.scale1 / self.resize
215
- landmarks = landmarks.cpu().numpy()
216
-
217
- # ignore low scores
218
- inds = np.where(scores > conf_threshold)[0]
219
- boxes, landmarks, scores = boxes[inds], landmarks[inds], scores[inds]
220
-
221
- # sort
222
- order = scores.argsort()[::-1]
223
- boxes, landmarks, scores = boxes[order], landmarks[order], scores[order]
224
-
225
- # do NMS
226
- bounding_boxes = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
227
- keep = py_cpu_nms(bounding_boxes, nms_threshold)
228
- bounding_boxes, landmarks = bounding_boxes[keep, :], landmarks[keep]
229
- # self.t['forward_pass'].toc()
230
- # print(self.t['forward_pass'].average_time)
231
- # import sys
232
- # sys.stdout.flush()
233
- return np.concatenate((bounding_boxes, landmarks), axis=1)
234
-
235
- def __align_multi(self, image, boxes, landmarks, limit=None):
236
-
237
- if len(boxes) < 1:
238
- return [], []
239
-
240
- if limit:
241
- boxes = boxes[:limit]
242
- landmarks = landmarks[:limit]
243
-
244
- faces = []
245
- for landmark in landmarks:
246
- facial5points = [[landmark[2 * j], landmark[2 * j + 1]] for j in range(5)]
247
-
248
- warped_face = warp_and_crop_face(np.array(image), facial5points, self.reference, crop_size=(112, 112))
249
- faces.append(warped_face)
250
-
251
- return np.concatenate((boxes, landmarks), axis=1), faces
252
-
253
- def align_multi(self, img, conf_threshold=0.8, limit=None):
254
-
255
- rlt = self.detect_faces(img, conf_threshold=conf_threshold)
256
- boxes, landmarks = rlt[:, 0:5], rlt[:, 5:]
257
-
258
- return self.__align_multi(img, boxes, landmarks, limit)
259
-
260
- # batched detection
261
- def batched_transform(self, frames, use_origin_size):
262
- """
263
- Arguments:
264
- frames: a list of PIL.Image, or torch.Tensor(shape=[n, h, w, c],
265
- type=np.float32, BGR format).
266
- use_origin_size: whether to use origin size.
267
- """
268
- from_PIL = True if isinstance(frames[0], Image.Image) else False
269
-
270
- # convert to opencv format
271
- if from_PIL:
272
- frames = [cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR) for frame in frames]
273
- frames = np.asarray(frames, dtype=np.float32)
274
-
275
- # testing scale
276
- im_size_min = np.min(frames[0].shape[0:2])
277
- im_size_max = np.max(frames[0].shape[0:2])
278
- resize = float(self.target_size) / float(im_size_min)
279
-
280
- # prevent bigger axis from being more than max_size
281
- if np.round(resize * im_size_max) > self.max_size:
282
- resize = float(self.max_size) / float(im_size_max)
283
- resize = 1 if use_origin_size else resize
284
-
285
- # resize
286
- if resize != 1:
287
- if not from_PIL:
288
- frames = F.interpolate(frames, scale_factor=resize)
289
- else:
290
- frames = [
291
- cv2.resize(frame, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
292
- for frame in frames
293
- ]
294
-
295
- # convert to torch.tensor format
296
- if not from_PIL:
297
- frames = frames.transpose(1, 2).transpose(1, 3).contiguous()
298
- else:
299
- frames = frames.transpose((0, 3, 1, 2))
300
- frames = torch.from_numpy(frames)
301
-
302
- return frames, resize
303
-
304
- def batched_detect_faces(self, frames, conf_threshold=0.8, nms_threshold=0.4, use_origin_size=True):
305
- """
306
- Arguments:
307
- frames: a list of PIL.Image, or np.array(shape=[n, h, w, c],
308
- type=np.uint8, BGR format).
309
- conf_threshold: confidence threshold.
310
- nms_threshold: nms threshold.
311
- use_origin_size: whether to use origin size.
312
- Returns:
313
- final_bounding_boxes: list of np.array ([n_boxes, 5],
314
- type=np.float32).
315
- final_landmarks: list of np.array ([n_boxes, 10], type=np.float32).
316
- """
317
- # self.t['forward_pass'].tic()
318
- frames, self.resize = self.batched_transform(frames, use_origin_size)
319
- frames = frames.to(self.device)
320
- frames = frames - self.mean_tensor
321
-
322
- b_loc, b_conf, b_landmarks, priors = self.__detect_faces(frames)
323
-
324
- final_bounding_boxes, final_landmarks = [], []
325
-
326
- # decode
327
- priors = priors.unsqueeze(0)
328
- b_loc = batched_decode(b_loc, priors, self.cfg['variance']) * self.scale / self.resize
329
- b_landmarks = batched_decode_landm(b_landmarks, priors, self.cfg['variance']) * self.scale1 / self.resize
330
- b_conf = b_conf[:, :, 1]
331
-
332
- # index for selection
333
- b_indice = b_conf > conf_threshold
334
-
335
- # concat
336
- b_loc_and_conf = torch.cat((b_loc, b_conf.unsqueeze(-1)), dim=2).float()
337
-
338
- for pred, landm, inds in zip(b_loc_and_conf, b_landmarks, b_indice):
339
-
340
- # ignore low scores
341
- pred, landm = pred[inds, :], landm[inds, :]
342
- if pred.shape[0] == 0:
343
- final_bounding_boxes.append(np.array([], dtype=np.float32))
344
- final_landmarks.append(np.array([], dtype=np.float32))
345
- continue
346
-
347
- # sort
348
- # order = score.argsort(descending=True)
349
- # box, landm, score = box[order], landm[order], score[order]
350
-
351
- # to CPU
352
- bounding_boxes, landm = pred.cpu().numpy(), landm.cpu().numpy()
353
-
354
- # NMS
355
- keep = py_cpu_nms(bounding_boxes, nms_threshold)
356
- bounding_boxes, landmarks = bounding_boxes[keep, :], landm[keep]
357
-
358
- # append
359
- final_bounding_boxes.append(bounding_boxes)
360
- final_landmarks.append(landmarks)
361
- # self.t['forward_pass'].toc(average=True)
362
- # self.batch_time += self.t['forward_pass'].diff
363
- # self.total_frame += len(frames)
364
- # print(self.batch_time / self.total_frame)
365
-
366
- return final_bounding_boxes, final_landmarks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/facexlib/detection/retinaface_net.py DELETED
@@ -1,196 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
-
5
-
6
- def conv_bn(inp, oup, stride=1, leaky=0):
7
- return nn.Sequential(
8
- nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup),
9
- nn.LeakyReLU(negative_slope=leaky, inplace=True))
10
-
11
-
12
- def conv_bn_no_relu(inp, oup, stride):
13
- return nn.Sequential(
14
- nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
15
- nn.BatchNorm2d(oup),
16
- )
17
-
18
-
19
- def conv_bn1X1(inp, oup, stride, leaky=0):
20
- return nn.Sequential(
21
- nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False), nn.BatchNorm2d(oup),
22
- nn.LeakyReLU(negative_slope=leaky, inplace=True))
23
-
24
-
25
- def conv_dw(inp, oup, stride, leaky=0.1):
26
- return nn.Sequential(
27
- nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
28
- nn.BatchNorm2d(inp),
29
- nn.LeakyReLU(negative_slope=leaky, inplace=True),
30
- nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
31
- nn.BatchNorm2d(oup),
32
- nn.LeakyReLU(negative_slope=leaky, inplace=True),
33
- )
34
-
35
-
36
- class SSH(nn.Module):
37
-
38
- def __init__(self, in_channel, out_channel):
39
- super(SSH, self).__init__()
40
- assert out_channel % 4 == 0
41
- leaky = 0
42
- if (out_channel <= 64):
43
- leaky = 0.1
44
- self.conv3X3 = conv_bn_no_relu(in_channel, out_channel // 2, stride=1)
45
-
46
- self.conv5X5_1 = conv_bn(in_channel, out_channel // 4, stride=1, leaky=leaky)
47
- self.conv5X5_2 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
48
-
49
- self.conv7X7_2 = conv_bn(out_channel // 4, out_channel // 4, stride=1, leaky=leaky)
50
- self.conv7x7_3 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
51
-
52
- def forward(self, input):
53
- conv3X3 = self.conv3X3(input)
54
-
55
- conv5X5_1 = self.conv5X5_1(input)
56
- conv5X5 = self.conv5X5_2(conv5X5_1)
57
-
58
- conv7X7_2 = self.conv7X7_2(conv5X5_1)
59
- conv7X7 = self.conv7x7_3(conv7X7_2)
60
-
61
- out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1)
62
- out = F.relu(out)
63
- return out
64
-
65
-
66
- class FPN(nn.Module):
67
-
68
- def __init__(self, in_channels_list, out_channels):
69
- super(FPN, self).__init__()
70
- leaky = 0
71
- if (out_channels <= 64):
72
- leaky = 0.1
73
- self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride=1, leaky=leaky)
74
- self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride=1, leaky=leaky)
75
- self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride=1, leaky=leaky)
76
-
77
- self.merge1 = conv_bn(out_channels, out_channels, leaky=leaky)
78
- self.merge2 = conv_bn(out_channels, out_channels, leaky=leaky)
79
-
80
- def forward(self, input):
81
- # names = list(input.keys())
82
- # input = list(input.values())
83
-
84
- output1 = self.output1(input[0])
85
- output2 = self.output2(input[1])
86
- output3 = self.output3(input[2])
87
-
88
- up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode='nearest')
89
- output2 = output2 + up3
90
- output2 = self.merge2(output2)
91
-
92
- up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode='nearest')
93
- output1 = output1 + up2
94
- output1 = self.merge1(output1)
95
-
96
- out = [output1, output2, output3]
97
- return out
98
-
99
-
100
- class MobileNetV1(nn.Module):
101
-
102
- def __init__(self):
103
- super(MobileNetV1, self).__init__()
104
- self.stage1 = nn.Sequential(
105
- conv_bn(3, 8, 2, leaky=0.1), # 3
106
- conv_dw(8, 16, 1), # 7
107
- conv_dw(16, 32, 2), # 11
108
- conv_dw(32, 32, 1), # 19
109
- conv_dw(32, 64, 2), # 27
110
- conv_dw(64, 64, 1), # 43
111
- )
112
- self.stage2 = nn.Sequential(
113
- conv_dw(64, 128, 2), # 43 + 16 = 59
114
- conv_dw(128, 128, 1), # 59 + 32 = 91
115
- conv_dw(128, 128, 1), # 91 + 32 = 123
116
- conv_dw(128, 128, 1), # 123 + 32 = 155
117
- conv_dw(128, 128, 1), # 155 + 32 = 187
118
- conv_dw(128, 128, 1), # 187 + 32 = 219
119
- )
120
- self.stage3 = nn.Sequential(
121
- conv_dw(128, 256, 2), # 219 +3 2 = 241
122
- conv_dw(256, 256, 1), # 241 + 64 = 301
123
- )
124
- self.avg = nn.AdaptiveAvgPool2d((1, 1))
125
- self.fc = nn.Linear(256, 1000)
126
-
127
- def forward(self, x):
128
- x = self.stage1(x)
129
- x = self.stage2(x)
130
- x = self.stage3(x)
131
- x = self.avg(x)
132
- # x = self.model(x)
133
- x = x.view(-1, 256)
134
- x = self.fc(x)
135
- return x
136
-
137
-
138
- class ClassHead(nn.Module):
139
-
140
- def __init__(self, inchannels=512, num_anchors=3):
141
- super(ClassHead, self).__init__()
142
- self.num_anchors = num_anchors
143
- self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0)
144
-
145
- def forward(self, x):
146
- out = self.conv1x1(x)
147
- out = out.permute(0, 2, 3, 1).contiguous()
148
-
149
- return out.view(out.shape[0], -1, 2)
150
-
151
-
152
- class BboxHead(nn.Module):
153
-
154
- def __init__(self, inchannels=512, num_anchors=3):
155
- super(BboxHead, self).__init__()
156
- self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(1, 1), stride=1, padding=0)
157
-
158
- def forward(self, x):
159
- out = self.conv1x1(x)
160
- out = out.permute(0, 2, 3, 1).contiguous()
161
-
162
- return out.view(out.shape[0], -1, 4)
163
-
164
-
165
- class LandmarkHead(nn.Module):
166
-
167
- def __init__(self, inchannels=512, num_anchors=3):
168
- super(LandmarkHead, self).__init__()
169
- self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=(1, 1), stride=1, padding=0)
170
-
171
- def forward(self, x):
172
- out = self.conv1x1(x)
173
- out = out.permute(0, 2, 3, 1).contiguous()
174
-
175
- return out.view(out.shape[0], -1, 10)
176
-
177
-
178
- def make_class_head(fpn_num=3, inchannels=64, anchor_num=2):
179
- classhead = nn.ModuleList()
180
- for i in range(fpn_num):
181
- classhead.append(ClassHead(inchannels, anchor_num))
182
- return classhead
183
-
184
-
185
- def make_bbox_head(fpn_num=3, inchannels=64, anchor_num=2):
186
- bboxhead = nn.ModuleList()
187
- for i in range(fpn_num):
188
- bboxhead.append(BboxHead(inchannels, anchor_num))
189
- return bboxhead
190
-
191
-
192
- def make_landmark_head(fpn_num=3, inchannels=64, anchor_num=2):
193
- landmarkhead = nn.ModuleList()
194
- for i in range(fpn_num):
195
- landmarkhead.append(LandmarkHead(inchannels, anchor_num))
196
- return landmarkhead
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/facexlib/detection/retinaface_utils.py DELETED
@@ -1,421 +0,0 @@
1
- import numpy as np
2
- import torch
3
- import torchvision
4
- from itertools import product as product
5
- from math import ceil
6
-
7
-
8
- class PriorBox(object):
9
-
10
- def __init__(self, cfg, image_size=None, phase='train'):
11
- super(PriorBox, self).__init__()
12
- self.min_sizes = cfg['min_sizes']
13
- self.steps = cfg['steps']
14
- self.clip = cfg['clip']
15
- self.image_size = image_size
16
- self.feature_maps = [[ceil(self.image_size[0] / step), ceil(self.image_size[1] / step)] for step in self.steps]
17
- self.name = 's'
18
-
19
- def forward(self):
20
- anchors = []
21
- for k, f in enumerate(self.feature_maps):
22
- min_sizes = self.min_sizes[k]
23
- for i, j in product(range(f[0]), range(f[1])):
24
- for min_size in min_sizes:
25
- s_kx = min_size / self.image_size[1]
26
- s_ky = min_size / self.image_size[0]
27
- dense_cx = [x * self.steps[k] / self.image_size[1] for x in [j + 0.5]]
28
- dense_cy = [y * self.steps[k] / self.image_size[0] for y in [i + 0.5]]
29
- for cy, cx in product(dense_cy, dense_cx):
30
- anchors += [cx, cy, s_kx, s_ky]
31
-
32
- # back to torch land
33
- output = torch.Tensor(anchors).view(-1, 4)
34
- if self.clip:
35
- output.clamp_(max=1, min=0)
36
- return output
37
-
38
-
39
- def py_cpu_nms(dets, thresh):
40
- """Pure Python NMS baseline."""
41
- keep = torchvision.ops.nms(
42
- boxes=torch.Tensor(dets[:, :4]),
43
- scores=torch.Tensor(dets[:, 4]),
44
- iou_threshold=thresh,
45
- )
46
-
47
- return list(keep)
48
-
49
-
50
- def point_form(boxes):
51
- """ Convert prior_boxes to (xmin, ymin, xmax, ymax)
52
- representation for comparison to point form ground truth data.
53
- Args:
54
- boxes: (tensor) center-size default boxes from priorbox layers.
55
- Return:
56
- boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
57
- """
58
- return torch.cat(
59
- (
60
- boxes[:, :2] - boxes[:, 2:] / 2, # xmin, ymin
61
- boxes[:, :2] + boxes[:, 2:] / 2),
62
- 1) # xmax, ymax
63
-
64
-
65
- def center_size(boxes):
66
- """ Convert prior_boxes to (cx, cy, w, h)
67
- representation for comparison to center-size form ground truth data.
68
- Args:
69
- boxes: (tensor) point_form boxes
70
- Return:
71
- boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
72
- """
73
- return torch.cat(
74
- (boxes[:, 2:] + boxes[:, :2]) / 2, # cx, cy
75
- boxes[:, 2:] - boxes[:, :2],
76
- 1) # w, h
77
-
78
-
79
- def intersect(box_a, box_b):
80
- """ We resize both tensors to [A,B,2] without new malloc:
81
- [A,2] -> [A,1,2] -> [A,B,2]
82
- [B,2] -> [1,B,2] -> [A,B,2]
83
- Then we compute the area of intersect between box_a and box_b.
84
- Args:
85
- box_a: (tensor) bounding boxes, Shape: [A,4].
86
- box_b: (tensor) bounding boxes, Shape: [B,4].
87
- Return:
88
- (tensor) intersection area, Shape: [A,B].
89
- """
90
- A = box_a.size(0)
91
- B = box_b.size(0)
92
- max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2), box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
93
- min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2), box_b[:, :2].unsqueeze(0).expand(A, B, 2))
94
- inter = torch.clamp((max_xy - min_xy), min=0)
95
- return inter[:, :, 0] * inter[:, :, 1]
96
-
97
-
98
- def jaccard(box_a, box_b):
99
- """Compute the jaccard overlap of two sets of boxes. The jaccard overlap
100
- is simply the intersection over union of two boxes. Here we operate on
101
- ground truth boxes and default boxes.
102
- E.g.:
103
- A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
104
- Args:
105
- box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
106
- box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
107
- Return:
108
- jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
109
- """
110
- inter = intersect(box_a, box_b)
111
- area_a = ((box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B]
112
- area_b = ((box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B]
113
- union = area_a + area_b - inter
114
- return inter / union # [A,B]
115
-
116
-
117
- def matrix_iou(a, b):
118
- """
119
- return iou of a and b, numpy version for data augenmentation
120
- """
121
- lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
122
- rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
123
-
124
- area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
125
- area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
126
- area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
127
- return area_i / (area_a[:, np.newaxis] + area_b - area_i)
128
-
129
-
130
- def matrix_iof(a, b):
131
- """
132
- return iof of a and b, numpy version for data augenmentation
133
- """
134
- lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
135
- rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
136
-
137
- area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
138
- area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
139
- return area_i / np.maximum(area_a[:, np.newaxis], 1)
140
-
141
-
142
- def match(threshold, truths, priors, variances, labels, landms, loc_t, conf_t, landm_t, idx):
143
- """Match each prior box with the ground truth box of the highest jaccard
144
- overlap, encode the bounding boxes, then return the matched indices
145
- corresponding to both confidence and location preds.
146
- Args:
147
- threshold: (float) The overlap threshold used when matching boxes.
148
- truths: (tensor) Ground truth boxes, Shape: [num_obj, 4].
149
- priors: (tensor) Prior boxes from priorbox layers, Shape: [n_priors,4].
150
- variances: (tensor) Variances corresponding to each prior coord,
151
- Shape: [num_priors, 4].
152
- labels: (tensor) All the class labels for the image, Shape: [num_obj].
153
- landms: (tensor) Ground truth landms, Shape [num_obj, 10].
154
- loc_t: (tensor) Tensor to be filled w/ encoded location targets.
155
- conf_t: (tensor) Tensor to be filled w/ matched indices for conf preds.
156
- landm_t: (tensor) Tensor to be filled w/ encoded landm targets.
157
- idx: (int) current batch index
158
- Return:
159
- The matched indices corresponding to 1)location 2)confidence
160
- 3)landm preds.
161
- """
162
- # jaccard index
163
- overlaps = jaccard(truths, point_form(priors))
164
- # (Bipartite Matching)
165
- # [1,num_objects] best prior for each ground truth
166
- best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True)
167
-
168
- # ignore hard gt
169
- valid_gt_idx = best_prior_overlap[:, 0] >= 0.2
170
- best_prior_idx_filter = best_prior_idx[valid_gt_idx, :]
171
- if best_prior_idx_filter.shape[0] <= 0:
172
- loc_t[idx] = 0
173
- conf_t[idx] = 0
174
- return
175
-
176
- # [1,num_priors] best ground truth for each prior
177
- best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True)
178
- best_truth_idx.squeeze_(0)
179
- best_truth_overlap.squeeze_(0)
180
- best_prior_idx.squeeze_(1)
181
- best_prior_idx_filter.squeeze_(1)
182
- best_prior_overlap.squeeze_(1)
183
- best_truth_overlap.index_fill_(0, best_prior_idx_filter, 2) # ensure best prior
184
- # TODO refactor: index best_prior_idx with long tensor
185
- # ensure every gt matches with its prior of max overlap
186
- for j in range(best_prior_idx.size(0)): # 判别此anchor是预测哪一个boxes
187
- best_truth_idx[best_prior_idx[j]] = j
188
- matches = truths[best_truth_idx] # Shape: [num_priors,4] 此处为每一个anchor对应的bbox取出来
189
- conf = labels[best_truth_idx] # Shape: [num_priors] 此处为每一个anchor对应的label取出来
190
- conf[best_truth_overlap < threshold] = 0 # label as background overlap<0.35的全部作为负样本
191
- loc = encode(matches, priors, variances)
192
-
193
- matches_landm = landms[best_truth_idx]
194
- landm = encode_landm(matches_landm, priors, variances)
195
- loc_t[idx] = loc # [num_priors,4] encoded offsets to learn
196
- conf_t[idx] = conf # [num_priors] top class label for each prior
197
- landm_t[idx] = landm
198
-
199
-
200
- def encode(matched, priors, variances):
201
- """Encode the variances from the priorbox layers into the ground truth boxes
202
- we have matched (based on jaccard overlap) with the prior boxes.
203
- Args:
204
- matched: (tensor) Coords of ground truth for each prior in point-form
205
- Shape: [num_priors, 4].
206
- priors: (tensor) Prior boxes in center-offset form
207
- Shape: [num_priors,4].
208
- variances: (list[float]) Variances of priorboxes
209
- Return:
210
- encoded boxes (tensor), Shape: [num_priors, 4]
211
- """
212
-
213
- # dist b/t match center and prior's center
214
- g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
215
- # encode variance
216
- g_cxcy /= (variances[0] * priors[:, 2:])
217
- # match wh / prior wh
218
- g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
219
- g_wh = torch.log(g_wh) / variances[1]
220
- # return target for smooth_l1_loss
221
- return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
222
-
223
-
224
- def encode_landm(matched, priors, variances):
225
- """Encode the variances from the priorbox layers into the ground truth boxes
226
- we have matched (based on jaccard overlap) with the prior boxes.
227
- Args:
228
- matched: (tensor) Coords of ground truth for each prior in point-form
229
- Shape: [num_priors, 10].
230
- priors: (tensor) Prior boxes in center-offset form
231
- Shape: [num_priors,4].
232
- variances: (list[float]) Variances of priorboxes
233
- Return:
234
- encoded landm (tensor), Shape: [num_priors, 10]
235
- """
236
-
237
- # dist b/t match center and prior's center
238
- matched = torch.reshape(matched, (matched.size(0), 5, 2))
239
- priors_cx = priors[:, 0].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
240
- priors_cy = priors[:, 1].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
241
- priors_w = priors[:, 2].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
242
- priors_h = priors[:, 3].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
243
- priors = torch.cat([priors_cx, priors_cy, priors_w, priors_h], dim=2)
244
- g_cxcy = matched[:, :, :2] - priors[:, :, :2]
245
- # encode variance
246
- g_cxcy /= (variances[0] * priors[:, :, 2:])
247
- # g_cxcy /= priors[:, :, 2:]
248
- g_cxcy = g_cxcy.reshape(g_cxcy.size(0), -1)
249
- # return target for smooth_l1_loss
250
- return g_cxcy
251
-
252
-
253
- # Adapted from https://github.com/Hakuyume/chainer-ssd
254
- def decode(loc, priors, variances):
255
- """Decode locations from predictions using priors to undo
256
- the encoding we did for offset regression at train time.
257
- Args:
258
- loc (tensor): location predictions for loc layers,
259
- Shape: [num_priors,4]
260
- priors (tensor): Prior boxes in center-offset form.
261
- Shape: [num_priors,4].
262
- variances: (list[float]) Variances of priorboxes
263
- Return:
264
- decoded bounding box predictions
265
- """
266
-
267
- boxes = torch.cat((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
268
- priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
269
- boxes[:, :2] -= boxes[:, 2:] / 2
270
- boxes[:, 2:] += boxes[:, :2]
271
- return boxes
272
-
273
-
274
- def decode_landm(pre, priors, variances):
275
- """Decode landm from predictions using priors to undo
276
- the encoding we did for offset regression at train time.
277
- Args:
278
- pre (tensor): landm predictions for loc layers,
279
- Shape: [num_priors,10]
280
- priors (tensor): Prior boxes in center-offset form.
281
- Shape: [num_priors,4].
282
- variances: (list[float]) Variances of priorboxes
283
- Return:
284
- decoded landm predictions
285
- """
286
- tmp = (
287
- priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:],
288
- priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:],
289
- priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:],
290
- priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:],
291
- priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:],
292
- )
293
- landms = torch.cat(tmp, dim=1)
294
- return landms
295
-
296
-
297
- def batched_decode(b_loc, priors, variances):
298
- """Decode locations from predictions using priors to undo
299
- the encoding we did for offset regression at train time.
300
- Args:
301
- b_loc (tensor): location predictions for loc layers,
302
- Shape: [num_batches,num_priors,4]
303
- priors (tensor): Prior boxes in center-offset form.
304
- Shape: [1,num_priors,4].
305
- variances: (list[float]) Variances of priorboxes
306
- Return:
307
- decoded bounding box predictions
308
- """
309
- boxes = (
310
- priors[:, :, :2] + b_loc[:, :, :2] * variances[0] * priors[:, :, 2:],
311
- priors[:, :, 2:] * torch.exp(b_loc[:, :, 2:] * variances[1]),
312
- )
313
- boxes = torch.cat(boxes, dim=2)
314
-
315
- boxes[:, :, :2] -= boxes[:, :, 2:] / 2
316
- boxes[:, :, 2:] += boxes[:, :, :2]
317
- return boxes
318
-
319
-
320
- def batched_decode_landm(pre, priors, variances):
321
- """Decode landm from predictions using priors to undo
322
- the encoding we did for offset regression at train time.
323
- Args:
324
- pre (tensor): landm predictions for loc layers,
325
- Shape: [num_batches,num_priors,10]
326
- priors (tensor): Prior boxes in center-offset form.
327
- Shape: [1,num_priors,4].
328
- variances: (list[float]) Variances of priorboxes
329
- Return:
330
- decoded landm predictions
331
- """
332
- landms = (
333
- priors[:, :, :2] + pre[:, :, :2] * variances[0] * priors[:, :, 2:],
334
- priors[:, :, :2] + pre[:, :, 2:4] * variances[0] * priors[:, :, 2:],
335
- priors[:, :, :2] + pre[:, :, 4:6] * variances[0] * priors[:, :, 2:],
336
- priors[:, :, :2] + pre[:, :, 6:8] * variances[0] * priors[:, :, 2:],
337
- priors[:, :, :2] + pre[:, :, 8:10] * variances[0] * priors[:, :, 2:],
338
- )
339
- landms = torch.cat(landms, dim=2)
340
- return landms
341
-
342
-
343
- def log_sum_exp(x):
344
- """Utility function for computing log_sum_exp while determining
345
- This will be used to determine unaveraged confidence loss across
346
- all examples in a batch.
347
- Args:
348
- x (Variable(tensor)): conf_preds from conf layers
349
- """
350
- x_max = x.data.max()
351
- return torch.log(torch.sum(torch.exp(x - x_max), 1, keepdim=True)) + x_max
352
-
353
-
354
- # Original author: Francisco Massa:
355
- # https://github.com/fmassa/object-detection.torch
356
- # Ported to PyTorch by Max deGroot (02/01/2017)
357
- def nms(boxes, scores, overlap=0.5, top_k=200):
358
- """Apply non-maximum suppression at test time to avoid detecting too many
359
- overlapping bounding boxes for a given object.
360
- Args:
361
- boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
362
- scores: (tensor) The class predscores for the img, Shape:[num_priors].
363
- overlap: (float) The overlap thresh for suppressing unnecessary boxes.
364
- top_k: (int) The Maximum number of box preds to consider.
365
- Return:
366
- The indices of the kept boxes with respect to num_priors.
367
- """
368
-
369
- keep = torch.Tensor(scores.size(0)).fill_(0).long()
370
- if boxes.numel() == 0:
371
- return keep
372
- x1 = boxes[:, 0]
373
- y1 = boxes[:, 1]
374
- x2 = boxes[:, 2]
375
- y2 = boxes[:, 3]
376
- area = torch.mul(x2 - x1, y2 - y1)
377
- v, idx = scores.sort(0) # sort in ascending order
378
- # I = I[v >= 0.01]
379
- idx = idx[-top_k:] # indices of the top-k largest vals
380
- xx1 = boxes.new()
381
- yy1 = boxes.new()
382
- xx2 = boxes.new()
383
- yy2 = boxes.new()
384
- w = boxes.new()
385
- h = boxes.new()
386
-
387
- # keep = torch.Tensor()
388
- count = 0
389
- while idx.numel() > 0:
390
- i = idx[-1] # index of current largest val
391
- # keep.append(i)
392
- keep[count] = i
393
- count += 1
394
- if idx.size(0) == 1:
395
- break
396
- idx = idx[:-1] # remove kept element from view
397
- # load bboxes of next highest vals
398
- torch.index_select(x1, 0, idx, out=xx1)
399
- torch.index_select(y1, 0, idx, out=yy1)
400
- torch.index_select(x2, 0, idx, out=xx2)
401
- torch.index_select(y2, 0, idx, out=yy2)
402
- # store element-wise max with next highest score
403
- xx1 = torch.clamp(xx1, min=x1[i])
404
- yy1 = torch.clamp(yy1, min=y1[i])
405
- xx2 = torch.clamp(xx2, max=x2[i])
406
- yy2 = torch.clamp(yy2, max=y2[i])
407
- w.resize_as_(xx2)
408
- h.resize_as_(yy2)
409
- w = xx2 - xx1
410
- h = yy2 - yy1
411
- # check sizes of xx1 and xx2.. after each iteration
412
- w = torch.clamp(w, min=0.0)
413
- h = torch.clamp(h, min=0.0)
414
- inter = w * h
415
- # IoU = i / (area(a) + area(b) - i)
416
- rem_areas = torch.index_select(area, 0, idx) # load remaining areas)
417
- union = (rem_areas - inter) + area[i]
418
- IoU = inter / union # store result in iou
419
- # keep only elements with an IoU <= overlap
420
- idx = idx[IoU.le(overlap)]
421
- return keep, count
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/facexlib/parsing/__init__.py DELETED
@@ -1,24 +0,0 @@
1
- import torch
2
-
3
- from extras.facexlib.utils import load_file_from_url
4
- from .bisenet import BiSeNet
5
- from .parsenet import ParseNet
6
-
7
-
8
- def init_parsing_model(model_name='bisenet', half=False, device='cuda', model_rootpath=None):
9
- if model_name == 'bisenet':
10
- model = BiSeNet(num_class=19)
11
- model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.2.0/parsing_bisenet.pth'
12
- elif model_name == 'parsenet':
13
- model = ParseNet(in_size=512, out_size=512, parsing_ch=19)
14
- model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth'
15
- else:
16
- raise NotImplementedError(f'{model_name} is not implemented.')
17
-
18
- model_path = load_file_from_url(
19
- url=model_url, model_dir='facexlib/weights', progress=True, file_name=None, save_dir=model_rootpath)
20
- load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
21
- model.load_state_dict(load_net, strict=True)
22
- model.eval()
23
- model = model.to(device)
24
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/facexlib/parsing/bisenet.py DELETED
@@ -1,140 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
-
5
- from .resnet import ResNet18
6
-
7
-
8
- class ConvBNReLU(nn.Module):
9
-
10
- def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1):
11
- super(ConvBNReLU, self).__init__()
12
- self.conv = nn.Conv2d(in_chan, out_chan, kernel_size=ks, stride=stride, padding=padding, bias=False)
13
- self.bn = nn.BatchNorm2d(out_chan)
14
-
15
- def forward(self, x):
16
- x = self.conv(x)
17
- x = F.relu(self.bn(x))
18
- return x
19
-
20
-
21
- class BiSeNetOutput(nn.Module):
22
-
23
- def __init__(self, in_chan, mid_chan, num_class):
24
- super(BiSeNetOutput, self).__init__()
25
- self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
26
- self.conv_out = nn.Conv2d(mid_chan, num_class, kernel_size=1, bias=False)
27
-
28
- def forward(self, x):
29
- feat = self.conv(x)
30
- out = self.conv_out(feat)
31
- return out, feat
32
-
33
-
34
- class AttentionRefinementModule(nn.Module):
35
-
36
- def __init__(self, in_chan, out_chan):
37
- super(AttentionRefinementModule, self).__init__()
38
- self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
39
- self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size=1, bias=False)
40
- self.bn_atten = nn.BatchNorm2d(out_chan)
41
- self.sigmoid_atten = nn.Sigmoid()
42
-
43
- def forward(self, x):
44
- feat = self.conv(x)
45
- atten = F.avg_pool2d(feat, feat.size()[2:])
46
- atten = self.conv_atten(atten)
47
- atten = self.bn_atten(atten)
48
- atten = self.sigmoid_atten(atten)
49
- out = torch.mul(feat, atten)
50
- return out
51
-
52
-
53
- class ContextPath(nn.Module):
54
-
55
- def __init__(self):
56
- super(ContextPath, self).__init__()
57
- self.resnet = ResNet18()
58
- self.arm16 = AttentionRefinementModule(256, 128)
59
- self.arm32 = AttentionRefinementModule(512, 128)
60
- self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
61
- self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
62
- self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0)
63
-
64
- def forward(self, x):
65
- feat8, feat16, feat32 = self.resnet(x)
66
- h8, w8 = feat8.size()[2:]
67
- h16, w16 = feat16.size()[2:]
68
- h32, w32 = feat32.size()[2:]
69
-
70
- avg = F.avg_pool2d(feat32, feat32.size()[2:])
71
- avg = self.conv_avg(avg)
72
- avg_up = F.interpolate(avg, (h32, w32), mode='nearest')
73
-
74
- feat32_arm = self.arm32(feat32)
75
- feat32_sum = feat32_arm + avg_up
76
- feat32_up = F.interpolate(feat32_sum, (h16, w16), mode='nearest')
77
- feat32_up = self.conv_head32(feat32_up)
78
-
79
- feat16_arm = self.arm16(feat16)
80
- feat16_sum = feat16_arm + feat32_up
81
- feat16_up = F.interpolate(feat16_sum, (h8, w8), mode='nearest')
82
- feat16_up = self.conv_head16(feat16_up)
83
-
84
- return feat8, feat16_up, feat32_up # x8, x8, x16
85
-
86
-
87
- class FeatureFusionModule(nn.Module):
88
-
89
- def __init__(self, in_chan, out_chan):
90
- super(FeatureFusionModule, self).__init__()
91
- self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0)
92
- self.conv1 = nn.Conv2d(out_chan, out_chan // 4, kernel_size=1, stride=1, padding=0, bias=False)
93
- self.conv2 = nn.Conv2d(out_chan // 4, out_chan, kernel_size=1, stride=1, padding=0, bias=False)
94
- self.relu = nn.ReLU(inplace=True)
95
- self.sigmoid = nn.Sigmoid()
96
-
97
- def forward(self, fsp, fcp):
98
- fcat = torch.cat([fsp, fcp], dim=1)
99
- feat = self.convblk(fcat)
100
- atten = F.avg_pool2d(feat, feat.size()[2:])
101
- atten = self.conv1(atten)
102
- atten = self.relu(atten)
103
- atten = self.conv2(atten)
104
- atten = self.sigmoid(atten)
105
- feat_atten = torch.mul(feat, atten)
106
- feat_out = feat_atten + feat
107
- return feat_out
108
-
109
-
110
- class BiSeNet(nn.Module):
111
-
112
- def __init__(self, num_class):
113
- super(BiSeNet, self).__init__()
114
- self.cp = ContextPath()
115
- self.ffm = FeatureFusionModule(256, 256)
116
- self.conv_out = BiSeNetOutput(256, 256, num_class)
117
- self.conv_out16 = BiSeNetOutput(128, 64, num_class)
118
- self.conv_out32 = BiSeNetOutput(128, 64, num_class)
119
-
120
- def forward(self, x, return_feat=False):
121
- h, w = x.size()[2:]
122
- feat_res8, feat_cp8, feat_cp16 = self.cp(x) # return res3b1 feature
123
- feat_sp = feat_res8 # replace spatial path feature with res3b1 feature
124
- feat_fuse = self.ffm(feat_sp, feat_cp8)
125
-
126
- out, feat = self.conv_out(feat_fuse)
127
- out16, feat16 = self.conv_out16(feat_cp8)
128
- out32, feat32 = self.conv_out32(feat_cp16)
129
-
130
- out = F.interpolate(out, (h, w), mode='bilinear', align_corners=True)
131
- out16 = F.interpolate(out16, (h, w), mode='bilinear', align_corners=True)
132
- out32 = F.interpolate(out32, (h, w), mode='bilinear', align_corners=True)
133
-
134
- if return_feat:
135
- feat = F.interpolate(feat, (h, w), mode='bilinear', align_corners=True)
136
- feat16 = F.interpolate(feat16, (h, w), mode='bilinear', align_corners=True)
137
- feat32 = F.interpolate(feat32, (h, w), mode='bilinear', align_corners=True)
138
- return out, out16, out32, feat, feat16, feat32
139
- else:
140
- return out, out16, out32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/facexlib/parsing/parsenet.py DELETED
@@ -1,194 +0,0 @@
1
- """Modified from https://github.com/chaofengc/PSFRGAN
2
- """
3
- import numpy as np
4
- import torch.nn as nn
5
- from torch.nn import functional as F
6
-
7
-
8
- class NormLayer(nn.Module):
9
- """Normalization Layers.
10
-
11
- Args:
12
- channels: input channels, for batch norm and instance norm.
13
- input_size: input shape without batch size, for layer norm.
14
- """
15
-
16
- def __init__(self, channels, normalize_shape=None, norm_type='bn'):
17
- super(NormLayer, self).__init__()
18
- norm_type = norm_type.lower()
19
- self.norm_type = norm_type
20
- if norm_type == 'bn':
21
- self.norm = nn.BatchNorm2d(channels, affine=True)
22
- elif norm_type == 'in':
23
- self.norm = nn.InstanceNorm2d(channels, affine=False)
24
- elif norm_type == 'gn':
25
- self.norm = nn.GroupNorm(32, channels, affine=True)
26
- elif norm_type == 'pixel':
27
- self.norm = lambda x: F.normalize(x, p=2, dim=1)
28
- elif norm_type == 'layer':
29
- self.norm = nn.LayerNorm(normalize_shape)
30
- elif norm_type == 'none':
31
- self.norm = lambda x: x * 1.0
32
- else:
33
- assert 1 == 0, f'Norm type {norm_type} not support.'
34
-
35
- def forward(self, x, ref=None):
36
- if self.norm_type == 'spade':
37
- return self.norm(x, ref)
38
- else:
39
- return self.norm(x)
40
-
41
-
42
- class ReluLayer(nn.Module):
43
- """Relu Layer.
44
-
45
- Args:
46
- relu type: type of relu layer, candidates are
47
- - ReLU
48
- - LeakyReLU: default relu slope 0.2
49
- - PRelu
50
- - SELU
51
- - none: direct pass
52
- """
53
-
54
- def __init__(self, channels, relu_type='relu'):
55
- super(ReluLayer, self).__init__()
56
- relu_type = relu_type.lower()
57
- if relu_type == 'relu':
58
- self.func = nn.ReLU(True)
59
- elif relu_type == 'leakyrelu':
60
- self.func = nn.LeakyReLU(0.2, inplace=True)
61
- elif relu_type == 'prelu':
62
- self.func = nn.PReLU(channels)
63
- elif relu_type == 'selu':
64
- self.func = nn.SELU(True)
65
- elif relu_type == 'none':
66
- self.func = lambda x: x * 1.0
67
- else:
68
- assert 1 == 0, f'Relu type {relu_type} not support.'
69
-
70
- def forward(self, x):
71
- return self.func(x)
72
-
73
-
74
- class ConvLayer(nn.Module):
75
-
76
- def __init__(self,
77
- in_channels,
78
- out_channels,
79
- kernel_size=3,
80
- scale='none',
81
- norm_type='none',
82
- relu_type='none',
83
- use_pad=True,
84
- bias=True):
85
- super(ConvLayer, self).__init__()
86
- self.use_pad = use_pad
87
- self.norm_type = norm_type
88
- if norm_type in ['bn']:
89
- bias = False
90
-
91
- stride = 2 if scale == 'down' else 1
92
-
93
- self.scale_func = lambda x: x
94
- if scale == 'up':
95
- self.scale_func = lambda x: nn.functional.interpolate(x, scale_factor=2, mode='nearest')
96
-
97
- self.reflection_pad = nn.ReflectionPad2d(int(np.ceil((kernel_size - 1.) / 2)))
98
- self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, bias=bias)
99
-
100
- self.relu = ReluLayer(out_channels, relu_type)
101
- self.norm = NormLayer(out_channels, norm_type=norm_type)
102
-
103
- def forward(self, x):
104
- out = self.scale_func(x)
105
- if self.use_pad:
106
- out = self.reflection_pad(out)
107
- out = self.conv2d(out)
108
- out = self.norm(out)
109
- out = self.relu(out)
110
- return out
111
-
112
-
113
- class ResidualBlock(nn.Module):
114
- """
115
- Residual block recommended in: http://torch.ch/blog/2016/02/04/resnets.html
116
- """
117
-
118
- def __init__(self, c_in, c_out, relu_type='prelu', norm_type='bn', scale='none'):
119
- super(ResidualBlock, self).__init__()
120
-
121
- if scale == 'none' and c_in == c_out:
122
- self.shortcut_func = lambda x: x
123
- else:
124
- self.shortcut_func = ConvLayer(c_in, c_out, 3, scale)
125
-
126
- scale_config_dict = {'down': ['none', 'down'], 'up': ['up', 'none'], 'none': ['none', 'none']}
127
- scale_conf = scale_config_dict[scale]
128
-
129
- self.conv1 = ConvLayer(c_in, c_out, 3, scale_conf[0], norm_type=norm_type, relu_type=relu_type)
130
- self.conv2 = ConvLayer(c_out, c_out, 3, scale_conf[1], norm_type=norm_type, relu_type='none')
131
-
132
- def forward(self, x):
133
- identity = self.shortcut_func(x)
134
-
135
- res = self.conv1(x)
136
- res = self.conv2(res)
137
- return identity + res
138
-
139
-
140
- class ParseNet(nn.Module):
141
-
142
- def __init__(self,
143
- in_size=128,
144
- out_size=128,
145
- min_feat_size=32,
146
- base_ch=64,
147
- parsing_ch=19,
148
- res_depth=10,
149
- relu_type='LeakyReLU',
150
- norm_type='bn',
151
- ch_range=[32, 256]):
152
- super().__init__()
153
- self.res_depth = res_depth
154
- act_args = {'norm_type': norm_type, 'relu_type': relu_type}
155
- min_ch, max_ch = ch_range
156
-
157
- ch_clip = lambda x: max(min_ch, min(x, max_ch)) # noqa: E731
158
- min_feat_size = min(in_size, min_feat_size)
159
-
160
- down_steps = int(np.log2(in_size // min_feat_size))
161
- up_steps = int(np.log2(out_size // min_feat_size))
162
-
163
- # =============== define encoder-body-decoder ====================
164
- self.encoder = []
165
- self.encoder.append(ConvLayer(3, base_ch, 3, 1))
166
- head_ch = base_ch
167
- for i in range(down_steps):
168
- cin, cout = ch_clip(head_ch), ch_clip(head_ch * 2)
169
- self.encoder.append(ResidualBlock(cin, cout, scale='down', **act_args))
170
- head_ch = head_ch * 2
171
-
172
- self.body = []
173
- for i in range(res_depth):
174
- self.body.append(ResidualBlock(ch_clip(head_ch), ch_clip(head_ch), **act_args))
175
-
176
- self.decoder = []
177
- for i in range(up_steps):
178
- cin, cout = ch_clip(head_ch), ch_clip(head_ch // 2)
179
- self.decoder.append(ResidualBlock(cin, cout, scale='up', **act_args))
180
- head_ch = head_ch // 2
181
-
182
- self.encoder = nn.Sequential(*self.encoder)
183
- self.body = nn.Sequential(*self.body)
184
- self.decoder = nn.Sequential(*self.decoder)
185
- self.out_img_conv = ConvLayer(ch_clip(head_ch), 3)
186
- self.out_mask_conv = ConvLayer(ch_clip(head_ch), parsing_ch)
187
-
188
- def forward(self, x):
189
- feat = self.encoder(x)
190
- x = feat + self.body(feat)
191
- x = self.decoder(x)
192
- out_img = self.out_img_conv(x)
193
- out_mask = self.out_mask_conv(x)
194
- return out_mask, out_img
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/facexlib/parsing/resnet.py DELETED
@@ -1,69 +0,0 @@
1
- import torch.nn as nn
2
- import torch.nn.functional as F
3
-
4
-
5
- def conv3x3(in_planes, out_planes, stride=1):
6
- """3x3 convolution with padding"""
7
- return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
8
-
9
-
10
- class BasicBlock(nn.Module):
11
-
12
- def __init__(self, in_chan, out_chan, stride=1):
13
- super(BasicBlock, self).__init__()
14
- self.conv1 = conv3x3(in_chan, out_chan, stride)
15
- self.bn1 = nn.BatchNorm2d(out_chan)
16
- self.conv2 = conv3x3(out_chan, out_chan)
17
- self.bn2 = nn.BatchNorm2d(out_chan)
18
- self.relu = nn.ReLU(inplace=True)
19
- self.downsample = None
20
- if in_chan != out_chan or stride != 1:
21
- self.downsample = nn.Sequential(
22
- nn.Conv2d(in_chan, out_chan, kernel_size=1, stride=stride, bias=False),
23
- nn.BatchNorm2d(out_chan),
24
- )
25
-
26
- def forward(self, x):
27
- residual = self.conv1(x)
28
- residual = F.relu(self.bn1(residual))
29
- residual = self.conv2(residual)
30
- residual = self.bn2(residual)
31
-
32
- shortcut = x
33
- if self.downsample is not None:
34
- shortcut = self.downsample(x)
35
-
36
- out = shortcut + residual
37
- out = self.relu(out)
38
- return out
39
-
40
-
41
- def create_layer_basic(in_chan, out_chan, bnum, stride=1):
42
- layers = [BasicBlock(in_chan, out_chan, stride=stride)]
43
- for i in range(bnum - 1):
44
- layers.append(BasicBlock(out_chan, out_chan, stride=1))
45
- return nn.Sequential(*layers)
46
-
47
-
48
- class ResNet18(nn.Module):
49
-
50
- def __init__(self):
51
- super(ResNet18, self).__init__()
52
- self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
53
- self.bn1 = nn.BatchNorm2d(64)
54
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
55
- self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1)
56
- self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2)
57
- self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2)
58
- self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2)
59
-
60
- def forward(self, x):
61
- x = self.conv1(x)
62
- x = F.relu(self.bn1(x))
63
- x = self.maxpool(x)
64
-
65
- x = self.layer1(x)
66
- feat8 = self.layer2(x) # 1/8
67
- feat16 = self.layer3(feat8) # 1/16
68
- feat32 = self.layer4(feat16) # 1/32
69
- return feat8, feat16, feat32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/facexlib/utils/__init__.py DELETED
@@ -1,7 +0,0 @@
1
- from .face_utils import align_crop_face_landmarks, compute_increased_bbox, get_valid_bboxes, paste_face_back
2
- from .misc import img2tensor, load_file_from_url, scandir
3
-
4
- __all__ = [
5
- 'align_crop_face_landmarks', 'compute_increased_bbox', 'get_valid_bboxes', 'load_file_from_url', 'paste_face_back',
6
- 'img2tensor', 'scandir'
7
- ]
 
 
 
 
 
 
 
 
extras/facexlib/utils/face_restoration_helper.py DELETED
@@ -1,374 +0,0 @@
1
- import cv2
2
- import numpy as np
3
- import os
4
- import torch
5
- from torchvision.transforms.functional import normalize
6
-
7
- from extras.facexlib.detection import init_detection_model
8
- from extras.facexlib.parsing import init_parsing_model
9
- from extras.facexlib.utils.misc import img2tensor, imwrite
10
-
11
-
12
- def get_largest_face(det_faces, h, w):
13
-
14
- def get_location(val, length):
15
- if val < 0:
16
- return 0
17
- elif val > length:
18
- return length
19
- else:
20
- return val
21
-
22
- face_areas = []
23
- for det_face in det_faces:
24
- left = get_location(det_face[0], w)
25
- right = get_location(det_face[2], w)
26
- top = get_location(det_face[1], h)
27
- bottom = get_location(det_face[3], h)
28
- face_area = (right - left) * (bottom - top)
29
- face_areas.append(face_area)
30
- largest_idx = face_areas.index(max(face_areas))
31
- return det_faces[largest_idx], largest_idx
32
-
33
-
34
- def get_center_face(det_faces, h=0, w=0, center=None):
35
- if center is not None:
36
- center = np.array(center)
37
- else:
38
- center = np.array([w / 2, h / 2])
39
- center_dist = []
40
- for det_face in det_faces:
41
- face_center = np.array([(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2])
42
- dist = np.linalg.norm(face_center - center)
43
- center_dist.append(dist)
44
- center_idx = center_dist.index(min(center_dist))
45
- return det_faces[center_idx], center_idx
46
-
47
-
48
- class FaceRestoreHelper(object):
49
- """Helper for the face restoration pipeline (base class)."""
50
-
51
- def __init__(self,
52
- upscale_factor,
53
- face_size=512,
54
- crop_ratio=(1, 1),
55
- det_model='retinaface_resnet50',
56
- save_ext='png',
57
- template_3points=False,
58
- pad_blur=False,
59
- use_parse=False,
60
- device=None,
61
- model_rootpath=None):
62
- self.template_3points = template_3points # improve robustness
63
- self.upscale_factor = upscale_factor
64
- # the cropped face ratio based on the square face
65
- self.crop_ratio = crop_ratio # (h, w)
66
- assert (self.crop_ratio[0] >= 1 and self.crop_ratio[1] >= 1), 'crop ration only supports >=1'
67
- self.face_size = (int(face_size * self.crop_ratio[1]), int(face_size * self.crop_ratio[0]))
68
-
69
- if self.template_3points:
70
- self.face_template = np.array([[192, 240], [319, 240], [257, 371]])
71
- else:
72
- # standard 5 landmarks for FFHQ faces with 512 x 512
73
- self.face_template = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935],
74
- [201.26117, 371.41043], [313.08905, 371.15118]])
75
- self.face_template = self.face_template * (face_size / 512.0)
76
- if self.crop_ratio[0] > 1:
77
- self.face_template[:, 1] += face_size * (self.crop_ratio[0] - 1) / 2
78
- if self.crop_ratio[1] > 1:
79
- self.face_template[:, 0] += face_size * (self.crop_ratio[1] - 1) / 2
80
- self.save_ext = save_ext
81
- self.pad_blur = pad_blur
82
- if self.pad_blur is True:
83
- self.template_3points = False
84
-
85
- self.all_landmarks_5 = []
86
- self.det_faces = []
87
- self.affine_matrices = []
88
- self.inverse_affine_matrices = []
89
- self.cropped_faces = []
90
- self.restored_faces = []
91
- self.pad_input_imgs = []
92
-
93
- if device is None:
94
- self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
95
- else:
96
- self.device = device
97
-
98
- # init face detection model
99
- self.face_det = init_detection_model(det_model, half=False, device=self.device, model_rootpath=model_rootpath)
100
-
101
- # init face parsing model
102
- self.use_parse = use_parse
103
- self.face_parse = init_parsing_model(model_name='parsenet', device=self.device, model_rootpath=model_rootpath)
104
-
105
- def set_upscale_factor(self, upscale_factor):
106
- self.upscale_factor = upscale_factor
107
-
108
- def read_image(self, img):
109
- """img can be image path or cv2 loaded image."""
110
- # self.input_img is Numpy array, (h, w, c), BGR, uint8, [0, 255]
111
- if isinstance(img, str):
112
- img = cv2.imread(img)
113
-
114
- if np.max(img) > 256: # 16-bit image
115
- img = img / 65535 * 255
116
- if len(img.shape) == 2: # gray image
117
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
118
- elif img.shape[2] == 4: # RGBA image with alpha channel
119
- img = img[:, :, 0:3]
120
-
121
- self.input_img = img
122
-
123
- def get_face_landmarks_5(self,
124
- only_keep_largest=False,
125
- only_center_face=False,
126
- resize=None,
127
- blur_ratio=0.01,
128
- eye_dist_threshold=None):
129
- if resize is None:
130
- scale = 1
131
- input_img = self.input_img
132
- else:
133
- h, w = self.input_img.shape[0:2]
134
- scale = min(h, w) / resize
135
- h, w = int(h / scale), int(w / scale)
136
- input_img = cv2.resize(self.input_img, (w, h), interpolation=cv2.INTER_LANCZOS4)
137
-
138
- with torch.no_grad():
139
- bboxes = self.face_det.detect_faces(input_img, 0.97) * scale
140
- for bbox in bboxes:
141
- # remove faces with too small eye distance: side faces or too small faces
142
- eye_dist = np.linalg.norm([bbox[5] - bbox[7], bbox[6] - bbox[8]])
143
- if eye_dist_threshold is not None and (eye_dist < eye_dist_threshold):
144
- continue
145
-
146
- if self.template_3points:
147
- landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)])
148
- else:
149
- landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)])
150
- self.all_landmarks_5.append(landmark)
151
- self.det_faces.append(bbox[0:5])
152
- if len(self.det_faces) == 0:
153
- return 0
154
- if only_keep_largest:
155
- h, w, _ = self.input_img.shape
156
- self.det_faces, largest_idx = get_largest_face(self.det_faces, h, w)
157
- self.all_landmarks_5 = [self.all_landmarks_5[largest_idx]]
158
- elif only_center_face:
159
- h, w, _ = self.input_img.shape
160
- self.det_faces, center_idx = get_center_face(self.det_faces, h, w)
161
- self.all_landmarks_5 = [self.all_landmarks_5[center_idx]]
162
-
163
- # pad blurry images
164
- if self.pad_blur:
165
- self.pad_input_imgs = []
166
- for landmarks in self.all_landmarks_5:
167
- # get landmarks
168
- eye_left = landmarks[0, :]
169
- eye_right = landmarks[1, :]
170
- eye_avg = (eye_left + eye_right) * 0.5
171
- mouth_avg = (landmarks[3, :] + landmarks[4, :]) * 0.5
172
- eye_to_eye = eye_right - eye_left
173
- eye_to_mouth = mouth_avg - eye_avg
174
-
175
- # Get the oriented crop rectangle
176
- # x: half width of the oriented crop rectangle
177
- x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
178
- # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
179
- # norm with the hypotenuse: get the direction
180
- x /= np.hypot(*x) # get the hypotenuse of a right triangle
181
- rect_scale = 1.5
182
- x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
183
- # y: half height of the oriented crop rectangle
184
- y = np.flipud(x) * [-1, 1]
185
-
186
- # c: center
187
- c = eye_avg + eye_to_mouth * 0.1
188
- # quad: (left_top, left_bottom, right_bottom, right_top)
189
- quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
190
- # qsize: side length of the square
191
- qsize = np.hypot(*x) * 2
192
- border = max(int(np.rint(qsize * 0.1)), 3)
193
-
194
- # get pad
195
- # pad: (width_left, height_top, width_right, height_bottom)
196
- pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
197
- int(np.ceil(max(quad[:, 1]))))
198
- pad = [
199
- max(-pad[0] + border, 1),
200
- max(-pad[1] + border, 1),
201
- max(pad[2] - self.input_img.shape[0] + border, 1),
202
- max(pad[3] - self.input_img.shape[1] + border, 1)
203
- ]
204
-
205
- if max(pad) > 1:
206
- # pad image
207
- pad_img = np.pad(self.input_img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
208
- # modify landmark coords
209
- landmarks[:, 0] += pad[0]
210
- landmarks[:, 1] += pad[1]
211
- # blur pad images
212
- h, w, _ = pad_img.shape
213
- y, x, _ = np.ogrid[:h, :w, :1]
214
- mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
215
- np.float32(w - 1 - x) / pad[2]),
216
- 1.0 - np.minimum(np.float32(y) / pad[1],
217
- np.float32(h - 1 - y) / pad[3]))
218
- blur = int(qsize * blur_ratio)
219
- if blur % 2 == 0:
220
- blur += 1
221
- blur_img = cv2.boxFilter(pad_img, 0, ksize=(blur, blur))
222
- # blur_img = cv2.GaussianBlur(pad_img, (blur, blur), 0)
223
-
224
- pad_img = pad_img.astype('float32')
225
- pad_img += (blur_img - pad_img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
226
- pad_img += (np.median(pad_img, axis=(0, 1)) - pad_img) * np.clip(mask, 0.0, 1.0)
227
- pad_img = np.clip(pad_img, 0, 255) # float32, [0, 255]
228
- self.pad_input_imgs.append(pad_img)
229
- else:
230
- self.pad_input_imgs.append(np.copy(self.input_img))
231
-
232
- return len(self.all_landmarks_5)
233
-
234
- def align_warp_face(self, save_cropped_path=None, border_mode='constant'):
235
- """Align and warp faces with face template.
236
- """
237
- if self.pad_blur:
238
- assert len(self.pad_input_imgs) == len(
239
- self.all_landmarks_5), f'Mismatched samples: {len(self.pad_input_imgs)} and {len(self.all_landmarks_5)}'
240
- for idx, landmark in enumerate(self.all_landmarks_5):
241
- # use 5 landmarks to get affine matrix
242
- # use cv2.LMEDS method for the equivalence to skimage transform
243
- # ref: https://blog.csdn.net/yichxi/article/details/115827338
244
- affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0]
245
- self.affine_matrices.append(affine_matrix)
246
- # warp and crop faces
247
- if border_mode == 'constant':
248
- border_mode = cv2.BORDER_CONSTANT
249
- elif border_mode == 'reflect101':
250
- border_mode = cv2.BORDER_REFLECT101
251
- elif border_mode == 'reflect':
252
- border_mode = cv2.BORDER_REFLECT
253
- if self.pad_blur:
254
- input_img = self.pad_input_imgs[idx]
255
- else:
256
- input_img = self.input_img
257
- cropped_face = cv2.warpAffine(
258
- input_img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=(135, 133, 132)) # gray
259
- self.cropped_faces.append(cropped_face)
260
- # save the cropped face
261
- if save_cropped_path is not None:
262
- path = os.path.splitext(save_cropped_path)[0]
263
- save_path = f'{path}_{idx:02d}.{self.save_ext}'
264
- imwrite(cropped_face, save_path)
265
-
266
- def get_inverse_affine(self, save_inverse_affine_path=None):
267
- """Get inverse affine matrix."""
268
- for idx, affine_matrix in enumerate(self.affine_matrices):
269
- inverse_affine = cv2.invertAffineTransform(affine_matrix)
270
- inverse_affine *= self.upscale_factor
271
- self.inverse_affine_matrices.append(inverse_affine)
272
- # save inverse affine matrices
273
- if save_inverse_affine_path is not None:
274
- path, _ = os.path.splitext(save_inverse_affine_path)
275
- save_path = f'{path}_{idx:02d}.pth'
276
- torch.save(inverse_affine, save_path)
277
-
278
- def add_restored_face(self, face):
279
- self.restored_faces.append(face)
280
-
281
- def paste_faces_to_input_image(self, save_path=None, upsample_img=None):
282
- h, w, _ = self.input_img.shape
283
- h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor)
284
-
285
- if upsample_img is None:
286
- # simply resize the background
287
- upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
288
- else:
289
- upsample_img = cv2.resize(upsample_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
290
-
291
- assert len(self.restored_faces) == len(
292
- self.inverse_affine_matrices), ('length of restored_faces and affine_matrices are different.')
293
- for restored_face, inverse_affine in zip(self.restored_faces, self.inverse_affine_matrices):
294
- # Add an offset to inverse affine matrix, for more precise back alignment
295
- if self.upscale_factor > 1:
296
- extra_offset = 0.5 * self.upscale_factor
297
- else:
298
- extra_offset = 0
299
- inverse_affine[:, 2] += extra_offset
300
- inv_restored = cv2.warpAffine(restored_face, inverse_affine, (w_up, h_up))
301
-
302
- if self.use_parse:
303
- # inference
304
- face_input = cv2.resize(restored_face, (512, 512), interpolation=cv2.INTER_LINEAR)
305
- face_input = img2tensor(face_input.astype('float32') / 255., bgr2rgb=True, float32=True)
306
- normalize(face_input, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
307
- face_input = torch.unsqueeze(face_input, 0).to(self.device)
308
- with torch.no_grad():
309
- out = self.face_parse(face_input)[0]
310
- out = out.argmax(dim=1).squeeze().cpu().numpy()
311
-
312
- mask = np.zeros(out.shape)
313
- MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0]
314
- for idx, color in enumerate(MASK_COLORMAP):
315
- mask[out == idx] = color
316
- # blur the mask
317
- mask = cv2.GaussianBlur(mask, (101, 101), 11)
318
- mask = cv2.GaussianBlur(mask, (101, 101), 11)
319
- # remove the black borders
320
- thres = 10
321
- mask[:thres, :] = 0
322
- mask[-thres:, :] = 0
323
- mask[:, :thres] = 0
324
- mask[:, -thres:] = 0
325
- mask = mask / 255.
326
-
327
- mask = cv2.resize(mask, restored_face.shape[:2])
328
- mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up), flags=3)
329
- inv_soft_mask = mask[:, :, None]
330
- pasted_face = inv_restored
331
-
332
- else: # use square parse maps
333
- mask = np.ones(self.face_size, dtype=np.float32)
334
- inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
335
- # remove the black borders
336
- inv_mask_erosion = cv2.erode(
337
- inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
338
- pasted_face = inv_mask_erosion[:, :, None] * inv_restored
339
- total_face_area = np.sum(inv_mask_erosion) # // 3
340
- # compute the fusion edge based on the area of face
341
- w_edge = int(total_face_area**0.5) // 20
342
- erosion_radius = w_edge * 2
343
- inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
344
- blur_size = w_edge * 2
345
- inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
346
- if len(upsample_img.shape) == 2: # upsample_img is gray image
347
- upsample_img = upsample_img[:, :, None]
348
- inv_soft_mask = inv_soft_mask[:, :, None]
349
-
350
- if len(upsample_img.shape) == 3 and upsample_img.shape[2] == 4: # alpha channel
351
- alpha = upsample_img[:, :, 3:]
352
- upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img[:, :, 0:3]
353
- upsample_img = np.concatenate((upsample_img, alpha), axis=2)
354
- else:
355
- upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img
356
-
357
- if np.max(upsample_img) > 256: # 16-bit image
358
- upsample_img = upsample_img.astype(np.uint16)
359
- else:
360
- upsample_img = upsample_img.astype(np.uint8)
361
- if save_path is not None:
362
- path = os.path.splitext(save_path)[0]
363
- save_path = f'{path}.{self.save_ext}'
364
- imwrite(upsample_img, save_path)
365
- return upsample_img
366
-
367
- def clean_all(self):
368
- self.all_landmarks_5 = []
369
- self.restored_faces = []
370
- self.affine_matrices = []
371
- self.cropped_faces = []
372
- self.inverse_affine_matrices = []
373
- self.det_faces = []
374
- self.pad_input_imgs = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/facexlib/utils/face_utils.py DELETED
@@ -1,250 +0,0 @@
1
- import cv2
2
- import numpy as np
3
- import torch
4
-
5
-
6
- def compute_increased_bbox(bbox, increase_area, preserve_aspect=True):
7
- left, top, right, bot = bbox
8
- width = right - left
9
- height = bot - top
10
-
11
- if preserve_aspect:
12
- width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width))
13
- height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height))
14
- else:
15
- width_increase = height_increase = increase_area
16
- left = int(left - width_increase * width)
17
- top = int(top - height_increase * height)
18
- right = int(right + width_increase * width)
19
- bot = int(bot + height_increase * height)
20
- return (left, top, right, bot)
21
-
22
-
23
- def get_valid_bboxes(bboxes, h, w):
24
- left = max(bboxes[0], 0)
25
- top = max(bboxes[1], 0)
26
- right = min(bboxes[2], w)
27
- bottom = min(bboxes[3], h)
28
- return (left, top, right, bottom)
29
-
30
-
31
- def align_crop_face_landmarks(img,
32
- landmarks,
33
- output_size,
34
- transform_size=None,
35
- enable_padding=True,
36
- return_inverse_affine=False,
37
- shrink_ratio=(1, 1)):
38
- """Align and crop face with landmarks.
39
-
40
- The output_size and transform_size are based on width. The height is
41
- adjusted based on shrink_ratio_h/shring_ration_w.
42
-
43
- Modified from:
44
- https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
45
-
46
- Args:
47
- img (Numpy array): Input image.
48
- landmarks (Numpy array): 5 or 68 or 98 landmarks.
49
- output_size (int): Output face size.
50
- transform_size (ing): Transform size. Usually the four time of
51
- output_size.
52
- enable_padding (float): Default: True.
53
- shrink_ratio (float | tuple[float] | list[float]): Shring the whole
54
- face for height and width (crop larger area). Default: (1, 1).
55
-
56
- Returns:
57
- (Numpy array): Cropped face.
58
- """
59
- lm_type = 'retinaface_5' # Options: dlib_5, retinaface_5
60
-
61
- if isinstance(shrink_ratio, (float, int)):
62
- shrink_ratio = (shrink_ratio, shrink_ratio)
63
- if transform_size is None:
64
- transform_size = output_size * 4
65
-
66
- # Parse landmarks
67
- lm = np.array(landmarks)
68
- if lm.shape[0] == 5 and lm_type == 'retinaface_5':
69
- eye_left = lm[0]
70
- eye_right = lm[1]
71
- mouth_avg = (lm[3] + lm[4]) * 0.5
72
- elif lm.shape[0] == 5 and lm_type == 'dlib_5':
73
- lm_eye_left = lm[2:4]
74
- lm_eye_right = lm[0:2]
75
- eye_left = np.mean(lm_eye_left, axis=0)
76
- eye_right = np.mean(lm_eye_right, axis=0)
77
- mouth_avg = lm[4]
78
- elif lm.shape[0] == 68:
79
- lm_eye_left = lm[36:42]
80
- lm_eye_right = lm[42:48]
81
- eye_left = np.mean(lm_eye_left, axis=0)
82
- eye_right = np.mean(lm_eye_right, axis=0)
83
- mouth_avg = (lm[48] + lm[54]) * 0.5
84
- elif lm.shape[0] == 98:
85
- lm_eye_left = lm[60:68]
86
- lm_eye_right = lm[68:76]
87
- eye_left = np.mean(lm_eye_left, axis=0)
88
- eye_right = np.mean(lm_eye_right, axis=0)
89
- mouth_avg = (lm[76] + lm[82]) * 0.5
90
-
91
- eye_avg = (eye_left + eye_right) * 0.5
92
- eye_to_eye = eye_right - eye_left
93
- eye_to_mouth = mouth_avg - eye_avg
94
-
95
- # Get the oriented crop rectangle
96
- # x: half width of the oriented crop rectangle
97
- x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
98
- # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
99
- # norm with the hypotenuse: get the direction
100
- x /= np.hypot(*x) # get the hypotenuse of a right triangle
101
- rect_scale = 1 # TODO: you can edit it to get larger rect
102
- x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
103
- # y: half height of the oriented crop rectangle
104
- y = np.flipud(x) * [-1, 1]
105
-
106
- x *= shrink_ratio[1] # width
107
- y *= shrink_ratio[0] # height
108
-
109
- # c: center
110
- c = eye_avg + eye_to_mouth * 0.1
111
- # quad: (left_top, left_bottom, right_bottom, right_top)
112
- quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
113
- # qsize: side length of the square
114
- qsize = np.hypot(*x) * 2
115
-
116
- quad_ori = np.copy(quad)
117
- # Shrink, for large face
118
- # TODO: do we really need shrink
119
- shrink = int(np.floor(qsize / output_size * 0.5))
120
- if shrink > 1:
121
- h, w = img.shape[0:2]
122
- rsize = (int(np.rint(float(w) / shrink)), int(np.rint(float(h) / shrink)))
123
- img = cv2.resize(img, rsize, interpolation=cv2.INTER_AREA)
124
- quad /= shrink
125
- qsize /= shrink
126
-
127
- # Crop
128
- h, w = img.shape[0:2]
129
- border = max(int(np.rint(qsize * 0.1)), 3)
130
- crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
131
- int(np.ceil(max(quad[:, 1]))))
132
- crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, w), min(crop[3] + border, h))
133
- if crop[2] - crop[0] < w or crop[3] - crop[1] < h:
134
- img = img[crop[1]:crop[3], crop[0]:crop[2], :]
135
- quad -= crop[0:2]
136
-
137
- # Pad
138
- # pad: (width_left, height_top, width_right, height_bottom)
139
- h, w = img.shape[0:2]
140
- pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
141
- int(np.ceil(max(quad[:, 1]))))
142
- pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - w + border, 0), max(pad[3] - h + border, 0))
143
- if enable_padding and max(pad) > border - 4:
144
- pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
145
- img = np.pad(img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
146
- h, w = img.shape[0:2]
147
- y, x, _ = np.ogrid[:h, :w, :1]
148
- mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
149
- np.float32(w - 1 - x) / pad[2]),
150
- 1.0 - np.minimum(np.float32(y) / pad[1],
151
- np.float32(h - 1 - y) / pad[3]))
152
- blur = int(qsize * 0.02)
153
- if blur % 2 == 0:
154
- blur += 1
155
- blur_img = cv2.boxFilter(img, 0, ksize=(blur, blur))
156
-
157
- img = img.astype('float32')
158
- img += (blur_img - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
159
- img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
160
- img = np.clip(img, 0, 255) # float32, [0, 255]
161
- quad += pad[:2]
162
-
163
- # Transform use cv2
164
- h_ratio = shrink_ratio[0] / shrink_ratio[1]
165
- dst_h, dst_w = int(transform_size * h_ratio), transform_size
166
- template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
167
- # use cv2.LMEDS method for the equivalence to skimage transform
168
- # ref: https://blog.csdn.net/yichxi/article/details/115827338
169
- affine_matrix = cv2.estimateAffinePartial2D(quad, template, method=cv2.LMEDS)[0]
170
- cropped_face = cv2.warpAffine(
171
- img, affine_matrix, (dst_w, dst_h), borderMode=cv2.BORDER_CONSTANT, borderValue=(135, 133, 132)) # gray
172
-
173
- if output_size < transform_size:
174
- cropped_face = cv2.resize(
175
- cropped_face, (output_size, int(output_size * h_ratio)), interpolation=cv2.INTER_LINEAR)
176
-
177
- if return_inverse_affine:
178
- dst_h, dst_w = int(output_size * h_ratio), output_size
179
- template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
180
- # use cv2.LMEDS method for the equivalence to skimage transform
181
- # ref: https://blog.csdn.net/yichxi/article/details/115827338
182
- affine_matrix = cv2.estimateAffinePartial2D(
183
- quad_ori, np.array([[0, 0], [0, output_size], [dst_w, dst_h], [dst_w, 0]]), method=cv2.LMEDS)[0]
184
- inverse_affine = cv2.invertAffineTransform(affine_matrix)
185
- else:
186
- inverse_affine = None
187
- return cropped_face, inverse_affine
188
-
189
-
190
- def paste_face_back(img, face, inverse_affine):
191
- h, w = img.shape[0:2]
192
- face_h, face_w = face.shape[0:2]
193
- inv_restored = cv2.warpAffine(face, inverse_affine, (w, h))
194
- mask = np.ones((face_h, face_w, 3), dtype=np.float32)
195
- inv_mask = cv2.warpAffine(mask, inverse_affine, (w, h))
196
- # remove the black borders
197
- inv_mask_erosion = cv2.erode(inv_mask, np.ones((2, 2), np.uint8))
198
- inv_restored_remove_border = inv_mask_erosion * inv_restored
199
- total_face_area = np.sum(inv_mask_erosion) // 3
200
- # compute the fusion edge based on the area of face
201
- w_edge = int(total_face_area**0.5) // 20
202
- erosion_radius = w_edge * 2
203
- inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
204
- blur_size = w_edge * 2
205
- inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
206
- img = inv_soft_mask * inv_restored_remove_border + (1 - inv_soft_mask) * img
207
- # float32, [0, 255]
208
- return img
209
-
210
-
211
- if __name__ == '__main__':
212
- import os
213
-
214
- from extras.facexlib.detection import init_detection_model
215
- from extras.facexlib.utils.face_restoration_helper import get_largest_face
216
- from extras.facexlib.visualization import visualize_detection
217
-
218
- img_path = '/home/wxt/datasets/ffhq/ffhq_wild/00009.png'
219
- img_name = os.splitext(os.path.basename(img_path))[0]
220
-
221
- # initialize model
222
- det_net = init_detection_model('retinaface_resnet50', half=False)
223
- img_ori = cv2.imread(img_path)
224
- h, w = img_ori.shape[0:2]
225
- # if larger than 800, scale it
226
- scale = max(h / 800, w / 800)
227
- if scale > 1:
228
- img = cv2.resize(img_ori, (int(w / scale), int(h / scale)), interpolation=cv2.INTER_LINEAR)
229
-
230
- with torch.no_grad():
231
- bboxes = det_net.detect_faces(img, 0.97)
232
- if scale > 1:
233
- bboxes *= scale # the score is incorrect
234
- bboxes = get_largest_face(bboxes, h, w)[0]
235
- visualize_detection(img_ori, [bboxes], f'tmp/{img_name}_det.png')
236
-
237
- landmarks = np.array([[bboxes[i], bboxes[i + 1]] for i in range(5, 15, 2)])
238
-
239
- cropped_face, inverse_affine = align_crop_face_landmarks(
240
- img_ori,
241
- landmarks,
242
- output_size=512,
243
- transform_size=None,
244
- enable_padding=True,
245
- return_inverse_affine=True,
246
- shrink_ratio=(1, 1))
247
-
248
- cv2.imwrite(f'tmp/{img_name}_cropeed_face.png', cropped_face)
249
- img = paste_face_back(img_ori, cropped_face, inverse_affine)
250
- cv2.imwrite(f'tmp/{img_name}_back.png', img)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
extras/facexlib/utils/misc.py DELETED
@@ -1,118 +0,0 @@
1
- import cv2
2
- import os
3
- import os.path as osp
4
- import torch
5
- from torch.hub import download_url_to_file, get_dir
6
- from urllib.parse import urlparse
7
-
8
- ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
9
-
10
-
11
- def imwrite(img, file_path, params=None, auto_mkdir=True):
12
- """Write image to file.
13
-
14
- Args:
15
- img (ndarray): Image array to be written.
16
- file_path (str): Image file path.
17
- params (None or list): Same as opencv's :func:`imwrite` interface.
18
- auto_mkdir (bool): If the parent folder of `file_path` does not exist,
19
- whether to create it automatically.
20
-
21
- Returns:
22
- bool: Successful or not.
23
- """
24
- if auto_mkdir:
25
- dir_name = os.path.abspath(os.path.dirname(file_path))
26
- os.makedirs(dir_name, exist_ok=True)
27
- return cv2.imwrite(file_path, img, params)
28
-
29
-
30
- def img2tensor(imgs, bgr2rgb=True, float32=True):
31
- """Numpy array to tensor.
32
-
33
- Args:
34
- imgs (list[ndarray] | ndarray): Input images.
35
- bgr2rgb (bool): Whether to change bgr to rgb.
36
- float32 (bool): Whether to change to float32.
37
-
38
- Returns:
39
- list[tensor] | tensor: Tensor images. If returned results only have
40
- one element, just return tensor.
41
- """
42
-
43
- def _totensor(img, bgr2rgb, float32):
44
- if img.shape[2] == 3 and bgr2rgb:
45
- if img.dtype == 'float64':
46
- img = img.astype('float32')
47
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
48
- img = torch.from_numpy(img.transpose(2, 0, 1))
49
- if float32:
50
- img = img.float()
51
- return img
52
-
53
- if isinstance(imgs, list):
54
- return [_totensor(img, bgr2rgb, float32) for img in imgs]
55
- else:
56
- return _totensor(imgs, bgr2rgb, float32)
57
-
58
-
59
- def load_file_from_url(url, model_dir=None, progress=True, file_name=None, save_dir=None):
60
- """Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py
61
- """
62
- if model_dir is None:
63
- hub_dir = get_dir()
64
- model_dir = os.path.join(hub_dir, 'checkpoints')
65
-
66
- if save_dir is None:
67
- save_dir = os.path.join(ROOT_DIR, model_dir)
68
- os.makedirs(save_dir, exist_ok=True)
69
-
70
- parts = urlparse(url)
71
- filename = os.path.basename(parts.path)
72
- if file_name is not None:
73
- filename = file_name
74
- cached_file = os.path.abspath(os.path.join(save_dir, filename))
75
- if not os.path.exists(cached_file):
76
- print(f'Downloading: "{url}" to {cached_file}\n')
77
- download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
78
- return cached_file
79
-
80
-
81
- def scandir(dir_path, suffix=None, recursive=False, full_path=False):
82
- """Scan a directory to find the interested files.
83
- Args:
84
- dir_path (str): Path of the directory.
85
- suffix (str | tuple(str), optional): File suffix that we are
86
- interested in. Default: None.
87
- recursive (bool, optional): If set to True, recursively scan the
88
- directory. Default: False.
89
- full_path (bool, optional): If set to True, include the dir_path.
90
- Default: False.
91
- Returns:
92
- A generator for all the interested files with relative paths.
93
- """
94
-
95
- if (suffix is not None) and not isinstance(suffix, (str, tuple)):
96
- raise TypeError('"suffix" must be a string or tuple of strings')
97
-
98
- root = dir_path
99
-
100
- def _scandir(dir_path, suffix, recursive):
101
- for entry in os.scandir(dir_path):
102
- if not entry.name.startswith('.') and entry.is_file():
103
- if full_path:
104
- return_path = entry.path
105
- else:
106
- return_path = osp.relpath(entry.path, root)
107
-
108
- if suffix is None:
109
- yield return_path
110
- elif return_path.endswith(suffix):
111
- yield return_path
112
- else:
113
- if recursive:
114
- yield from _scandir(entry.path, suffix=suffix, recursive=recursive)
115
- else:
116
- continue
117
-
118
- return _scandir(dir_path, suffix=suffix, recursive=recursive)