Adityadn commited on
Commit
a8aaffd
·
verified ·
1 Parent(s): 19ea7cf

Delete ldm_patched

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ldm_patched/contrib/__pycache__/external.cpython-310.pyc +0 -0
  2. ldm_patched/contrib/__pycache__/external_custom_sampler.cpython-310.pyc +0 -0
  3. ldm_patched/contrib/__pycache__/external_freelunch.cpython-310.pyc +0 -0
  4. ldm_patched/contrib/__pycache__/external_model_advanced.cpython-310.pyc +0 -0
  5. ldm_patched/contrib/__pycache__/external_upscale_model.cpython-310.pyc +0 -0
  6. ldm_patched/contrib/external.py +0 -1954
  7. ldm_patched/contrib/external_canny.py +0 -301
  8. ldm_patched/contrib/external_clip_sdxl.py +0 -58
  9. ldm_patched/contrib/external_compositing.py +0 -204
  10. ldm_patched/contrib/external_custom_sampler.py +0 -297
  11. ldm_patched/contrib/external_freelunch.py +0 -115
  12. ldm_patched/contrib/external_hypernetwork.py +0 -121
  13. ldm_patched/contrib/external_hypertile.py +0 -85
  14. ldm_patched/contrib/external_images.py +0 -177
  15. ldm_patched/contrib/external_latent.py +0 -157
  16. ldm_patched/contrib/external_mask.py +0 -365
  17. ldm_patched/contrib/external_model_advanced.py +0 -177
  18. ldm_patched/contrib/external_model_downscale.py +0 -55
  19. ldm_patched/contrib/external_model_merging.py +0 -286
  20. ldm_patched/contrib/external_perpneg.py +0 -57
  21. ldm_patched/contrib/external_photomaker.py +0 -189
  22. ldm_patched/contrib/external_post_processing.py +0 -278
  23. ldm_patched/contrib/external_rebatch.py +0 -140
  24. ldm_patched/contrib/external_sag.py +0 -172
  25. ldm_patched/contrib/external_sdupscale.py +0 -49
  26. ldm_patched/contrib/external_stable3d.py +0 -104
  27. ldm_patched/contrib/external_tomesd.py +0 -179
  28. ldm_patched/contrib/external_upscale_model.py +0 -68
  29. ldm_patched/contrib/external_video_model.py +0 -108
  30. ldm_patched/controlnet/__pycache__/cldm.cpython-310.pyc +0 -0
  31. ldm_patched/controlnet/cldm.py +0 -312
  32. ldm_patched/k_diffusion/__pycache__/sampling.cpython-310.pyc +0 -0
  33. ldm_patched/k_diffusion/__pycache__/utils.cpython-310.pyc +0 -0
  34. ldm_patched/k_diffusion/sampling.py +0 -810
  35. ldm_patched/k_diffusion/utils.py +0 -313
  36. ldm_patched/ldm/__pycache__/util.cpython-310.pyc +0 -0
  37. ldm_patched/ldm/models/__pycache__/autoencoder.cpython-310.pyc +0 -0
  38. ldm_patched/ldm/models/autoencoder.py +0 -228
  39. ldm_patched/ldm/modules/__pycache__/attention.cpython-310.pyc +0 -0
  40. ldm_patched/ldm/modules/__pycache__/ema.cpython-310.pyc +0 -0
  41. ldm_patched/ldm/modules/__pycache__/sub_quadratic_attention.cpython-310.pyc +0 -0
  42. ldm_patched/ldm/modules/attention.py +0 -781
  43. ldm_patched/ldm/modules/diffusionmodules/__init__.py +0 -0
  44. ldm_patched/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc +0 -0
  45. ldm_patched/ldm/modules/diffusionmodules/__pycache__/model.cpython-310.pyc +0 -0
  46. ldm_patched/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc +0 -0
  47. ldm_patched/ldm/modules/diffusionmodules/__pycache__/upscaling.cpython-310.pyc +0 -0
  48. ldm_patched/ldm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc +0 -0
  49. ldm_patched/ldm/modules/diffusionmodules/model.py +0 -650
  50. ldm_patched/ldm/modules/diffusionmodules/openaimodel.py +0 -886
ldm_patched/contrib/__pycache__/external.cpython-310.pyc DELETED
Binary file (59.7 kB)
 
ldm_patched/contrib/__pycache__/external_custom_sampler.cpython-310.pyc DELETED
Binary file (9.15 kB)
 
ldm_patched/contrib/__pycache__/external_freelunch.cpython-310.pyc DELETED
Binary file (3.46 kB)
 
ldm_patched/contrib/__pycache__/external_model_advanced.cpython-310.pyc DELETED
Binary file (6.12 kB)
 
ldm_patched/contrib/__pycache__/external_upscale_model.cpython-310.pyc DELETED
Binary file (2.78 kB)
 
ldm_patched/contrib/external.py DELETED
@@ -1,1954 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import torch
4
-
5
- import os
6
- import sys
7
- import json
8
- import hashlib
9
- import traceback
10
- import math
11
- import time
12
- import random
13
-
14
- from PIL import Image, ImageOps, ImageSequence
15
- from PIL.PngImagePlugin import PngInfo
16
- import numpy as np
17
- import safetensors.torch
18
-
19
- pass # sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "ldm_patched"))
20
-
21
-
22
- import ldm_patched.modules.diffusers_load
23
- import ldm_patched.modules.samplers
24
- import ldm_patched.modules.sample
25
- import ldm_patched.modules.sd
26
- import ldm_patched.modules.utils
27
- import ldm_patched.modules.controlnet
28
-
29
- import ldm_patched.modules.clip_vision
30
-
31
- import ldm_patched.modules.model_management
32
- from ldm_patched.modules.args_parser import args
33
-
34
- import importlib
35
-
36
- import ldm_patched.utils.path_utils
37
- import ldm_patched.utils.latent_visualization
38
-
39
- def before_node_execution():
40
- ldm_patched.modules.model_management.throw_exception_if_processing_interrupted()
41
-
42
- def interrupt_processing(value=True):
43
- ldm_patched.modules.model_management.interrupt_current_processing(value)
44
-
45
- MAX_RESOLUTION=8192
46
-
47
- class CLIPTextEncode:
48
- @classmethod
49
- def INPUT_TYPES(s):
50
- return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
51
- RETURN_TYPES = ("CONDITIONING",)
52
- FUNCTION = "encode"
53
-
54
- CATEGORY = "conditioning"
55
-
56
- def encode(self, clip, text):
57
- tokens = clip.tokenize(text)
58
- cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
59
- return ([[cond, {"pooled_output": pooled}]], )
60
-
61
- class ConditioningCombine:
62
- @classmethod
63
- def INPUT_TYPES(s):
64
- return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
65
- RETURN_TYPES = ("CONDITIONING",)
66
- FUNCTION = "combine"
67
-
68
- CATEGORY = "conditioning"
69
-
70
- def combine(self, conditioning_1, conditioning_2):
71
- return (conditioning_1 + conditioning_2, )
72
-
73
- class ConditioningAverage :
74
- @classmethod
75
- def INPUT_TYPES(s):
76
- return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
77
- "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
78
- }}
79
- RETURN_TYPES = ("CONDITIONING",)
80
- FUNCTION = "addWeighted"
81
-
82
- CATEGORY = "conditioning"
83
-
84
- def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
85
- out = []
86
-
87
- if len(conditioning_from) > 1:
88
- print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
89
-
90
- cond_from = conditioning_from[0][0]
91
- pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
92
-
93
- for i in range(len(conditioning_to)):
94
- t1 = conditioning_to[i][0]
95
- pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
96
- t0 = cond_from[:,:t1.shape[1]]
97
- if t0.shape[1] < t1.shape[1]:
98
- t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)
99
-
100
- tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
101
- t_to = conditioning_to[i][1].copy()
102
- if pooled_output_from is not None and pooled_output_to is not None:
103
- t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
104
- elif pooled_output_from is not None:
105
- t_to["pooled_output"] = pooled_output_from
106
-
107
- n = [tw, t_to]
108
- out.append(n)
109
- return (out, )
110
-
111
- class ConditioningConcat:
112
- @classmethod
113
- def INPUT_TYPES(s):
114
- return {"required": {
115
- "conditioning_to": ("CONDITIONING",),
116
- "conditioning_from": ("CONDITIONING",),
117
- }}
118
- RETURN_TYPES = ("CONDITIONING",)
119
- FUNCTION = "concat"
120
-
121
- CATEGORY = "conditioning"
122
-
123
- def concat(self, conditioning_to, conditioning_from):
124
- out = []
125
-
126
- if len(conditioning_from) > 1:
127
- print("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
128
-
129
- cond_from = conditioning_from[0][0]
130
-
131
- for i in range(len(conditioning_to)):
132
- t1 = conditioning_to[i][0]
133
- tw = torch.cat((t1, cond_from),1)
134
- n = [tw, conditioning_to[i][1].copy()]
135
- out.append(n)
136
-
137
- return (out, )
138
-
139
- class ConditioningSetArea:
140
- @classmethod
141
- def INPUT_TYPES(s):
142
- return {"required": {"conditioning": ("CONDITIONING", ),
143
- "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
144
- "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
145
- "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
146
- "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
147
- "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
148
- }}
149
- RETURN_TYPES = ("CONDITIONING",)
150
- FUNCTION = "append"
151
-
152
- CATEGORY = "conditioning"
153
-
154
- def append(self, conditioning, width, height, x, y, strength):
155
- c = []
156
- for t in conditioning:
157
- n = [t[0], t[1].copy()]
158
- n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
159
- n[1]['strength'] = strength
160
- n[1]['set_area_to_bounds'] = False
161
- c.append(n)
162
- return (c, )
163
-
164
- class ConditioningSetAreaPercentage:
165
- @classmethod
166
- def INPUT_TYPES(s):
167
- return {"required": {"conditioning": ("CONDITIONING", ),
168
- "width": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
169
- "height": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
170
- "x": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
171
- "y": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
172
- "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
173
- }}
174
- RETURN_TYPES = ("CONDITIONING",)
175
- FUNCTION = "append"
176
-
177
- CATEGORY = "conditioning"
178
-
179
- def append(self, conditioning, width, height, x, y, strength):
180
- c = []
181
- for t in conditioning:
182
- n = [t[0], t[1].copy()]
183
- n[1]['area'] = ("percentage", height, width, y, x)
184
- n[1]['strength'] = strength
185
- n[1]['set_area_to_bounds'] = False
186
- c.append(n)
187
- return (c, )
188
-
189
- class ConditioningSetMask:
190
- @classmethod
191
- def INPUT_TYPES(s):
192
- return {"required": {"conditioning": ("CONDITIONING", ),
193
- "mask": ("MASK", ),
194
- "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
195
- "set_cond_area": (["default", "mask bounds"],),
196
- }}
197
- RETURN_TYPES = ("CONDITIONING",)
198
- FUNCTION = "append"
199
-
200
- CATEGORY = "conditioning"
201
-
202
- def append(self, conditioning, mask, set_cond_area, strength):
203
- c = []
204
- set_area_to_bounds = False
205
- if set_cond_area != "default":
206
- set_area_to_bounds = True
207
- if len(mask.shape) < 3:
208
- mask = mask.unsqueeze(0)
209
- for t in conditioning:
210
- n = [t[0], t[1].copy()]
211
- _, h, w = mask.shape
212
- n[1]['mask'] = mask
213
- n[1]['set_area_to_bounds'] = set_area_to_bounds
214
- n[1]['mask_strength'] = strength
215
- c.append(n)
216
- return (c, )
217
-
218
- class ConditioningZeroOut:
219
- @classmethod
220
- def INPUT_TYPES(s):
221
- return {"required": {"conditioning": ("CONDITIONING", )}}
222
- RETURN_TYPES = ("CONDITIONING",)
223
- FUNCTION = "zero_out"
224
-
225
- CATEGORY = "advanced/conditioning"
226
-
227
- def zero_out(self, conditioning):
228
- c = []
229
- for t in conditioning:
230
- d = t[1].copy()
231
- if "pooled_output" in d:
232
- d["pooled_output"] = torch.zeros_like(d["pooled_output"])
233
- n = [torch.zeros_like(t[0]), d]
234
- c.append(n)
235
- return (c, )
236
-
237
- class ConditioningSetTimestepRange:
238
- @classmethod
239
- def INPUT_TYPES(s):
240
- return {"required": {"conditioning": ("CONDITIONING", ),
241
- "start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
242
- "end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
243
- }}
244
- RETURN_TYPES = ("CONDITIONING",)
245
- FUNCTION = "set_range"
246
-
247
- CATEGORY = "advanced/conditioning"
248
-
249
- def set_range(self, conditioning, start, end):
250
- c = []
251
- for t in conditioning:
252
- d = t[1].copy()
253
- d['start_percent'] = start
254
- d['end_percent'] = end
255
- n = [t[0], d]
256
- c.append(n)
257
- return (c, )
258
-
259
- class VAEDecode:
260
- @classmethod
261
- def INPUT_TYPES(s):
262
- return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
263
- RETURN_TYPES = ("IMAGE",)
264
- FUNCTION = "decode"
265
-
266
- CATEGORY = "latent"
267
-
268
- def decode(self, vae, samples):
269
- return (vae.decode(samples["samples"]), )
270
-
271
- class VAEDecodeTiled:
272
- @classmethod
273
- def INPUT_TYPES(s):
274
- return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
275
- "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
276
- }}
277
- RETURN_TYPES = ("IMAGE",)
278
- FUNCTION = "decode"
279
-
280
- CATEGORY = "_for_testing"
281
-
282
- def decode(self, vae, samples, tile_size):
283
- return (vae.decode_tiled(samples["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, ), )
284
-
285
- class VAEEncode:
286
- @classmethod
287
- def INPUT_TYPES(s):
288
- return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
289
- RETURN_TYPES = ("LATENT",)
290
- FUNCTION = "encode"
291
-
292
- CATEGORY = "latent"
293
-
294
- @staticmethod
295
- def vae_encode_crop_pixels(pixels):
296
- x = (pixels.shape[1] // 8) * 8
297
- y = (pixels.shape[2] // 8) * 8
298
- if pixels.shape[1] != x or pixels.shape[2] != y:
299
- x_offset = (pixels.shape[1] % 8) // 2
300
- y_offset = (pixels.shape[2] % 8) // 2
301
- pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
302
- return pixels
303
-
304
- def encode(self, vae, pixels):
305
- pixels = self.vae_encode_crop_pixels(pixels)
306
- t = vae.encode(pixels[:,:,:,:3])
307
- return ({"samples":t}, )
308
-
309
- class VAEEncodeTiled:
310
- @classmethod
311
- def INPUT_TYPES(s):
312
- return {"required": {"pixels": ("IMAGE", ), "vae": ("VAE", ),
313
- "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
314
- }}
315
- RETURN_TYPES = ("LATENT",)
316
- FUNCTION = "encode"
317
-
318
- CATEGORY = "_for_testing"
319
-
320
- def encode(self, vae, pixels, tile_size):
321
- pixels = VAEEncode.vae_encode_crop_pixels(pixels)
322
- t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, )
323
- return ({"samples":t}, )
324
-
325
- class VAEEncodeForInpaint:
326
- @classmethod
327
- def INPUT_TYPES(s):
328
- return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
329
- RETURN_TYPES = ("LATENT",)
330
- FUNCTION = "encode"
331
-
332
- CATEGORY = "latent/inpaint"
333
-
334
- def encode(self, vae, pixels, mask, grow_mask_by=6):
335
- x = (pixels.shape[1] // 8) * 8
336
- y = (pixels.shape[2] // 8) * 8
337
- mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
338
-
339
- pixels = pixels.clone()
340
- if pixels.shape[1] != x or pixels.shape[2] != y:
341
- x_offset = (pixels.shape[1] % 8) // 2
342
- y_offset = (pixels.shape[2] % 8) // 2
343
- pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
344
- mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
345
-
346
- #grow mask by a few pixels to keep things seamless in latent space
347
- if grow_mask_by == 0:
348
- mask_erosion = mask
349
- else:
350
- kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
351
- padding = math.ceil((grow_mask_by - 1) / 2)
352
-
353
- mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)
354
-
355
- m = (1.0 - mask.round()).squeeze(1)
356
- for i in range(3):
357
- pixels[:,:,:,i] -= 0.5
358
- pixels[:,:,:,i] *= m
359
- pixels[:,:,:,i] += 0.5
360
- t = vae.encode(pixels)
361
-
362
- return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
363
-
364
-
365
- class InpaintModelConditioning:
366
- @classmethod
367
- def INPUT_TYPES(s):
368
- return {"required": {"positive": ("CONDITIONING", ),
369
- "negative": ("CONDITIONING", ),
370
- "vae": ("VAE", ),
371
- "pixels": ("IMAGE", ),
372
- "mask": ("MASK", ),
373
- }}
374
-
375
- RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT")
376
- RETURN_NAMES = ("positive", "negative", "latent")
377
- FUNCTION = "encode"
378
-
379
- CATEGORY = "conditioning/inpaint"
380
-
381
- def encode(self, positive, negative, pixels, vae, mask):
382
- x = (pixels.shape[1] // 8) * 8
383
- y = (pixels.shape[2] // 8) * 8
384
- mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
385
-
386
- orig_pixels = pixels
387
- pixels = orig_pixels.clone()
388
- if pixels.shape[1] != x or pixels.shape[2] != y:
389
- x_offset = (pixels.shape[1] % 8) // 2
390
- y_offset = (pixels.shape[2] % 8) // 2
391
- pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
392
- mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
393
-
394
- m = (1.0 - mask.round()).squeeze(1)
395
- for i in range(3):
396
- pixels[:,:,:,i] -= 0.5
397
- pixels[:,:,:,i] *= m
398
- pixels[:,:,:,i] += 0.5
399
- concat_latent = vae.encode(pixels)
400
- orig_latent = vae.encode(orig_pixels)
401
-
402
- out_latent = {}
403
-
404
- out_latent["samples"] = orig_latent
405
- out_latent["noise_mask"] = mask
406
-
407
- out = []
408
- for conditioning in [positive, negative]:
409
- c = []
410
- for t in conditioning:
411
- d = t[1].copy()
412
- d["concat_latent_image"] = concat_latent
413
- d["concat_mask"] = mask
414
- n = [t[0], d]
415
- c.append(n)
416
- out.append(c)
417
- return (out[0], out[1], out_latent)
418
-
419
-
420
- class SaveLatent:
421
- def __init__(self):
422
- self.output_dir = ldm_patched.utils.path_utils.get_output_directory()
423
-
424
- @classmethod
425
- def INPUT_TYPES(s):
426
- return {"required": { "samples": ("LATENT", ),
427
- "filename_prefix": ("STRING", {"default": "latents/ldm_patched"})},
428
- "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
429
- }
430
- RETURN_TYPES = ()
431
- FUNCTION = "save"
432
-
433
- OUTPUT_NODE = True
434
-
435
- CATEGORY = "_for_testing"
436
-
437
- def save(self, samples, filename_prefix="ldm_patched", prompt=None, extra_pnginfo=None):
438
- full_output_folder, filename, counter, subfolder, filename_prefix = ldm_patched.utils.path_utils.get_save_image_path(filename_prefix, self.output_dir)
439
-
440
- # support save metadata for latent sharing
441
- prompt_info = ""
442
- if prompt is not None:
443
- prompt_info = json.dumps(prompt)
444
-
445
- metadata = None
446
- if not args.disable_server_info:
447
- metadata = {"prompt": prompt_info}
448
- if extra_pnginfo is not None:
449
- for x in extra_pnginfo:
450
- metadata[x] = json.dumps(extra_pnginfo[x])
451
-
452
- file = f"{filename}_{counter:05}_.latent"
453
-
454
- results = list()
455
- results.append({
456
- "filename": file,
457
- "subfolder": subfolder,
458
- "type": "output"
459
- })
460
-
461
- file = os.path.join(full_output_folder, file)
462
-
463
- output = {}
464
- output["latent_tensor"] = samples["samples"]
465
- output["latent_format_version_0"] = torch.tensor([])
466
-
467
- ldm_patched.modules.utils.save_torch_file(output, file, metadata=metadata)
468
- return { "ui": { "latents": results } }
469
-
470
-
471
- class LoadLatent:
472
- @classmethod
473
- def INPUT_TYPES(s):
474
- input_dir = ldm_patched.utils.path_utils.get_input_directory()
475
- files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
476
- return {"required": {"latent": [sorted(files), ]}, }
477
-
478
- CATEGORY = "_for_testing"
479
-
480
- RETURN_TYPES = ("LATENT", )
481
- FUNCTION = "load"
482
-
483
- def load(self, latent):
484
- latent_path = ldm_patched.utils.path_utils.get_annotated_filepath(latent)
485
- latent = safetensors.torch.load_file(latent_path, device="cpu")
486
- multiplier = 1.0
487
- if "latent_format_version_0" not in latent:
488
- multiplier = 1.0 / 0.18215
489
- samples = {"samples": latent["latent_tensor"].float() * multiplier}
490
- return (samples, )
491
-
492
- @classmethod
493
- def IS_CHANGED(s, latent):
494
- image_path = ldm_patched.utils.path_utils.get_annotated_filepath(latent)
495
- m = hashlib.sha256()
496
- with open(image_path, 'rb') as f:
497
- m.update(f.read())
498
- return m.digest().hex()
499
-
500
- @classmethod
501
- def VALIDATE_INPUTS(s, latent):
502
- if not ldm_patched.utils.path_utils.exists_annotated_filepath(latent):
503
- return "Invalid latent file: {}".format(latent)
504
- return True
505
-
506
-
507
- class CheckpointLoader:
508
- @classmethod
509
- def INPUT_TYPES(s):
510
- return {"required": { "config_name": (ldm_patched.utils.path_utils.get_filename_list("configs"), ),
511
- "ckpt_name": (ldm_patched.utils.path_utils.get_filename_list("checkpoints"), )}}
512
- RETURN_TYPES = ("MODEL", "CLIP", "VAE")
513
- FUNCTION = "load_checkpoint"
514
-
515
- CATEGORY = "advanced/loaders"
516
-
517
- def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
518
- config_path = ldm_patched.utils.path_utils.get_full_path("configs", config_name)
519
- ckpt_path = ldm_patched.utils.path_utils.get_full_path("checkpoints", ckpt_name)
520
- return ldm_patched.modules.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=ldm_patched.utils.path_utils.get_folder_paths("embeddings"))
521
-
522
- class CheckpointLoaderSimple:
523
- @classmethod
524
- def INPUT_TYPES(s):
525
- return {"required": { "ckpt_name": (ldm_patched.utils.path_utils.get_filename_list("checkpoints"), ),
526
- }}
527
- RETURN_TYPES = ("MODEL", "CLIP", "VAE")
528
- FUNCTION = "load_checkpoint"
529
-
530
- CATEGORY = "loaders"
531
-
532
- def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
533
- ckpt_path = ldm_patched.utils.path_utils.get_full_path("checkpoints", ckpt_name)
534
- out = ldm_patched.modules.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=ldm_patched.utils.path_utils.get_folder_paths("embeddings"))
535
- return out[:3]
536
-
537
- class DiffusersLoader:
538
- @classmethod
539
- def INPUT_TYPES(cls):
540
- paths = []
541
- for search_path in ldm_patched.utils.path_utils.get_folder_paths("diffusers"):
542
- if os.path.exists(search_path):
543
- for root, subdir, files in os.walk(search_path, followlinks=True):
544
- if "model_index.json" in files:
545
- paths.append(os.path.relpath(root, start=search_path))
546
-
547
- return {"required": {"model_path": (paths,), }}
548
- RETURN_TYPES = ("MODEL", "CLIP", "VAE")
549
- FUNCTION = "load_checkpoint"
550
-
551
- CATEGORY = "advanced/loaders/deprecated"
552
-
553
- def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
554
- for search_path in ldm_patched.utils.path_utils.get_folder_paths("diffusers"):
555
- if os.path.exists(search_path):
556
- path = os.path.join(search_path, model_path)
557
- if os.path.exists(path):
558
- model_path = path
559
- break
560
-
561
- return ldm_patched.modules.diffusers_load.load_diffusers(model_path, output_vae=output_vae, output_clip=output_clip, embedding_directory=ldm_patched.utils.path_utils.get_folder_paths("embeddings"))
562
-
563
-
564
- class unCLIPCheckpointLoader:
565
- @classmethod
566
- def INPUT_TYPES(s):
567
- return {"required": { "ckpt_name": (ldm_patched.utils.path_utils.get_filename_list("checkpoints"), ),
568
- }}
569
- RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
570
- FUNCTION = "load_checkpoint"
571
-
572
- CATEGORY = "loaders"
573
-
574
- def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
575
- ckpt_path = ldm_patched.utils.path_utils.get_full_path("checkpoints", ckpt_name)
576
- out = ldm_patched.modules.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=ldm_patched.utils.path_utils.get_folder_paths("embeddings"))
577
- return out
578
-
579
- class CLIPSetLastLayer:
580
- @classmethod
581
- def INPUT_TYPES(s):
582
- return {"required": { "clip": ("CLIP", ),
583
- "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
584
- }}
585
- RETURN_TYPES = ("CLIP",)
586
- FUNCTION = "set_last_layer"
587
-
588
- CATEGORY = "conditioning"
589
-
590
- def set_last_layer(self, clip, stop_at_clip_layer):
591
- clip = clip.clone()
592
- clip.clip_layer(stop_at_clip_layer)
593
- return (clip,)
594
-
595
- class LoraLoader:
596
- def __init__(self):
597
- self.loaded_lora = None
598
-
599
- @classmethod
600
- def INPUT_TYPES(s):
601
- return {"required": { "model": ("MODEL",),
602
- "clip": ("CLIP", ),
603
- "lora_name": (ldm_patched.utils.path_utils.get_filename_list("loras"), ),
604
- "strength_model": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
605
- "strength_clip": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
606
- }}
607
- RETURN_TYPES = ("MODEL", "CLIP")
608
- FUNCTION = "load_lora"
609
-
610
- CATEGORY = "loaders"
611
-
612
- def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
613
- if strength_model == 0 and strength_clip == 0:
614
- return (model, clip)
615
-
616
- lora_path = ldm_patched.utils.path_utils.get_full_path("loras", lora_name)
617
- lora = None
618
- if self.loaded_lora is not None:
619
- if self.loaded_lora[0] == lora_path:
620
- lora = self.loaded_lora[1]
621
- else:
622
- temp = self.loaded_lora
623
- self.loaded_lora = None
624
- del temp
625
-
626
- if lora is None:
627
- lora = ldm_patched.modules.utils.load_torch_file(lora_path, safe_load=True)
628
- self.loaded_lora = (lora_path, lora)
629
-
630
- model_lora, clip_lora = ldm_patched.modules.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
631
- return (model_lora, clip_lora)
632
-
633
- class LoraLoaderModelOnly(LoraLoader):
634
- @classmethod
635
- def INPUT_TYPES(s):
636
- return {"required": { "model": ("MODEL",),
637
- "lora_name": (ldm_patched.utils.path_utils.get_filename_list("loras"), ),
638
- "strength_model": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
639
- }}
640
- RETURN_TYPES = ("MODEL",)
641
- FUNCTION = "load_lora_model_only"
642
-
643
- def load_lora_model_only(self, model, lora_name, strength_model):
644
- return (self.load_lora(model, None, lora_name, strength_model, 0)[0],)
645
-
646
- class VAELoader:
647
- @staticmethod
648
- def vae_list():
649
- vaes = ldm_patched.utils.path_utils.get_filename_list("vae")
650
- approx_vaes = ldm_patched.utils.path_utils.get_filename_list("vae_approx")
651
- sdxl_taesd_enc = False
652
- sdxl_taesd_dec = False
653
- sd1_taesd_enc = False
654
- sd1_taesd_dec = False
655
-
656
- for v in approx_vaes:
657
- if v.startswith("taesd_decoder."):
658
- sd1_taesd_dec = True
659
- elif v.startswith("taesd_encoder."):
660
- sd1_taesd_enc = True
661
- elif v.startswith("taesdxl_decoder."):
662
- sdxl_taesd_dec = True
663
- elif v.startswith("taesdxl_encoder."):
664
- sdxl_taesd_enc = True
665
- if sd1_taesd_dec and sd1_taesd_enc:
666
- vaes.append("taesd")
667
- if sdxl_taesd_dec and sdxl_taesd_enc:
668
- vaes.append("taesdxl")
669
- return vaes
670
-
671
- @staticmethod
672
- def load_taesd(name):
673
- sd = {}
674
- approx_vaes = ldm_patched.utils.path_utils.get_filename_list("vae_approx")
675
-
676
- encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes))
677
- decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes))
678
-
679
- enc = ldm_patched.modules.utils.load_torch_file(ldm_patched.utils.path_utils.get_full_path("vae_approx", encoder))
680
- for k in enc:
681
- sd["taesd_encoder.{}".format(k)] = enc[k]
682
-
683
- dec = ldm_patched.modules.utils.load_torch_file(ldm_patched.utils.path_utils.get_full_path("vae_approx", decoder))
684
- for k in dec:
685
- sd["taesd_decoder.{}".format(k)] = dec[k]
686
-
687
- if name == "taesd":
688
- sd["vae_scale"] = torch.tensor(0.18215)
689
- elif name == "taesdxl":
690
- sd["vae_scale"] = torch.tensor(0.13025)
691
- return sd
692
-
693
- @classmethod
694
- def INPUT_TYPES(s):
695
- return {"required": { "vae_name": (s.vae_list(), )}}
696
- RETURN_TYPES = ("VAE",)
697
- FUNCTION = "load_vae"
698
-
699
- CATEGORY = "loaders"
700
-
701
- #TODO: scale factor?
702
- def load_vae(self, vae_name):
703
- if vae_name in ["taesd", "taesdxl"]:
704
- sd = self.load_taesd(vae_name)
705
- else:
706
- vae_path = ldm_patched.utils.path_utils.get_full_path("vae", vae_name)
707
- sd = ldm_patched.modules.utils.load_torch_file(vae_path)
708
- vae = ldm_patched.modules.sd.VAE(sd=sd)
709
- return (vae,)
710
-
711
- class ControlNetLoader:
712
- @classmethod
713
- def INPUT_TYPES(s):
714
- return {"required": { "control_net_name": (ldm_patched.utils.path_utils.get_filename_list("controlnet"), )}}
715
-
716
- RETURN_TYPES = ("CONTROL_NET",)
717
- FUNCTION = "load_controlnet"
718
-
719
- CATEGORY = "loaders"
720
-
721
- def load_controlnet(self, control_net_name):
722
- controlnet_path = ldm_patched.utils.path_utils.get_full_path("controlnet", control_net_name)
723
- controlnet = ldm_patched.modules.controlnet.load_controlnet(controlnet_path)
724
- return (controlnet,)
725
-
726
- class DiffControlNetLoader:
727
- @classmethod
728
- def INPUT_TYPES(s):
729
- return {"required": { "model": ("MODEL",),
730
- "control_net_name": (ldm_patched.utils.path_utils.get_filename_list("controlnet"), )}}
731
-
732
- RETURN_TYPES = ("CONTROL_NET",)
733
- FUNCTION = "load_controlnet"
734
-
735
- CATEGORY = "loaders"
736
-
737
- def load_controlnet(self, model, control_net_name):
738
- controlnet_path = ldm_patched.utils.path_utils.get_full_path("controlnet", control_net_name)
739
- controlnet = ldm_patched.modules.controlnet.load_controlnet(controlnet_path, model)
740
- return (controlnet,)
741
-
742
-
743
- class ControlNetApply:
744
- @classmethod
745
- def INPUT_TYPES(s):
746
- return {"required": {"conditioning": ("CONDITIONING", ),
747
- "control_net": ("CONTROL_NET", ),
748
- "image": ("IMAGE", ),
749
- "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
750
- }}
751
- RETURN_TYPES = ("CONDITIONING",)
752
- FUNCTION = "apply_controlnet"
753
-
754
- CATEGORY = "conditioning"
755
-
756
- def apply_controlnet(self, conditioning, control_net, image, strength):
757
- if strength == 0:
758
- return (conditioning, )
759
-
760
- c = []
761
- control_hint = image.movedim(-1,1)
762
- for t in conditioning:
763
- n = [t[0], t[1].copy()]
764
- c_net = control_net.copy().set_cond_hint(control_hint, strength)
765
- if 'control' in t[1]:
766
- c_net.set_previous_controlnet(t[1]['control'])
767
- n[1]['control'] = c_net
768
- n[1]['control_apply_to_uncond'] = True
769
- c.append(n)
770
- return (c, )
771
-
772
-
773
- class ControlNetApplyAdvanced:
774
- @classmethod
775
- def INPUT_TYPES(s):
776
- return {"required": {"positive": ("CONDITIONING", ),
777
- "negative": ("CONDITIONING", ),
778
- "control_net": ("CONTROL_NET", ),
779
- "image": ("IMAGE", ),
780
- "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
781
- "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
782
- "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
783
- }}
784
-
785
- RETURN_TYPES = ("CONDITIONING","CONDITIONING")
786
- RETURN_NAMES = ("positive", "negative")
787
- FUNCTION = "apply_controlnet"
788
-
789
- CATEGORY = "conditioning"
790
-
791
- def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent):
792
- if strength == 0:
793
- return (positive, negative)
794
-
795
- control_hint = image.movedim(-1,1)
796
- cnets = {}
797
-
798
- out = []
799
- for conditioning in [positive, negative]:
800
- c = []
801
- for t in conditioning:
802
- d = t[1].copy()
803
-
804
- prev_cnet = d.get('control', None)
805
- if prev_cnet in cnets:
806
- c_net = cnets[prev_cnet]
807
- else:
808
- c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent))
809
- c_net.set_previous_controlnet(prev_cnet)
810
- cnets[prev_cnet] = c_net
811
-
812
- d['control'] = c_net
813
- d['control_apply_to_uncond'] = False
814
- n = [t[0], d]
815
- c.append(n)
816
- out.append(c)
817
- return (out[0], out[1])
818
-
819
-
820
- class UNETLoader:
821
- @classmethod
822
- def INPUT_TYPES(s):
823
- return {"required": { "unet_name": (ldm_patched.utils.path_utils.get_filename_list("unet"), ),
824
- }}
825
- RETURN_TYPES = ("MODEL",)
826
- FUNCTION = "load_unet"
827
-
828
- CATEGORY = "advanced/loaders"
829
-
830
- def load_unet(self, unet_name):
831
- unet_path = ldm_patched.utils.path_utils.get_full_path("unet", unet_name)
832
- model = ldm_patched.modules.sd.load_unet(unet_path)
833
- return (model,)
834
-
835
- class CLIPLoader:
836
- @classmethod
837
- def INPUT_TYPES(s):
838
- return {"required": { "clip_name": (ldm_patched.utils.path_utils.get_filename_list("clip"), ),
839
- }}
840
- RETURN_TYPES = ("CLIP",)
841
- FUNCTION = "load_clip"
842
-
843
- CATEGORY = "advanced/loaders"
844
-
845
- def load_clip(self, clip_name):
846
- clip_path = ldm_patched.utils.path_utils.get_full_path("clip", clip_name)
847
- clip = ldm_patched.modules.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=ldm_patched.utils.path_utils.get_folder_paths("embeddings"))
848
- return (clip,)
849
-
850
- class DualCLIPLoader:
851
- @classmethod
852
- def INPUT_TYPES(s):
853
- return {"required": { "clip_name1": (ldm_patched.utils.path_utils.get_filename_list("clip"), ), "clip_name2": (ldm_patched.utils.path_utils.get_filename_list("clip"), ),
854
- }}
855
- RETURN_TYPES = ("CLIP",)
856
- FUNCTION = "load_clip"
857
-
858
- CATEGORY = "advanced/loaders"
859
-
860
- def load_clip(self, clip_name1, clip_name2):
861
- clip_path1 = ldm_patched.utils.path_utils.get_full_path("clip", clip_name1)
862
- clip_path2 = ldm_patched.utils.path_utils.get_full_path("clip", clip_name2)
863
- clip = ldm_patched.modules.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=ldm_patched.utils.path_utils.get_folder_paths("embeddings"))
864
- return (clip,)
865
-
866
- class CLIPVisionLoader:
867
- @classmethod
868
- def INPUT_TYPES(s):
869
- return {"required": { "clip_name": (ldm_patched.utils.path_utils.get_filename_list("clip_vision"), ),
870
- }}
871
- RETURN_TYPES = ("CLIP_VISION",)
872
- FUNCTION = "load_clip"
873
-
874
- CATEGORY = "loaders"
875
-
876
- def load_clip(self, clip_name):
877
- clip_path = ldm_patched.utils.path_utils.get_full_path("clip_vision", clip_name)
878
- clip_vision = ldm_patched.modules.clip_vision.load(clip_path)
879
- return (clip_vision,)
880
-
881
- class CLIPVisionEncode:
882
- @classmethod
883
- def INPUT_TYPES(s):
884
- return {"required": { "clip_vision": ("CLIP_VISION",),
885
- "image": ("IMAGE",)
886
- }}
887
- RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
888
- FUNCTION = "encode"
889
-
890
- CATEGORY = "conditioning"
891
-
892
- def encode(self, clip_vision, image):
893
- output = clip_vision.encode_image(image)
894
- return (output,)
895
-
896
- class StyleModelLoader:
897
- @classmethod
898
- def INPUT_TYPES(s):
899
- return {"required": { "style_model_name": (ldm_patched.utils.path_utils.get_filename_list("style_models"), )}}
900
-
901
- RETURN_TYPES = ("STYLE_MODEL",)
902
- FUNCTION = "load_style_model"
903
-
904
- CATEGORY = "loaders"
905
-
906
- def load_style_model(self, style_model_name):
907
- style_model_path = ldm_patched.utils.path_utils.get_full_path("style_models", style_model_name)
908
- style_model = ldm_patched.modules.sd.load_style_model(style_model_path)
909
- return (style_model,)
910
-
911
-
912
- class StyleModelApply:
913
- @classmethod
914
- def INPUT_TYPES(s):
915
- return {"required": {"conditioning": ("CONDITIONING", ),
916
- "style_model": ("STYLE_MODEL", ),
917
- "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
918
- }}
919
- RETURN_TYPES = ("CONDITIONING",)
920
- FUNCTION = "apply_stylemodel"
921
-
922
- CATEGORY = "conditioning/style_model"
923
-
924
- def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
925
- cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
926
- c = []
927
- for t in conditioning:
928
- n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
929
- c.append(n)
930
- return (c, )
931
-
932
- class unCLIPConditioning:
933
- @classmethod
934
- def INPUT_TYPES(s):
935
- return {"required": {"conditioning": ("CONDITIONING", ),
936
- "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
937
- "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
938
- "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
939
- }}
940
- RETURN_TYPES = ("CONDITIONING",)
941
- FUNCTION = "apply_adm"
942
-
943
- CATEGORY = "conditioning"
944
-
945
- def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
946
- if strength == 0:
947
- return (conditioning, )
948
-
949
- c = []
950
- for t in conditioning:
951
- o = t[1].copy()
952
- x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
953
- if "unclip_conditioning" in o:
954
- o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
955
- else:
956
- o["unclip_conditioning"] = [x]
957
- n = [t[0], o]
958
- c.append(n)
959
- return (c, )
960
-
961
- class GLIGENLoader:
962
- @classmethod
963
- def INPUT_TYPES(s):
964
- return {"required": { "gligen_name": (ldm_patched.utils.path_utils.get_filename_list("gligen"), )}}
965
-
966
- RETURN_TYPES = ("GLIGEN",)
967
- FUNCTION = "load_gligen"
968
-
969
- CATEGORY = "loaders"
970
-
971
- def load_gligen(self, gligen_name):
972
- gligen_path = ldm_patched.utils.path_utils.get_full_path("gligen", gligen_name)
973
- gligen = ldm_patched.modules.sd.load_gligen(gligen_path)
974
- return (gligen,)
975
-
976
- class GLIGENTextBoxApply:
977
- @classmethod
978
- def INPUT_TYPES(s):
979
- return {"required": {"conditioning_to": ("CONDITIONING", ),
980
- "clip": ("CLIP", ),
981
- "gligen_textbox_model": ("GLIGEN", ),
982
- "text": ("STRING", {"multiline": True}),
983
- "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
984
- "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
985
- "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
986
- "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
987
- }}
988
- RETURN_TYPES = ("CONDITIONING",)
989
- FUNCTION = "append"
990
-
991
- CATEGORY = "conditioning/gligen"
992
-
993
- def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
994
- c = []
995
- cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
996
- for t in conditioning_to:
997
- n = [t[0], t[1].copy()]
998
- position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
999
- prev = []
1000
- if "gligen" in n[1]:
1001
- prev = n[1]['gligen'][2]
1002
-
1003
- n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
1004
- c.append(n)
1005
- return (c, )
1006
-
1007
- class EmptyLatentImage:
1008
- def __init__(self):
1009
- self.device = ldm_patched.modules.model_management.intermediate_device()
1010
-
1011
- @classmethod
1012
- def INPUT_TYPES(s):
1013
- return {"required": { "width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
1014
- "height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
1015
- "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
1016
- RETURN_TYPES = ("LATENT",)
1017
- FUNCTION = "generate"
1018
-
1019
- CATEGORY = "latent"
1020
-
1021
- def generate(self, width, height, batch_size=1):
1022
- latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device)
1023
- return ({"samples":latent}, )
1024
-
1025
-
1026
- class LatentFromBatch:
1027
- @classmethod
1028
- def INPUT_TYPES(s):
1029
- return {"required": { "samples": ("LATENT",),
1030
- "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
1031
- "length": ("INT", {"default": 1, "min": 1, "max": 64}),
1032
- }}
1033
- RETURN_TYPES = ("LATENT",)
1034
- FUNCTION = "frombatch"
1035
-
1036
- CATEGORY = "latent/batch"
1037
-
1038
- def frombatch(self, samples, batch_index, length):
1039
- s = samples.copy()
1040
- s_in = samples["samples"]
1041
- batch_index = min(s_in.shape[0] - 1, batch_index)
1042
- length = min(s_in.shape[0] - batch_index, length)
1043
- s["samples"] = s_in[batch_index:batch_index + length].clone()
1044
- if "noise_mask" in samples:
1045
- masks = samples["noise_mask"]
1046
- if masks.shape[0] == 1:
1047
- s["noise_mask"] = masks.clone()
1048
- else:
1049
- if masks.shape[0] < s_in.shape[0]:
1050
- masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
1051
- s["noise_mask"] = masks[batch_index:batch_index + length].clone()
1052
- if "batch_index" not in s:
1053
- s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
1054
- else:
1055
- s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
1056
- return (s,)
1057
-
1058
- class RepeatLatentBatch:
1059
- @classmethod
1060
- def INPUT_TYPES(s):
1061
- return {"required": { "samples": ("LATENT",),
1062
- "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
1063
- }}
1064
- RETURN_TYPES = ("LATENT",)
1065
- FUNCTION = "repeat"
1066
-
1067
- CATEGORY = "latent/batch"
1068
-
1069
- def repeat(self, samples, amount):
1070
- s = samples.copy()
1071
- s_in = samples["samples"]
1072
-
1073
- s["samples"] = s_in.repeat((amount, 1,1,1))
1074
- if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
1075
- masks = samples["noise_mask"]
1076
- if masks.shape[0] < s_in.shape[0]:
1077
- masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
1078
- s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
1079
- if "batch_index" in s:
1080
- offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
1081
- s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
1082
- return (s,)
1083
-
1084
- class LatentUpscale:
1085
- upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
1086
- crop_methods = ["disabled", "center"]
1087
-
1088
- @classmethod
1089
- def INPUT_TYPES(s):
1090
- return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
1091
- "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1092
- "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1093
- "crop": (s.crop_methods,)}}
1094
- RETURN_TYPES = ("LATENT",)
1095
- FUNCTION = "upscale"
1096
-
1097
- CATEGORY = "latent"
1098
-
1099
- def upscale(self, samples, upscale_method, width, height, crop):
1100
- if width == 0 and height == 0:
1101
- s = samples
1102
- else:
1103
- s = samples.copy()
1104
-
1105
- if width == 0:
1106
- height = max(64, height)
1107
- width = max(64, round(samples["samples"].shape[3] * height / samples["samples"].shape[2]))
1108
- elif height == 0:
1109
- width = max(64, width)
1110
- height = max(64, round(samples["samples"].shape[2] * width / samples["samples"].shape[3]))
1111
- else:
1112
- width = max(64, width)
1113
- height = max(64, height)
1114
-
1115
- s["samples"] = ldm_patched.modules.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
1116
- return (s,)
1117
-
1118
- class LatentUpscaleBy:
1119
- upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
1120
-
1121
- @classmethod
1122
- def INPUT_TYPES(s):
1123
- return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
1124
- "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
1125
- RETURN_TYPES = ("LATENT",)
1126
- FUNCTION = "upscale"
1127
-
1128
- CATEGORY = "latent"
1129
-
1130
- def upscale(self, samples, upscale_method, scale_by):
1131
- s = samples.copy()
1132
- width = round(samples["samples"].shape[3] * scale_by)
1133
- height = round(samples["samples"].shape[2] * scale_by)
1134
- s["samples"] = ldm_patched.modules.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
1135
- return (s,)
1136
-
1137
- class LatentRotate:
1138
- @classmethod
1139
- def INPUT_TYPES(s):
1140
- return {"required": { "samples": ("LATENT",),
1141
- "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
1142
- }}
1143
- RETURN_TYPES = ("LATENT",)
1144
- FUNCTION = "rotate"
1145
-
1146
- CATEGORY = "latent/transform"
1147
-
1148
- def rotate(self, samples, rotation):
1149
- s = samples.copy()
1150
- rotate_by = 0
1151
- if rotation.startswith("90"):
1152
- rotate_by = 1
1153
- elif rotation.startswith("180"):
1154
- rotate_by = 2
1155
- elif rotation.startswith("270"):
1156
- rotate_by = 3
1157
-
1158
- s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
1159
- return (s,)
1160
-
1161
- class LatentFlip:
1162
- @classmethod
1163
- def INPUT_TYPES(s):
1164
- return {"required": { "samples": ("LATENT",),
1165
- "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
1166
- }}
1167
- RETURN_TYPES = ("LATENT",)
1168
- FUNCTION = "flip"
1169
-
1170
- CATEGORY = "latent/transform"
1171
-
1172
- def flip(self, samples, flip_method):
1173
- s = samples.copy()
1174
- if flip_method.startswith("x"):
1175
- s["samples"] = torch.flip(samples["samples"], dims=[2])
1176
- elif flip_method.startswith("y"):
1177
- s["samples"] = torch.flip(samples["samples"], dims=[3])
1178
-
1179
- return (s,)
1180
-
1181
- class LatentComposite:
1182
- @classmethod
1183
- def INPUT_TYPES(s):
1184
- return {"required": { "samples_to": ("LATENT",),
1185
- "samples_from": ("LATENT",),
1186
- "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1187
- "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1188
- "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1189
- }}
1190
- RETURN_TYPES = ("LATENT",)
1191
- FUNCTION = "composite"
1192
-
1193
- CATEGORY = "latent"
1194
-
1195
- def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
1196
- x = x // 8
1197
- y = y // 8
1198
- feather = feather // 8
1199
- samples_out = samples_to.copy()
1200
- s = samples_to["samples"].clone()
1201
- samples_to = samples_to["samples"]
1202
- samples_from = samples_from["samples"]
1203
- if feather == 0:
1204
- s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
1205
- else:
1206
- samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
1207
- mask = torch.ones_like(samples_from)
1208
- for t in range(feather):
1209
- if y != 0:
1210
- mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
1211
-
1212
- if y + samples_from.shape[2] < samples_to.shape[2]:
1213
- mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
1214
- if x != 0:
1215
- mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
1216
- if x + samples_from.shape[3] < samples_to.shape[3]:
1217
- mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
1218
- rev_mask = torch.ones_like(mask) - mask
1219
- s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
1220
- samples_out["samples"] = s
1221
- return (samples_out,)
1222
-
1223
- class LatentBlend:
1224
- @classmethod
1225
- def INPUT_TYPES(s):
1226
- return {"required": {
1227
- "samples1": ("LATENT",),
1228
- "samples2": ("LATENT",),
1229
- "blend_factor": ("FLOAT", {
1230
- "default": 0.5,
1231
- "min": 0,
1232
- "max": 1,
1233
- "step": 0.01
1234
- }),
1235
- }}
1236
-
1237
- RETURN_TYPES = ("LATENT",)
1238
- FUNCTION = "blend"
1239
-
1240
- CATEGORY = "_for_testing"
1241
-
1242
- def blend(self, samples1, samples2, blend_factor:float, blend_mode: str="normal"):
1243
-
1244
- samples_out = samples1.copy()
1245
- samples1 = samples1["samples"]
1246
- samples2 = samples2["samples"]
1247
-
1248
- if samples1.shape != samples2.shape:
1249
- samples2.permute(0, 3, 1, 2)
1250
- samples2 = ldm_patched.modules.utils.common_upscale(samples2, samples1.shape[3], samples1.shape[2], 'bicubic', crop='center')
1251
- samples2.permute(0, 2, 3, 1)
1252
-
1253
- samples_blended = self.blend_mode(samples1, samples2, blend_mode)
1254
- samples_blended = samples1 * blend_factor + samples_blended * (1 - blend_factor)
1255
- samples_out["samples"] = samples_blended
1256
- return (samples_out,)
1257
-
1258
- def blend_mode(self, img1, img2, mode):
1259
- if mode == "normal":
1260
- return img2
1261
- else:
1262
- raise ValueError(f"Unsupported blend mode: {mode}")
1263
-
1264
- class LatentCrop:
1265
- @classmethod
1266
- def INPUT_TYPES(s):
1267
- return {"required": { "samples": ("LATENT",),
1268
- "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
1269
- "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
1270
- "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1271
- "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1272
- }}
1273
- RETURN_TYPES = ("LATENT",)
1274
- FUNCTION = "crop"
1275
-
1276
- CATEGORY = "latent/transform"
1277
-
1278
- def crop(self, samples, width, height, x, y):
1279
- s = samples.copy()
1280
- samples = samples['samples']
1281
- x = x // 8
1282
- y = y // 8
1283
-
1284
- #enfonce minimum size of 64
1285
- if x > (samples.shape[3] - 8):
1286
- x = samples.shape[3] - 8
1287
- if y > (samples.shape[2] - 8):
1288
- y = samples.shape[2] - 8
1289
-
1290
- new_height = height // 8
1291
- new_width = width // 8
1292
- to_x = new_width + x
1293
- to_y = new_height + y
1294
- s['samples'] = samples[:,:,y:to_y, x:to_x]
1295
- return (s,)
1296
-
1297
- class SetLatentNoiseMask:
1298
- @classmethod
1299
- def INPUT_TYPES(s):
1300
- return {"required": { "samples": ("LATENT",),
1301
- "mask": ("MASK",),
1302
- }}
1303
- RETURN_TYPES = ("LATENT",)
1304
- FUNCTION = "set_mask"
1305
-
1306
- CATEGORY = "latent/inpaint"
1307
-
1308
- def set_mask(self, samples, mask):
1309
- s = samples.copy()
1310
- s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
1311
- return (s,)
1312
-
1313
- def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
1314
- latent_image = latent["samples"]
1315
- if disable_noise:
1316
- noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
1317
- else:
1318
- batch_inds = latent["batch_index"] if "batch_index" in latent else None
1319
- noise = ldm_patched.modules.sample.prepare_noise(latent_image, seed, batch_inds)
1320
-
1321
- noise_mask = None
1322
- if "noise_mask" in latent:
1323
- noise_mask = latent["noise_mask"]
1324
-
1325
- callback = ldm_patched.utils.latent_visualization.prepare_callback(model, steps)
1326
- disable_pbar = not ldm_patched.modules.utils.PROGRESS_BAR_ENABLED
1327
- samples = ldm_patched.modules.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
1328
- denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
1329
- force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
1330
- out = latent.copy()
1331
- out["samples"] = samples
1332
- return (out, )
1333
-
1334
- class KSampler:
1335
- @classmethod
1336
- def INPUT_TYPES(s):
1337
- return {"required":
1338
- {"model": ("MODEL",),
1339
- "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
1340
- "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
1341
- "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
1342
- "sampler_name": (ldm_patched.modules.samplers.KSampler.SAMPLERS, ),
1343
- "scheduler": (ldm_patched.modules.samplers.KSampler.SCHEDULERS, ),
1344
- "positive": ("CONDITIONING", ),
1345
- "negative": ("CONDITIONING", ),
1346
- "latent_image": ("LATENT", ),
1347
- "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
1348
- }
1349
- }
1350
-
1351
- RETURN_TYPES = ("LATENT",)
1352
- FUNCTION = "sample"
1353
-
1354
- CATEGORY = "sampling"
1355
-
1356
- def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
1357
- return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
1358
-
1359
- class KSamplerAdvanced:
1360
- @classmethod
1361
- def INPUT_TYPES(s):
1362
- return {"required":
1363
- {"model": ("MODEL",),
1364
- "add_noise": (["enable", "disable"], ),
1365
- "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
1366
- "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
1367
- "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
1368
- "sampler_name": (ldm_patched.modules.samplers.KSampler.SAMPLERS, ),
1369
- "scheduler": (ldm_patched.modules.samplers.KSampler.SCHEDULERS, ),
1370
- "positive": ("CONDITIONING", ),
1371
- "negative": ("CONDITIONING", ),
1372
- "latent_image": ("LATENT", ),
1373
- "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
1374
- "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
1375
- "return_with_leftover_noise": (["disable", "enable"], ),
1376
- }
1377
- }
1378
-
1379
- RETURN_TYPES = ("LATENT",)
1380
- FUNCTION = "sample"
1381
-
1382
- CATEGORY = "sampling"
1383
-
1384
- def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
1385
- force_full_denoise = True
1386
- if return_with_leftover_noise == "enable":
1387
- force_full_denoise = False
1388
- disable_noise = False
1389
- if add_noise == "disable":
1390
- disable_noise = True
1391
- return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
1392
-
1393
- class SaveImage:
1394
- def __init__(self):
1395
- self.output_dir = ldm_patched.utils.path_utils.get_output_directory()
1396
- self.type = "output"
1397
- self.prefix_append = ""
1398
- self.compress_level = 4
1399
-
1400
- @classmethod
1401
- def INPUT_TYPES(s):
1402
- return {"required":
1403
- {"images": ("IMAGE", ),
1404
- "filename_prefix": ("STRING", {"default": "ldm_patched"})},
1405
- "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
1406
- }
1407
-
1408
- RETURN_TYPES = ()
1409
- FUNCTION = "save_images"
1410
-
1411
- OUTPUT_NODE = True
1412
-
1413
- CATEGORY = "image"
1414
-
1415
- def save_images(self, images, filename_prefix="ldm_patched", prompt=None, extra_pnginfo=None):
1416
- filename_prefix += self.prefix_append
1417
- full_output_folder, filename, counter, subfolder, filename_prefix = ldm_patched.utils.path_utils.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
1418
- results = list()
1419
- for image in images:
1420
- i = 255. * image.cpu().numpy()
1421
- img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
1422
- metadata = None
1423
- if not args.disable_server_info:
1424
- metadata = PngInfo()
1425
- if prompt is not None:
1426
- metadata.add_text("prompt", json.dumps(prompt))
1427
- if extra_pnginfo is not None:
1428
- for x in extra_pnginfo:
1429
- metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1430
-
1431
- file = f"{filename}_{counter:05}_.png"
1432
- img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
1433
- results.append({
1434
- "filename": file,
1435
- "subfolder": subfolder,
1436
- "type": self.type
1437
- })
1438
- counter += 1
1439
-
1440
- return { "ui": { "images": results } }
1441
-
1442
- class PreviewImage(SaveImage):
1443
- def __init__(self):
1444
- self.output_dir = ldm_patched.utils.path_utils.get_temp_directory()
1445
- self.type = "temp"
1446
- self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
1447
- self.compress_level = 1
1448
-
1449
- @classmethod
1450
- def INPUT_TYPES(s):
1451
- return {"required":
1452
- {"images": ("IMAGE", ), },
1453
- "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
1454
- }
1455
-
1456
- class LoadImage:
1457
- @classmethod
1458
- def INPUT_TYPES(s):
1459
- input_dir = ldm_patched.utils.path_utils.get_input_directory()
1460
- files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1461
- return {"required":
1462
- {"image": (sorted(files), {"image_upload": True})},
1463
- }
1464
-
1465
- CATEGORY = "image"
1466
-
1467
- RETURN_TYPES = ("IMAGE", "MASK")
1468
- FUNCTION = "load_image"
1469
- def load_image(self, image):
1470
- image_path = ldm_patched.utils.path_utils.get_annotated_filepath(image)
1471
- img = Image.open(image_path)
1472
- output_images = []
1473
- output_masks = []
1474
- for i in ImageSequence.Iterator(img):
1475
- i = ImageOps.exif_transpose(i)
1476
- if i.mode == 'I':
1477
- i = i.point(lambda i: i * (1 / 255))
1478
- image = i.convert("RGB")
1479
- image = np.array(image).astype(np.float32) / 255.0
1480
- image = torch.from_numpy(image)[None,]
1481
- if 'A' in i.getbands():
1482
- mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
1483
- mask = 1. - torch.from_numpy(mask)
1484
- else:
1485
- mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
1486
- output_images.append(image)
1487
- output_masks.append(mask.unsqueeze(0))
1488
-
1489
- if len(output_images) > 1:
1490
- output_image = torch.cat(output_images, dim=0)
1491
- output_mask = torch.cat(output_masks, dim=0)
1492
- else:
1493
- output_image = output_images[0]
1494
- output_mask = output_masks[0]
1495
-
1496
- return (output_image, output_mask)
1497
-
1498
- @classmethod
1499
- def IS_CHANGED(s, image):
1500
- image_path = ldm_patched.utils.path_utils.get_annotated_filepath(image)
1501
- m = hashlib.sha256()
1502
- with open(image_path, 'rb') as f:
1503
- m.update(f.read())
1504
- return m.digest().hex()
1505
-
1506
- @classmethod
1507
- def VALIDATE_INPUTS(s, image):
1508
- if not ldm_patched.utils.path_utils.exists_annotated_filepath(image):
1509
- return "Invalid image file: {}".format(image)
1510
-
1511
- return True
1512
-
1513
- class LoadImageMask:
1514
- _color_channels = ["alpha", "red", "green", "blue"]
1515
- @classmethod
1516
- def INPUT_TYPES(s):
1517
- input_dir = ldm_patched.utils.path_utils.get_input_directory()
1518
- files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1519
- return {"required":
1520
- {"image": (sorted(files), {"image_upload": True}),
1521
- "channel": (s._color_channels, ), }
1522
- }
1523
-
1524
- CATEGORY = "mask"
1525
-
1526
- RETURN_TYPES = ("MASK",)
1527
- FUNCTION = "load_image"
1528
- def load_image(self, image, channel):
1529
- image_path = ldm_patched.utils.path_utils.get_annotated_filepath(image)
1530
- i = Image.open(image_path)
1531
- i = ImageOps.exif_transpose(i)
1532
- if i.getbands() != ("R", "G", "B", "A"):
1533
- if i.mode == 'I':
1534
- i = i.point(lambda i: i * (1 / 255))
1535
- i = i.convert("RGBA")
1536
- mask = None
1537
- c = channel[0].upper()
1538
- if c in i.getbands():
1539
- mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
1540
- mask = torch.from_numpy(mask)
1541
- if c == 'A':
1542
- mask = 1. - mask
1543
- else:
1544
- mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
1545
- return (mask.unsqueeze(0),)
1546
-
1547
- @classmethod
1548
- def IS_CHANGED(s, image, channel):
1549
- image_path = ldm_patched.utils.path_utils.get_annotated_filepath(image)
1550
- m = hashlib.sha256()
1551
- with open(image_path, 'rb') as f:
1552
- m.update(f.read())
1553
- return m.digest().hex()
1554
-
1555
- @classmethod
1556
- def VALIDATE_INPUTS(s, image):
1557
- if not ldm_patched.utils.path_utils.exists_annotated_filepath(image):
1558
- return "Invalid image file: {}".format(image)
1559
-
1560
- return True
1561
-
1562
- class ImageScale:
1563
- upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
1564
- crop_methods = ["disabled", "center"]
1565
-
1566
- @classmethod
1567
- def INPUT_TYPES(s):
1568
- return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1569
- "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
1570
- "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
1571
- "crop": (s.crop_methods,)}}
1572
- RETURN_TYPES = ("IMAGE",)
1573
- FUNCTION = "upscale"
1574
-
1575
- CATEGORY = "image/upscaling"
1576
-
1577
- def upscale(self, image, upscale_method, width, height, crop):
1578
- if width == 0 and height == 0:
1579
- s = image
1580
- else:
1581
- samples = image.movedim(-1,1)
1582
-
1583
- if width == 0:
1584
- width = max(1, round(samples.shape[3] * height / samples.shape[2]))
1585
- elif height == 0:
1586
- height = max(1, round(samples.shape[2] * width / samples.shape[3]))
1587
-
1588
- s = ldm_patched.modules.utils.common_upscale(samples, width, height, upscale_method, crop)
1589
- s = s.movedim(1,-1)
1590
- return (s,)
1591
-
1592
- class ImageScaleBy:
1593
- upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
1594
-
1595
- @classmethod
1596
- def INPUT_TYPES(s):
1597
- return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1598
- "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
1599
- RETURN_TYPES = ("IMAGE",)
1600
- FUNCTION = "upscale"
1601
-
1602
- CATEGORY = "image/upscaling"
1603
-
1604
- def upscale(self, image, upscale_method, scale_by):
1605
- samples = image.movedim(-1,1)
1606
- width = round(samples.shape[3] * scale_by)
1607
- height = round(samples.shape[2] * scale_by)
1608
- s = ldm_patched.modules.utils.common_upscale(samples, width, height, upscale_method, "disabled")
1609
- s = s.movedim(1,-1)
1610
- return (s,)
1611
-
1612
- class ImageInvert:
1613
-
1614
- @classmethod
1615
- def INPUT_TYPES(s):
1616
- return {"required": { "image": ("IMAGE",)}}
1617
-
1618
- RETURN_TYPES = ("IMAGE",)
1619
- FUNCTION = "invert"
1620
-
1621
- CATEGORY = "image"
1622
-
1623
- def invert(self, image):
1624
- s = 1.0 - image
1625
- return (s,)
1626
-
1627
- class ImageBatch:
1628
-
1629
- @classmethod
1630
- def INPUT_TYPES(s):
1631
- return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",)}}
1632
-
1633
- RETURN_TYPES = ("IMAGE",)
1634
- FUNCTION = "batch"
1635
-
1636
- CATEGORY = "image"
1637
-
1638
- def batch(self, image1, image2):
1639
- if image1.shape[1:] != image2.shape[1:]:
1640
- image2 = ldm_patched.modules.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1)
1641
- s = torch.cat((image1, image2), dim=0)
1642
- return (s,)
1643
-
1644
- class EmptyImage:
1645
- def __init__(self, device="cpu"):
1646
- self.device = device
1647
-
1648
- @classmethod
1649
- def INPUT_TYPES(s):
1650
- return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
1651
- "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
1652
- "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
1653
- "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
1654
- }}
1655
- RETURN_TYPES = ("IMAGE",)
1656
- FUNCTION = "generate"
1657
-
1658
- CATEGORY = "image"
1659
-
1660
- def generate(self, width, height, batch_size=1, color=0):
1661
- r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
1662
- g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
1663
- b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
1664
- return (torch.cat((r, g, b), dim=-1), )
1665
-
1666
- class ImagePadForOutpaint:
1667
-
1668
- @classmethod
1669
- def INPUT_TYPES(s):
1670
- return {
1671
- "required": {
1672
- "image": ("IMAGE",),
1673
- "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1674
- "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1675
- "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1676
- "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1677
- "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
1678
- }
1679
- }
1680
-
1681
- RETURN_TYPES = ("IMAGE", "MASK")
1682
- FUNCTION = "expand_image"
1683
-
1684
- CATEGORY = "image"
1685
-
1686
- def expand_image(self, image, left, top, right, bottom, feathering):
1687
- d1, d2, d3, d4 = image.size()
1688
-
1689
- new_image = torch.ones(
1690
- (d1, d2 + top + bottom, d3 + left + right, d4),
1691
- dtype=torch.float32,
1692
- ) * 0.5
1693
-
1694
- new_image[:, top:top + d2, left:left + d3, :] = image
1695
-
1696
- mask = torch.ones(
1697
- (d2 + top + bottom, d3 + left + right),
1698
- dtype=torch.float32,
1699
- )
1700
-
1701
- t = torch.zeros(
1702
- (d2, d3),
1703
- dtype=torch.float32
1704
- )
1705
-
1706
- if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1707
-
1708
- for i in range(d2):
1709
- for j in range(d3):
1710
- dt = i if top != 0 else d2
1711
- db = d2 - i if bottom != 0 else d2
1712
-
1713
- dl = j if left != 0 else d3
1714
- dr = d3 - j if right != 0 else d3
1715
-
1716
- d = min(dt, db, dl, dr)
1717
-
1718
- if d >= feathering:
1719
- continue
1720
-
1721
- v = (feathering - d) / feathering
1722
-
1723
- t[i, j] = v * v
1724
-
1725
- mask[top:top + d2, left:left + d3] = t
1726
-
1727
- return (new_image, mask)
1728
-
1729
-
1730
- NODE_CLASS_MAPPINGS = {
1731
- "KSampler": KSampler,
1732
- "CheckpointLoaderSimple": CheckpointLoaderSimple,
1733
- "CLIPTextEncode": CLIPTextEncode,
1734
- "CLIPSetLastLayer": CLIPSetLastLayer,
1735
- "VAEDecode": VAEDecode,
1736
- "VAEEncode": VAEEncode,
1737
- "VAEEncodeForInpaint": VAEEncodeForInpaint,
1738
- "VAELoader": VAELoader,
1739
- "EmptyLatentImage": EmptyLatentImage,
1740
- "LatentUpscale": LatentUpscale,
1741
- "LatentUpscaleBy": LatentUpscaleBy,
1742
- "LatentFromBatch": LatentFromBatch,
1743
- "RepeatLatentBatch": RepeatLatentBatch,
1744
- "SaveImage": SaveImage,
1745
- "PreviewImage": PreviewImage,
1746
- "LoadImage": LoadImage,
1747
- "LoadImageMask": LoadImageMask,
1748
- "ImageScale": ImageScale,
1749
- "ImageScaleBy": ImageScaleBy,
1750
- "ImageInvert": ImageInvert,
1751
- "ImageBatch": ImageBatch,
1752
- "ImagePadForOutpaint": ImagePadForOutpaint,
1753
- "EmptyImage": EmptyImage,
1754
- "ConditioningAverage": ConditioningAverage ,
1755
- "ConditioningCombine": ConditioningCombine,
1756
- "ConditioningConcat": ConditioningConcat,
1757
- "ConditioningSetArea": ConditioningSetArea,
1758
- "ConditioningSetAreaPercentage": ConditioningSetAreaPercentage,
1759
- "ConditioningSetMask": ConditioningSetMask,
1760
- "KSamplerAdvanced": KSamplerAdvanced,
1761
- "SetLatentNoiseMask": SetLatentNoiseMask,
1762
- "LatentComposite": LatentComposite,
1763
- "LatentBlend": LatentBlend,
1764
- "LatentRotate": LatentRotate,
1765
- "LatentFlip": LatentFlip,
1766
- "LatentCrop": LatentCrop,
1767
- "LoraLoader": LoraLoader,
1768
- "CLIPLoader": CLIPLoader,
1769
- "UNETLoader": UNETLoader,
1770
- "DualCLIPLoader": DualCLIPLoader,
1771
- "CLIPVisionEncode": CLIPVisionEncode,
1772
- "StyleModelApply": StyleModelApply,
1773
- "unCLIPConditioning": unCLIPConditioning,
1774
- "ControlNetApply": ControlNetApply,
1775
- "ControlNetApplyAdvanced": ControlNetApplyAdvanced,
1776
- "ControlNetLoader": ControlNetLoader,
1777
- "DiffControlNetLoader": DiffControlNetLoader,
1778
- "StyleModelLoader": StyleModelLoader,
1779
- "CLIPVisionLoader": CLIPVisionLoader,
1780
- "VAEDecodeTiled": VAEDecodeTiled,
1781
- "VAEEncodeTiled": VAEEncodeTiled,
1782
- "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1783
- "GLIGENLoader": GLIGENLoader,
1784
- "GLIGENTextBoxApply": GLIGENTextBoxApply,
1785
- "InpaintModelConditioning": InpaintModelConditioning,
1786
-
1787
- "CheckpointLoader": CheckpointLoader,
1788
- "DiffusersLoader": DiffusersLoader,
1789
-
1790
- "LoadLatent": LoadLatent,
1791
- "SaveLatent": SaveLatent,
1792
-
1793
- "ConditioningZeroOut": ConditioningZeroOut,
1794
- "ConditioningSetTimestepRange": ConditioningSetTimestepRange,
1795
- "LoraLoaderModelOnly": LoraLoaderModelOnly,
1796
- }
1797
-
1798
- NODE_DISPLAY_NAME_MAPPINGS = {
1799
- # Sampling
1800
- "KSampler": "KSampler",
1801
- "KSamplerAdvanced": "KSampler (Advanced)",
1802
- # Loaders
1803
- "CheckpointLoader": "Load Checkpoint With Config (DEPRECATED)",
1804
- "CheckpointLoaderSimple": "Load Checkpoint",
1805
- "VAELoader": "Load VAE",
1806
- "LoraLoader": "Load LoRA",
1807
- "CLIPLoader": "Load CLIP",
1808
- "ControlNetLoader": "Load ControlNet Model",
1809
- "DiffControlNetLoader": "Load ControlNet Model (diff)",
1810
- "StyleModelLoader": "Load Style Model",
1811
- "CLIPVisionLoader": "Load CLIP Vision",
1812
- "UpscaleModelLoader": "Load Upscale Model",
1813
- # Conditioning
1814
- "CLIPVisionEncode": "CLIP Vision Encode",
1815
- "StyleModelApply": "Apply Style Model",
1816
- "CLIPTextEncode": "CLIP Text Encode (Prompt)",
1817
- "CLIPSetLastLayer": "CLIP Set Last Layer",
1818
- "ConditioningCombine": "Conditioning (Combine)",
1819
- "ConditioningAverage ": "Conditioning (Average)",
1820
- "ConditioningConcat": "Conditioning (Concat)",
1821
- "ConditioningSetArea": "Conditioning (Set Area)",
1822
- "ConditioningSetAreaPercentage": "Conditioning (Set Area with Percentage)",
1823
- "ConditioningSetMask": "Conditioning (Set Mask)",
1824
- "ControlNetApply": "Apply ControlNet",
1825
- "ControlNetApplyAdvanced": "Apply ControlNet (Advanced)",
1826
- # Latent
1827
- "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
1828
- "SetLatentNoiseMask": "Set Latent Noise Mask",
1829
- "VAEDecode": "VAE Decode",
1830
- "VAEEncode": "VAE Encode",
1831
- "LatentRotate": "Rotate Latent",
1832
- "LatentFlip": "Flip Latent",
1833
- "LatentCrop": "Crop Latent",
1834
- "EmptyLatentImage": "Empty Latent Image",
1835
- "LatentUpscale": "Upscale Latent",
1836
- "LatentUpscaleBy": "Upscale Latent By",
1837
- "LatentComposite": "Latent Composite",
1838
- "LatentBlend": "Latent Blend",
1839
- "LatentFromBatch" : "Latent From Batch",
1840
- "RepeatLatentBatch": "Repeat Latent Batch",
1841
- # Image
1842
- "SaveImage": "Save Image",
1843
- "PreviewImage": "Preview Image",
1844
- "LoadImage": "Load Image",
1845
- "LoadImageMask": "Load Image (as Mask)",
1846
- "ImageScale": "Upscale Image",
1847
- "ImageScaleBy": "Upscale Image By",
1848
- "ImageUpscaleWithModel": "Upscale Image (using Model)",
1849
- "ImageInvert": "Invert Image",
1850
- "ImagePadForOutpaint": "Pad Image for Outpainting",
1851
- "ImageBatch": "Batch Images",
1852
- # _for_testing
1853
- "VAEDecodeTiled": "VAE Decode (Tiled)",
1854
- "VAEEncodeTiled": "VAE Encode (Tiled)",
1855
- }
1856
-
1857
- EXTENSION_WEB_DIRS = {}
1858
-
1859
- def load_custom_node(module_path, ignore=set()):
1860
- module_name = os.path.basename(module_path)
1861
- if os.path.isfile(module_path):
1862
- sp = os.path.splitext(module_path)
1863
- module_name = sp[0]
1864
- try:
1865
- if os.path.isfile(module_path):
1866
- module_spec = importlib.util.spec_from_file_location(module_name, module_path)
1867
- module_dir = os.path.split(module_path)[0]
1868
- else:
1869
- module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
1870
- module_dir = module_path
1871
-
1872
- module = importlib.util.module_from_spec(module_spec)
1873
- sys.modules[module_name] = module
1874
- module_spec.loader.exec_module(module)
1875
-
1876
- if hasattr(module, "WEB_DIRECTORY") and getattr(module, "WEB_DIRECTORY") is not None:
1877
- web_dir = os.path.abspath(os.path.join(module_dir, getattr(module, "WEB_DIRECTORY")))
1878
- if os.path.isdir(web_dir):
1879
- EXTENSION_WEB_DIRS[module_name] = web_dir
1880
-
1881
- if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
1882
- for name in module.NODE_CLASS_MAPPINGS:
1883
- if name not in ignore:
1884
- NODE_CLASS_MAPPINGS[name] = module.NODE_CLASS_MAPPINGS[name]
1885
- if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
1886
- NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1887
- return True
1888
- else:
1889
- print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1890
- return False
1891
- except Exception as e:
1892
- print(traceback.format_exc())
1893
- print(f"Cannot import {module_path} module for custom nodes:", e)
1894
- return False
1895
-
1896
- def load_custom_nodes():
1897
- base_node_names = set(NODE_CLASS_MAPPINGS.keys())
1898
- node_paths = ldm_patched.utils.path_utils.get_folder_paths("custom_nodes")
1899
- node_import_times = []
1900
- for custom_node_path in node_paths:
1901
- possible_modules = os.listdir(os.path.realpath(custom_node_path))
1902
- if "__pycache__" in possible_modules:
1903
- possible_modules.remove("__pycache__")
1904
-
1905
- for possible_module in possible_modules:
1906
- module_path = os.path.join(custom_node_path, possible_module)
1907
- if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1908
- if module_path.endswith(".disabled"): continue
1909
- time_before = time.perf_counter()
1910
- success = load_custom_node(module_path, base_node_names)
1911
- node_import_times.append((time.perf_counter() - time_before, module_path, success))
1912
-
1913
- if len(node_import_times) > 0:
1914
- print("\nImport times for custom nodes:")
1915
- for n in sorted(node_import_times):
1916
- if n[2]:
1917
- import_message = ""
1918
- else:
1919
- import_message = " (IMPORT FAILED)"
1920
- print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
1921
- print()
1922
-
1923
- def init_custom_nodes():
1924
- extras_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "ldm_patched_extras")
1925
- extras_files = [
1926
- "nodes_latent.py",
1927
- "nodes_hypernetwork.py",
1928
- "nodes_upscale_model.py",
1929
- "nodes_post_processing.py",
1930
- "nodes_mask.py",
1931
- "nodes_compositing.py",
1932
- "nodes_rebatch.py",
1933
- "nodes_model_merging.py",
1934
- "nodes_tomesd.py",
1935
- "nodes_clip_sdxl.py",
1936
- "nodes_canny.py",
1937
- "nodes_freelunch.py",
1938
- "nodes_custom_sampler.py",
1939
- "nodes_hypertile.py",
1940
- "nodes_model_advanced.py",
1941
- "nodes_model_downscale.py",
1942
- "nodes_images.py",
1943
- "nodes_video_model.py",
1944
- "nodes_sag.py",
1945
- "nodes_perpneg.py",
1946
- "nodes_stable3d.py",
1947
- "nodes_sdupscale.py",
1948
- "nodes_photomaker.py",
1949
- ]
1950
-
1951
- for node_file in extras_files:
1952
- load_custom_node(os.path.join(extras_dir, node_file))
1953
-
1954
- load_custom_nodes()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_canny.py DELETED
@@ -1,301 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- #From https://github.com/kornia/kornia
4
- import math
5
-
6
- import torch
7
- import torch.nn.functional as F
8
- import ldm_patched.modules.model_management
9
-
10
- def get_canny_nms_kernel(device=None, dtype=None):
11
- """Utility function that returns 3x3 kernels for the Canny Non-maximal suppression."""
12
- return torch.tensor(
13
- [
14
- [[[0.0, 0.0, 0.0], [0.0, 1.0, -1.0], [0.0, 0.0, 0.0]]],
15
- [[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]]],
16
- [[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0]]],
17
- [[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [-1.0, 0.0, 0.0]]],
18
- [[[0.0, 0.0, 0.0], [-1.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
19
- [[[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
20
- [[[0.0, -1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
21
- [[[0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
22
- ],
23
- device=device,
24
- dtype=dtype,
25
- )
26
-
27
-
28
- def get_hysteresis_kernel(device=None, dtype=None):
29
- """Utility function that returns the 3x3 kernels for the Canny hysteresis."""
30
- return torch.tensor(
31
- [
32
- [[[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0]]],
33
- [[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]]],
34
- [[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]],
35
- [[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [1.0, 0.0, 0.0]]],
36
- [[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
37
- [[[1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
38
- [[[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
39
- [[[0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
40
- ],
41
- device=device,
42
- dtype=dtype,
43
- )
44
-
45
- def gaussian_blur_2d(img, kernel_size, sigma):
46
- ksize_half = (kernel_size - 1) * 0.5
47
-
48
- x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
49
-
50
- pdf = torch.exp(-0.5 * (x / sigma).pow(2))
51
-
52
- x_kernel = pdf / pdf.sum()
53
- x_kernel = x_kernel.to(device=img.device, dtype=img.dtype)
54
-
55
- kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :])
56
- kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1])
57
-
58
- padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2]
59
-
60
- img = torch.nn.functional.pad(img, padding, mode="reflect")
61
- img = torch.nn.functional.conv2d(img, kernel2d, groups=img.shape[-3])
62
-
63
- return img
64
-
65
- def get_sobel_kernel2d(device=None, dtype=None):
66
- kernel_x = torch.tensor([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]], device=device, dtype=dtype)
67
- kernel_y = kernel_x.transpose(0, 1)
68
- return torch.stack([kernel_x, kernel_y])
69
-
70
- def spatial_gradient(input, normalized: bool = True):
71
- r"""Compute the first order image derivative in both x and y using a Sobel operator.
72
- .. image:: _static/img/spatial_gradient.png
73
- Args:
74
- input: input image tensor with shape :math:`(B, C, H, W)`.
75
- mode: derivatives modality, can be: `sobel` or `diff`.
76
- order: the order of the derivatives.
77
- normalized: whether the output is normalized.
78
- Return:
79
- the derivatives of the input feature map. with shape :math:`(B, C, 2, H, W)`.
80
- .. note::
81
- See a working example `here <https://kornia.readthedocs.io/en/latest/
82
- filtering_edges.html>`__.
83
- Examples:
84
- >>> input = torch.rand(1, 3, 4, 4)
85
- >>> output = spatial_gradient(input) # 1x3x2x4x4
86
- >>> output.shape
87
- torch.Size([1, 3, 2, 4, 4])
88
- """
89
- # KORNIA_CHECK_IS_TENSOR(input)
90
- # KORNIA_CHECK_SHAPE(input, ['B', 'C', 'H', 'W'])
91
-
92
- # allocate kernel
93
- kernel = get_sobel_kernel2d(device=input.device, dtype=input.dtype)
94
- if normalized:
95
- kernel = normalize_kernel2d(kernel)
96
-
97
- # prepare kernel
98
- b, c, h, w = input.shape
99
- tmp_kernel = kernel[:, None, ...]
100
-
101
- # Pad with "replicate for spatial dims, but with zeros for channel
102
- spatial_pad = [kernel.size(1) // 2, kernel.size(1) // 2, kernel.size(2) // 2, kernel.size(2) // 2]
103
- out_channels: int = 2
104
- padded_inp = torch.nn.functional.pad(input.reshape(b * c, 1, h, w), spatial_pad, 'replicate')
105
- out = F.conv2d(padded_inp, tmp_kernel, groups=1, padding=0, stride=1)
106
- return out.reshape(b, c, out_channels, h, w)
107
-
108
- def rgb_to_grayscale(image, rgb_weights = None):
109
- r"""Convert a RGB image to grayscale version of image.
110
-
111
- .. image:: _static/img/rgb_to_grayscale.png
112
-
113
- The image data is assumed to be in the range of (0, 1).
114
-
115
- Args:
116
- image: RGB image to be converted to grayscale with shape :math:`(*,3,H,W)`.
117
- rgb_weights: Weights that will be applied on each channel (RGB).
118
- The sum of the weights should add up to one.
119
- Returns:
120
- grayscale version of the image with shape :math:`(*,1,H,W)`.
121
-
122
- .. note::
123
- See a working example `here <https://kornia.readthedocs.io/en/latest/
124
- color_conversions.html>`__.
125
-
126
- Example:
127
- >>> input = torch.rand(2, 3, 4, 5)
128
- >>> gray = rgb_to_grayscale(input) # 2x1x4x5
129
- """
130
-
131
- if len(image.shape) < 3 or image.shape[-3] != 3:
132
- raise ValueError(f"Input size must have a shape of (*, 3, H, W). Got {image.shape}")
133
-
134
- if rgb_weights is None:
135
- # 8 bit images
136
- if image.dtype == torch.uint8:
137
- rgb_weights = torch.tensor([76, 150, 29], device=image.device, dtype=torch.uint8)
138
- # floating point images
139
- elif image.dtype in (torch.float16, torch.float32, torch.float64):
140
- rgb_weights = torch.tensor([0.299, 0.587, 0.114], device=image.device, dtype=image.dtype)
141
- else:
142
- raise TypeError(f"Unknown data type: {image.dtype}")
143
- else:
144
- # is tensor that we make sure is in the same device/dtype
145
- rgb_weights = rgb_weights.to(image)
146
-
147
- # unpack the color image channels with RGB order
148
- r: Tensor = image[..., 0:1, :, :]
149
- g: Tensor = image[..., 1:2, :, :]
150
- b: Tensor = image[..., 2:3, :, :]
151
-
152
- w_r, w_g, w_b = rgb_weights.unbind()
153
- return w_r * r + w_g * g + w_b * b
154
-
155
- def canny(
156
- input,
157
- low_threshold = 0.1,
158
- high_threshold = 0.2,
159
- kernel_size = 5,
160
- sigma = 1,
161
- hysteresis = True,
162
- eps = 1e-6,
163
- ):
164
- r"""Find edges of the input image and filters them using the Canny algorithm.
165
- .. image:: _static/img/canny.png
166
- Args:
167
- input: input image tensor with shape :math:`(B,C,H,W)`.
168
- low_threshold: lower threshold for the hysteresis procedure.
169
- high_threshold: upper threshold for the hysteresis procedure.
170
- kernel_size: the size of the kernel for the gaussian blur.
171
- sigma: the standard deviation of the kernel for the gaussian blur.
172
- hysteresis: if True, applies the hysteresis edge tracking.
173
- Otherwise, the edges are divided between weak (0.5) and strong (1) edges.
174
- eps: regularization number to avoid NaN during backprop.
175
- Returns:
176
- - the canny edge magnitudes map, shape of :math:`(B,1,H,W)`.
177
- - the canny edge detection filtered by thresholds and hysteresis, shape of :math:`(B,1,H,W)`.
178
- .. note::
179
- See a working example `here <https://kornia.readthedocs.io/en/latest/
180
- canny.html>`__.
181
- Example:
182
- >>> input = torch.rand(5, 3, 4, 4)
183
- >>> magnitude, edges = canny(input) # 5x3x4x4
184
- >>> magnitude.shape
185
- torch.Size([5, 1, 4, 4])
186
- >>> edges.shape
187
- torch.Size([5, 1, 4, 4])
188
- """
189
- # KORNIA_CHECK_IS_TENSOR(input)
190
- # KORNIA_CHECK_SHAPE(input, ['B', 'C', 'H', 'W'])
191
- # KORNIA_CHECK(
192
- # low_threshold <= high_threshold,
193
- # "Invalid input thresholds. low_threshold should be smaller than the high_threshold. Got: "
194
- # f"{low_threshold}>{high_threshold}",
195
- # )
196
- # KORNIA_CHECK(0 < low_threshold < 1, f'Invalid low threshold. Should be in range (0, 1). Got: {low_threshold}')
197
- # KORNIA_CHECK(0 < high_threshold < 1, f'Invalid high threshold. Should be in range (0, 1). Got: {high_threshold}')
198
-
199
- device = input.device
200
- dtype = input.dtype
201
-
202
- # To Grayscale
203
- if input.shape[1] == 3:
204
- input = rgb_to_grayscale(input)
205
-
206
- # Gaussian filter
207
- blurred: Tensor = gaussian_blur_2d(input, kernel_size, sigma)
208
-
209
- # Compute the gradients
210
- gradients: Tensor = spatial_gradient(blurred, normalized=False)
211
-
212
- # Unpack the edges
213
- gx: Tensor = gradients[:, :, 0]
214
- gy: Tensor = gradients[:, :, 1]
215
-
216
- # Compute gradient magnitude and angle
217
- magnitude: Tensor = torch.sqrt(gx * gx + gy * gy + eps)
218
- angle: Tensor = torch.atan2(gy, gx)
219
-
220
- # Radians to Degrees
221
- angle = 180.0 * angle / math.pi
222
-
223
- # Round angle to the nearest 45 degree
224
- angle = torch.round(angle / 45) * 45
225
-
226
- # Non-maximal suppression
227
- nms_kernels: Tensor = get_canny_nms_kernel(device, dtype)
228
- nms_magnitude: Tensor = F.conv2d(magnitude, nms_kernels, padding=nms_kernels.shape[-1] // 2)
229
-
230
- # Get the indices for both directions
231
- positive_idx: Tensor = (angle / 45) % 8
232
- positive_idx = positive_idx.long()
233
-
234
- negative_idx: Tensor = ((angle / 45) + 4) % 8
235
- negative_idx = negative_idx.long()
236
-
237
- # Apply the non-maximum suppression to the different directions
238
- channel_select_filtered_positive: Tensor = torch.gather(nms_magnitude, 1, positive_idx)
239
- channel_select_filtered_negative: Tensor = torch.gather(nms_magnitude, 1, negative_idx)
240
-
241
- channel_select_filtered: Tensor = torch.stack(
242
- [channel_select_filtered_positive, channel_select_filtered_negative], 1
243
- )
244
-
245
- is_max: Tensor = channel_select_filtered.min(dim=1)[0] > 0.0
246
-
247
- magnitude = magnitude * is_max
248
-
249
- # Threshold
250
- edges: Tensor = F.threshold(magnitude, low_threshold, 0.0)
251
-
252
- low: Tensor = magnitude > low_threshold
253
- high: Tensor = magnitude > high_threshold
254
-
255
- edges = low * 0.5 + high * 0.5
256
- edges = edges.to(dtype)
257
-
258
- # Hysteresis
259
- if hysteresis:
260
- edges_old: Tensor = -torch.ones(edges.shape, device=edges.device, dtype=dtype)
261
- hysteresis_kernels: Tensor = get_hysteresis_kernel(device, dtype)
262
-
263
- while ((edges_old - edges).abs() != 0).any():
264
- weak: Tensor = (edges == 0.5).float()
265
- strong: Tensor = (edges == 1).float()
266
-
267
- hysteresis_magnitude: Tensor = F.conv2d(
268
- edges, hysteresis_kernels, padding=hysteresis_kernels.shape[-1] // 2
269
- )
270
- hysteresis_magnitude = (hysteresis_magnitude == 1).any(1, keepdim=True).to(dtype)
271
- hysteresis_magnitude = hysteresis_magnitude * weak + strong
272
-
273
- edges_old = edges.clone()
274
- edges = hysteresis_magnitude + (hysteresis_magnitude == 0) * weak * 0.5
275
-
276
- edges = hysteresis_magnitude
277
-
278
- return magnitude, edges
279
-
280
-
281
- class Canny:
282
- @classmethod
283
- def INPUT_TYPES(s):
284
- return {"required": {"image": ("IMAGE",),
285
- "low_threshold": ("FLOAT", {"default": 0.4, "min": 0.01, "max": 0.99, "step": 0.01}),
286
- "high_threshold": ("FLOAT", {"default": 0.8, "min": 0.01, "max": 0.99, "step": 0.01})
287
- }}
288
-
289
- RETURN_TYPES = ("IMAGE",)
290
- FUNCTION = "detect_edge"
291
-
292
- CATEGORY = "image/preprocessors"
293
-
294
- def detect_edge(self, image, low_threshold, high_threshold):
295
- output = canny(image.to(ldm_patched.modules.model_management.get_torch_device()).movedim(-1, 1), low_threshold, high_threshold)
296
- img_out = output[1].to(ldm_patched.modules.model_management.intermediate_device()).repeat(1, 3, 1, 1).movedim(1, -1)
297
- return (img_out,)
298
-
299
- NODE_CLASS_MAPPINGS = {
300
- "Canny": Canny,
301
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_clip_sdxl.py DELETED
@@ -1,58 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import torch
4
- from ldm_patched.contrib.external import MAX_RESOLUTION
5
-
6
- class CLIPTextEncodeSDXLRefiner:
7
- @classmethod
8
- def INPUT_TYPES(s):
9
- return {"required": {
10
- "ascore": ("FLOAT", {"default": 6.0, "min": 0.0, "max": 1000.0, "step": 0.01}),
11
- "width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
12
- "height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
13
- "text": ("STRING", {"multiline": True}), "clip": ("CLIP", ),
14
- }}
15
- RETURN_TYPES = ("CONDITIONING",)
16
- FUNCTION = "encode"
17
-
18
- CATEGORY = "advanced/conditioning"
19
-
20
- def encode(self, clip, ascore, width, height, text):
21
- tokens = clip.tokenize(text)
22
- cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
23
- return ([[cond, {"pooled_output": pooled, "aesthetic_score": ascore, "width": width,"height": height}]], )
24
-
25
- class CLIPTextEncodeSDXL:
26
- @classmethod
27
- def INPUT_TYPES(s):
28
- return {"required": {
29
- "width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
30
- "height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
31
- "crop_w": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION}),
32
- "crop_h": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION}),
33
- "target_width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
34
- "target_height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
35
- "text_g": ("STRING", {"multiline": True, "default": "CLIP_G"}), "clip": ("CLIP", ),
36
- "text_l": ("STRING", {"multiline": True, "default": "CLIP_L"}), "clip": ("CLIP", ),
37
- }}
38
- RETURN_TYPES = ("CONDITIONING",)
39
- FUNCTION = "encode"
40
-
41
- CATEGORY = "advanced/conditioning"
42
-
43
- def encode(self, clip, width, height, crop_w, crop_h, target_width, target_height, text_g, text_l):
44
- tokens = clip.tokenize(text_g)
45
- tokens["l"] = clip.tokenize(text_l)["l"]
46
- if len(tokens["l"]) != len(tokens["g"]):
47
- empty = clip.tokenize("")
48
- while len(tokens["l"]) < len(tokens["g"]):
49
- tokens["l"] += empty["l"]
50
- while len(tokens["l"]) > len(tokens["g"]):
51
- tokens["g"] += empty["g"]
52
- cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
53
- return ([[cond, {"pooled_output": pooled, "width": width, "height": height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]], )
54
-
55
- NODE_CLASS_MAPPINGS = {
56
- "CLIPTextEncodeSDXLRefiner": CLIPTextEncodeSDXLRefiner,
57
- "CLIPTextEncodeSDXL": CLIPTextEncodeSDXL,
58
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_compositing.py DELETED
@@ -1,204 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import numpy as np
4
- import torch
5
- import ldm_patched.modules.utils
6
- from enum import Enum
7
-
8
- def resize_mask(mask, shape):
9
- return torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[0], shape[1]), mode="bilinear").squeeze(1)
10
-
11
- class PorterDuffMode(Enum):
12
- ADD = 0
13
- CLEAR = 1
14
- DARKEN = 2
15
- DST = 3
16
- DST_ATOP = 4
17
- DST_IN = 5
18
- DST_OUT = 6
19
- DST_OVER = 7
20
- LIGHTEN = 8
21
- MULTIPLY = 9
22
- OVERLAY = 10
23
- SCREEN = 11
24
- SRC = 12
25
- SRC_ATOP = 13
26
- SRC_IN = 14
27
- SRC_OUT = 15
28
- SRC_OVER = 16
29
- XOR = 17
30
-
31
-
32
- def porter_duff_composite(src_image: torch.Tensor, src_alpha: torch.Tensor, dst_image: torch.Tensor, dst_alpha: torch.Tensor, mode: PorterDuffMode):
33
- if mode == PorterDuffMode.ADD:
34
- out_alpha = torch.clamp(src_alpha + dst_alpha, 0, 1)
35
- out_image = torch.clamp(src_image + dst_image, 0, 1)
36
- elif mode == PorterDuffMode.CLEAR:
37
- out_alpha = torch.zeros_like(dst_alpha)
38
- out_image = torch.zeros_like(dst_image)
39
- elif mode == PorterDuffMode.DARKEN:
40
- out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha
41
- out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + torch.min(src_image, dst_image)
42
- elif mode == PorterDuffMode.DST:
43
- out_alpha = dst_alpha
44
- out_image = dst_image
45
- elif mode == PorterDuffMode.DST_ATOP:
46
- out_alpha = src_alpha
47
- out_image = src_alpha * dst_image + (1 - dst_alpha) * src_image
48
- elif mode == PorterDuffMode.DST_IN:
49
- out_alpha = src_alpha * dst_alpha
50
- out_image = dst_image * src_alpha
51
- elif mode == PorterDuffMode.DST_OUT:
52
- out_alpha = (1 - src_alpha) * dst_alpha
53
- out_image = (1 - src_alpha) * dst_image
54
- elif mode == PorterDuffMode.DST_OVER:
55
- out_alpha = dst_alpha + (1 - dst_alpha) * src_alpha
56
- out_image = dst_image + (1 - dst_alpha) * src_image
57
- elif mode == PorterDuffMode.LIGHTEN:
58
- out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha
59
- out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + torch.max(src_image, dst_image)
60
- elif mode == PorterDuffMode.MULTIPLY:
61
- out_alpha = src_alpha * dst_alpha
62
- out_image = src_image * dst_image
63
- elif mode == PorterDuffMode.OVERLAY:
64
- out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha
65
- out_image = torch.where(2 * dst_image < dst_alpha, 2 * src_image * dst_image,
66
- src_alpha * dst_alpha - 2 * (dst_alpha - src_image) * (src_alpha - dst_image))
67
- elif mode == PorterDuffMode.SCREEN:
68
- out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha
69
- out_image = src_image + dst_image - src_image * dst_image
70
- elif mode == PorterDuffMode.SRC:
71
- out_alpha = src_alpha
72
- out_image = src_image
73
- elif mode == PorterDuffMode.SRC_ATOP:
74
- out_alpha = dst_alpha
75
- out_image = dst_alpha * src_image + (1 - src_alpha) * dst_image
76
- elif mode == PorterDuffMode.SRC_IN:
77
- out_alpha = src_alpha * dst_alpha
78
- out_image = src_image * dst_alpha
79
- elif mode == PorterDuffMode.SRC_OUT:
80
- out_alpha = (1 - dst_alpha) * src_alpha
81
- out_image = (1 - dst_alpha) * src_image
82
- elif mode == PorterDuffMode.SRC_OVER:
83
- out_alpha = src_alpha + (1 - src_alpha) * dst_alpha
84
- out_image = src_image + (1 - src_alpha) * dst_image
85
- elif mode == PorterDuffMode.XOR:
86
- out_alpha = (1 - dst_alpha) * src_alpha + (1 - src_alpha) * dst_alpha
87
- out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image
88
- else:
89
- out_alpha = None
90
- out_image = None
91
- return out_image, out_alpha
92
-
93
-
94
- class PorterDuffImageComposite:
95
- @classmethod
96
- def INPUT_TYPES(s):
97
- return {
98
- "required": {
99
- "source": ("IMAGE",),
100
- "source_alpha": ("MASK",),
101
- "destination": ("IMAGE",),
102
- "destination_alpha": ("MASK",),
103
- "mode": ([mode.name for mode in PorterDuffMode], {"default": PorterDuffMode.DST.name}),
104
- },
105
- }
106
-
107
- RETURN_TYPES = ("IMAGE", "MASK")
108
- FUNCTION = "composite"
109
- CATEGORY = "mask/compositing"
110
-
111
- def composite(self, source: torch.Tensor, source_alpha: torch.Tensor, destination: torch.Tensor, destination_alpha: torch.Tensor, mode):
112
- batch_size = min(len(source), len(source_alpha), len(destination), len(destination_alpha))
113
- out_images = []
114
- out_alphas = []
115
-
116
- for i in range(batch_size):
117
- src_image = source[i]
118
- dst_image = destination[i]
119
-
120
- assert src_image.shape[2] == dst_image.shape[2] # inputs need to have same number of channels
121
-
122
- src_alpha = source_alpha[i].unsqueeze(2)
123
- dst_alpha = destination_alpha[i].unsqueeze(2)
124
-
125
- if dst_alpha.shape[:2] != dst_image.shape[:2]:
126
- upscale_input = dst_alpha.unsqueeze(0).permute(0, 3, 1, 2)
127
- upscale_output = ldm_patched.modules.utils.common_upscale(upscale_input, dst_image.shape[1], dst_image.shape[0], upscale_method='bicubic', crop='center')
128
- dst_alpha = upscale_output.permute(0, 2, 3, 1).squeeze(0)
129
- if src_image.shape != dst_image.shape:
130
- upscale_input = src_image.unsqueeze(0).permute(0, 3, 1, 2)
131
- upscale_output = ldm_patched.modules.utils.common_upscale(upscale_input, dst_image.shape[1], dst_image.shape[0], upscale_method='bicubic', crop='center')
132
- src_image = upscale_output.permute(0, 2, 3, 1).squeeze(0)
133
- if src_alpha.shape != dst_alpha.shape:
134
- upscale_input = src_alpha.unsqueeze(0).permute(0, 3, 1, 2)
135
- upscale_output = ldm_patched.modules.utils.common_upscale(upscale_input, dst_alpha.shape[1], dst_alpha.shape[0], upscale_method='bicubic', crop='center')
136
- src_alpha = upscale_output.permute(0, 2, 3, 1).squeeze(0)
137
-
138
- out_image, out_alpha = porter_duff_composite(src_image, src_alpha, dst_image, dst_alpha, PorterDuffMode[mode])
139
-
140
- out_images.append(out_image)
141
- out_alphas.append(out_alpha.squeeze(2))
142
-
143
- result = (torch.stack(out_images), torch.stack(out_alphas))
144
- return result
145
-
146
-
147
- class SplitImageWithAlpha:
148
- @classmethod
149
- def INPUT_TYPES(s):
150
- return {
151
- "required": {
152
- "image": ("IMAGE",),
153
- }
154
- }
155
-
156
- CATEGORY = "mask/compositing"
157
- RETURN_TYPES = ("IMAGE", "MASK")
158
- FUNCTION = "split_image_with_alpha"
159
-
160
- def split_image_with_alpha(self, image: torch.Tensor):
161
- out_images = [i[:,:,:3] for i in image]
162
- out_alphas = [i[:,:,3] if i.shape[2] > 3 else torch.ones_like(i[:,:,0]) for i in image]
163
- result = (torch.stack(out_images), 1.0 - torch.stack(out_alphas))
164
- return result
165
-
166
-
167
- class JoinImageWithAlpha:
168
- @classmethod
169
- def INPUT_TYPES(s):
170
- return {
171
- "required": {
172
- "image": ("IMAGE",),
173
- "alpha": ("MASK",),
174
- }
175
- }
176
-
177
- CATEGORY = "mask/compositing"
178
- RETURN_TYPES = ("IMAGE",)
179
- FUNCTION = "join_image_with_alpha"
180
-
181
- def join_image_with_alpha(self, image: torch.Tensor, alpha: torch.Tensor):
182
- batch_size = min(len(image), len(alpha))
183
- out_images = []
184
-
185
- alpha = 1.0 - resize_mask(alpha, image.shape[1:])
186
- for i in range(batch_size):
187
- out_images.append(torch.cat((image[i][:,:,:3], alpha[i].unsqueeze(2)), dim=2))
188
-
189
- result = (torch.stack(out_images),)
190
- return result
191
-
192
-
193
- NODE_CLASS_MAPPINGS = {
194
- "PorterDuffImageComposite": PorterDuffImageComposite,
195
- "SplitImageWithAlpha": SplitImageWithAlpha,
196
- "JoinImageWithAlpha": JoinImageWithAlpha,
197
- }
198
-
199
-
200
- NODE_DISPLAY_NAME_MAPPINGS = {
201
- "PorterDuffImageComposite": "Porter-Duff Image Composite",
202
- "SplitImageWithAlpha": "Split Image with Alpha",
203
- "JoinImageWithAlpha": "Join Image with Alpha",
204
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_custom_sampler.py DELETED
@@ -1,297 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import ldm_patched.modules.samplers
4
- import ldm_patched.modules.sample
5
- from ldm_patched.k_diffusion import sampling as k_diffusion_sampling
6
- import ldm_patched.utils.latent_visualization
7
- import torch
8
- import ldm_patched.modules.utils
9
-
10
-
11
- class BasicScheduler:
12
- @classmethod
13
- def INPUT_TYPES(s):
14
- return {"required":
15
- {"model": ("MODEL",),
16
- "scheduler": (ldm_patched.modules.samplers.SCHEDULER_NAMES, ),
17
- "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
18
- "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
19
- }
20
- }
21
- RETURN_TYPES = ("SIGMAS",)
22
- CATEGORY = "sampling/custom_sampling/schedulers"
23
-
24
- FUNCTION = "get_sigmas"
25
-
26
- def get_sigmas(self, model, scheduler, steps, denoise):
27
- total_steps = steps
28
- if denoise < 1.0:
29
- total_steps = int(steps/denoise)
30
-
31
- ldm_patched.modules.model_management.load_models_gpu([model])
32
- sigmas = ldm_patched.modules.samplers.calculate_sigmas_scheduler(model.model, scheduler, total_steps).cpu()
33
- sigmas = sigmas[-(steps + 1):]
34
- return (sigmas, )
35
-
36
-
37
- class KarrasScheduler:
38
- @classmethod
39
- def INPUT_TYPES(s):
40
- return {"required":
41
- {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
42
- "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
43
- "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
44
- "rho": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
45
- }
46
- }
47
- RETURN_TYPES = ("SIGMAS",)
48
- CATEGORY = "sampling/custom_sampling/schedulers"
49
-
50
- FUNCTION = "get_sigmas"
51
-
52
- def get_sigmas(self, steps, sigma_max, sigma_min, rho):
53
- sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
54
- return (sigmas, )
55
-
56
- class ExponentialScheduler:
57
- @classmethod
58
- def INPUT_TYPES(s):
59
- return {"required":
60
- {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
61
- "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
62
- "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
63
- }
64
- }
65
- RETURN_TYPES = ("SIGMAS",)
66
- CATEGORY = "sampling/custom_sampling/schedulers"
67
-
68
- FUNCTION = "get_sigmas"
69
-
70
- def get_sigmas(self, steps, sigma_max, sigma_min):
71
- sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max)
72
- return (sigmas, )
73
-
74
- class PolyexponentialScheduler:
75
- @classmethod
76
- def INPUT_TYPES(s):
77
- return {"required":
78
- {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
79
- "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
80
- "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
81
- "rho": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
82
- }
83
- }
84
- RETURN_TYPES = ("SIGMAS",)
85
- CATEGORY = "sampling/custom_sampling/schedulers"
86
-
87
- FUNCTION = "get_sigmas"
88
-
89
- def get_sigmas(self, steps, sigma_max, sigma_min, rho):
90
- sigmas = k_diffusion_sampling.get_sigmas_polyexponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
91
- return (sigmas, )
92
-
93
- class SDTurboScheduler:
94
- @classmethod
95
- def INPUT_TYPES(s):
96
- return {"required":
97
- {"model": ("MODEL",),
98
- "steps": ("INT", {"default": 1, "min": 1, "max": 10}),
99
- "denoise": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
100
- }
101
- }
102
- RETURN_TYPES = ("SIGMAS",)
103
- CATEGORY = "sampling/custom_sampling/schedulers"
104
-
105
- FUNCTION = "get_sigmas"
106
-
107
- def get_sigmas(self, model, steps, denoise):
108
- start_step = 10 - int(10 * denoise)
109
- timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[start_step:start_step + steps]
110
- ldm_patched.modules.model_management.load_models_gpu([model])
111
- sigmas = model.model.model_sampling.sigma(timesteps)
112
- sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
113
- return (sigmas, )
114
-
115
- class VPScheduler:
116
- @classmethod
117
- def INPUT_TYPES(s):
118
- return {"required":
119
- {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
120
- "beta_d": ("FLOAT", {"default": 19.9, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), #TODO: fix default values
121
- "beta_min": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
122
- "eps_s": ("FLOAT", {"default": 0.001, "min": 0.0, "max": 1.0, "step":0.0001, "round": False}),
123
- }
124
- }
125
- RETURN_TYPES = ("SIGMAS",)
126
- CATEGORY = "sampling/custom_sampling/schedulers"
127
-
128
- FUNCTION = "get_sigmas"
129
-
130
- def get_sigmas(self, steps, beta_d, beta_min, eps_s):
131
- sigmas = k_diffusion_sampling.get_sigmas_vp(n=steps, beta_d=beta_d, beta_min=beta_min, eps_s=eps_s)
132
- return (sigmas, )
133
-
134
- class SplitSigmas:
135
- @classmethod
136
- def INPUT_TYPES(s):
137
- return {"required":
138
- {"sigmas": ("SIGMAS", ),
139
- "step": ("INT", {"default": 0, "min": 0, "max": 10000}),
140
- }
141
- }
142
- RETURN_TYPES = ("SIGMAS","SIGMAS")
143
- CATEGORY = "sampling/custom_sampling/sigmas"
144
-
145
- FUNCTION = "get_sigmas"
146
-
147
- def get_sigmas(self, sigmas, step):
148
- sigmas1 = sigmas[:step + 1]
149
- sigmas2 = sigmas[step:]
150
- return (sigmas1, sigmas2)
151
-
152
- class FlipSigmas:
153
- @classmethod
154
- def INPUT_TYPES(s):
155
- return {"required":
156
- {"sigmas": ("SIGMAS", ),
157
- }
158
- }
159
- RETURN_TYPES = ("SIGMAS",)
160
- CATEGORY = "sampling/custom_sampling/sigmas"
161
-
162
- FUNCTION = "get_sigmas"
163
-
164
- def get_sigmas(self, sigmas):
165
- sigmas = sigmas.flip(0)
166
- if sigmas[0] == 0:
167
- sigmas[0] = 0.0001
168
- return (sigmas,)
169
-
170
- class KSamplerSelect:
171
- @classmethod
172
- def INPUT_TYPES(s):
173
- return {"required":
174
- {"sampler_name": (ldm_patched.modules.samplers.SAMPLER_NAMES, ),
175
- }
176
- }
177
- RETURN_TYPES = ("SAMPLER",)
178
- CATEGORY = "sampling/custom_sampling/samplers"
179
-
180
- FUNCTION = "get_sampler"
181
-
182
- def get_sampler(self, sampler_name):
183
- sampler = ldm_patched.modules.samplers.sampler_object(sampler_name)
184
- return (sampler, )
185
-
186
- class SamplerDPMPP_2M_SDE:
187
- @classmethod
188
- def INPUT_TYPES(s):
189
- return {"required":
190
- {"solver_type": (['midpoint', 'heun'], ),
191
- "eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
192
- "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
193
- "noise_device": (['gpu', 'cpu'], ),
194
- }
195
- }
196
- RETURN_TYPES = ("SAMPLER",)
197
- CATEGORY = "sampling/custom_sampling/samplers"
198
-
199
- FUNCTION = "get_sampler"
200
-
201
- def get_sampler(self, solver_type, eta, s_noise, noise_device):
202
- if noise_device == 'cpu':
203
- sampler_name = "dpmpp_2m_sde"
204
- else:
205
- sampler_name = "dpmpp_2m_sde_gpu"
206
- sampler = ldm_patched.modules.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "solver_type": solver_type})
207
- return (sampler, )
208
-
209
-
210
- class SamplerDPMPP_SDE:
211
- @classmethod
212
- def INPUT_TYPES(s):
213
- return {"required":
214
- {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
215
- "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
216
- "r": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
217
- "noise_device": (['gpu', 'cpu'], ),
218
- }
219
- }
220
- RETURN_TYPES = ("SAMPLER",)
221
- CATEGORY = "sampling/custom_sampling/samplers"
222
-
223
- FUNCTION = "get_sampler"
224
-
225
- def get_sampler(self, eta, s_noise, r, noise_device):
226
- if noise_device == 'cpu':
227
- sampler_name = "dpmpp_sde"
228
- else:
229
- sampler_name = "dpmpp_sde_gpu"
230
- sampler = ldm_patched.modules.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r})
231
- return (sampler, )
232
-
233
- class SamplerCustom:
234
- @classmethod
235
- def INPUT_TYPES(s):
236
- return {"required":
237
- {"model": ("MODEL",),
238
- "add_noise": ("BOOLEAN", {"default": True}),
239
- "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
240
- "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
241
- "positive": ("CONDITIONING", ),
242
- "negative": ("CONDITIONING", ),
243
- "sampler": ("SAMPLER", ),
244
- "sigmas": ("SIGMAS", ),
245
- "latent_image": ("LATENT", ),
246
- }
247
- }
248
-
249
- RETURN_TYPES = ("LATENT","LATENT")
250
- RETURN_NAMES = ("output", "denoised_output")
251
-
252
- FUNCTION = "sample"
253
-
254
- CATEGORY = "sampling/custom_sampling"
255
-
256
- def sample(self, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image):
257
- latent = latent_image
258
- latent_image = latent["samples"]
259
- if not add_noise:
260
- noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
261
- else:
262
- batch_inds = latent["batch_index"] if "batch_index" in latent else None
263
- noise = ldm_patched.modules.sample.prepare_noise(latent_image, noise_seed, batch_inds)
264
-
265
- noise_mask = None
266
- if "noise_mask" in latent:
267
- noise_mask = latent["noise_mask"]
268
-
269
- x0_output = {}
270
- callback = ldm_patched.utils.latent_visualization.prepare_callback(model, sigmas.shape[-1] - 1, x0_output)
271
-
272
- disable_pbar = not ldm_patched.modules.utils.PROGRESS_BAR_ENABLED
273
- samples = ldm_patched.modules.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed)
274
-
275
- out = latent.copy()
276
- out["samples"] = samples
277
- if "x0" in x0_output:
278
- out_denoised = latent.copy()
279
- out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu())
280
- else:
281
- out_denoised = out
282
- return (out, out_denoised)
283
-
284
- NODE_CLASS_MAPPINGS = {
285
- "SamplerCustom": SamplerCustom,
286
- "BasicScheduler": BasicScheduler,
287
- "KarrasScheduler": KarrasScheduler,
288
- "ExponentialScheduler": ExponentialScheduler,
289
- "PolyexponentialScheduler": PolyexponentialScheduler,
290
- "VPScheduler": VPScheduler,
291
- "SDTurboScheduler": SDTurboScheduler,
292
- "KSamplerSelect": KSamplerSelect,
293
- "SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE,
294
- "SamplerDPMPP_SDE": SamplerDPMPP_SDE,
295
- "SplitSigmas": SplitSigmas,
296
- "FlipSigmas": FlipSigmas,
297
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_freelunch.py DELETED
@@ -1,115 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- #code originally taken from: https://github.com/ChenyangSi/FreeU (under MIT License)
4
-
5
- import torch
6
-
7
-
8
- def Fourier_filter(x, threshold, scale):
9
- # FFT
10
- x_freq = torch.fft.fftn(x.float(), dim=(-2, -1))
11
- x_freq = torch.fft.fftshift(x_freq, dim=(-2, -1))
12
-
13
- B, C, H, W = x_freq.shape
14
- mask = torch.ones((B, C, H, W), device=x.device)
15
-
16
- crow, ccol = H // 2, W //2
17
- mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale
18
- x_freq = x_freq * mask
19
-
20
- # IFFT
21
- x_freq = torch.fft.ifftshift(x_freq, dim=(-2, -1))
22
- x_filtered = torch.fft.ifftn(x_freq, dim=(-2, -1)).real
23
-
24
- return x_filtered.to(x.dtype)
25
-
26
-
27
- class FreeU:
28
- @classmethod
29
- def INPUT_TYPES(s):
30
- return {"required": { "model": ("MODEL",),
31
- "b1": ("FLOAT", {"default": 1.1, "min": 0.0, "max": 10.0, "step": 0.01}),
32
- "b2": ("FLOAT", {"default": 1.2, "min": 0.0, "max": 10.0, "step": 0.01}),
33
- "s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}),
34
- "s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}),
35
- }}
36
- RETURN_TYPES = ("MODEL",)
37
- FUNCTION = "patch"
38
-
39
- CATEGORY = "model_patches"
40
-
41
- def patch(self, model, b1, b2, s1, s2):
42
- model_channels = model.model.model_config.unet_config["model_channels"]
43
- scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)}
44
- on_cpu_devices = {}
45
-
46
- def output_block_patch(h, hsp, transformer_options):
47
- scale = scale_dict.get(h.shape[1], None)
48
- if scale is not None:
49
- h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * scale[0]
50
- if hsp.device not in on_cpu_devices:
51
- try:
52
- hsp = Fourier_filter(hsp, threshold=1, scale=scale[1])
53
- except:
54
- print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.")
55
- on_cpu_devices[hsp.device] = True
56
- hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
57
- else:
58
- hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
59
-
60
- return h, hsp
61
-
62
- m = model.clone()
63
- m.set_model_output_block_patch(output_block_patch)
64
- return (m, )
65
-
66
- class FreeU_V2:
67
- @classmethod
68
- def INPUT_TYPES(s):
69
- return {"required": { "model": ("MODEL",),
70
- "b1": ("FLOAT", {"default": 1.3, "min": 0.0, "max": 10.0, "step": 0.01}),
71
- "b2": ("FLOAT", {"default": 1.4, "min": 0.0, "max": 10.0, "step": 0.01}),
72
- "s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}),
73
- "s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}),
74
- }}
75
- RETURN_TYPES = ("MODEL",)
76
- FUNCTION = "patch"
77
-
78
- CATEGORY = "model_patches"
79
-
80
- def patch(self, model, b1, b2, s1, s2):
81
- model_channels = model.model.model_config.unet_config["model_channels"]
82
- scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)}
83
- on_cpu_devices = {}
84
-
85
- def output_block_patch(h, hsp, transformer_options):
86
- scale = scale_dict.get(h.shape[1], None)
87
- if scale is not None:
88
- hidden_mean = h.mean(1).unsqueeze(1)
89
- B = hidden_mean.shape[0]
90
- hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
91
- hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
92
- hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)
93
-
94
- h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * ((scale[0] - 1 ) * hidden_mean + 1)
95
-
96
- if hsp.device not in on_cpu_devices:
97
- try:
98
- hsp = Fourier_filter(hsp, threshold=1, scale=scale[1])
99
- except:
100
- print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.")
101
- on_cpu_devices[hsp.device] = True
102
- hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
103
- else:
104
- hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
105
-
106
- return h, hsp
107
-
108
- m = model.clone()
109
- m.set_model_output_block_patch(output_block_patch)
110
- return (m, )
111
-
112
- NODE_CLASS_MAPPINGS = {
113
- "FreeU": FreeU,
114
- "FreeU_V2": FreeU_V2,
115
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_hypernetwork.py DELETED
@@ -1,121 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import ldm_patched.modules.utils
4
- import ldm_patched.utils.path_utils
5
- import torch
6
-
7
- def load_hypernetwork_patch(path, strength):
8
- sd = ldm_patched.modules.utils.load_torch_file(path, safe_load=True)
9
- activation_func = sd.get('activation_func', 'linear')
10
- is_layer_norm = sd.get('is_layer_norm', False)
11
- use_dropout = sd.get('use_dropout', False)
12
- activate_output = sd.get('activate_output', False)
13
- last_layer_dropout = sd.get('last_layer_dropout', False)
14
-
15
- valid_activation = {
16
- "linear": torch.nn.Identity,
17
- "relu": torch.nn.ReLU,
18
- "leakyrelu": torch.nn.LeakyReLU,
19
- "elu": torch.nn.ELU,
20
- "swish": torch.nn.Hardswish,
21
- "tanh": torch.nn.Tanh,
22
- "sigmoid": torch.nn.Sigmoid,
23
- "softsign": torch.nn.Softsign,
24
- "mish": torch.nn.Mish,
25
- }
26
-
27
- if activation_func not in valid_activation:
28
- print("Unsupported Hypernetwork format, if you report it I might implement it.", path, " ", activation_func, is_layer_norm, use_dropout, activate_output, last_layer_dropout)
29
- return None
30
-
31
- out = {}
32
-
33
- for d in sd:
34
- try:
35
- dim = int(d)
36
- except:
37
- continue
38
-
39
- output = []
40
- for index in [0, 1]:
41
- attn_weights = sd[dim][index]
42
- keys = attn_weights.keys()
43
-
44
- linears = filter(lambda a: a.endswith(".weight"), keys)
45
- linears = list(map(lambda a: a[:-len(".weight")], linears))
46
- layers = []
47
-
48
- i = 0
49
- while i < len(linears):
50
- lin_name = linears[i]
51
- last_layer = (i == (len(linears) - 1))
52
- penultimate_layer = (i == (len(linears) - 2))
53
-
54
- lin_weight = attn_weights['{}.weight'.format(lin_name)]
55
- lin_bias = attn_weights['{}.bias'.format(lin_name)]
56
- layer = torch.nn.Linear(lin_weight.shape[1], lin_weight.shape[0])
57
- layer.load_state_dict({"weight": lin_weight, "bias": lin_bias})
58
- layers.append(layer)
59
- if activation_func != "linear":
60
- if (not last_layer) or (activate_output):
61
- layers.append(valid_activation[activation_func]())
62
- if is_layer_norm:
63
- i += 1
64
- ln_name = linears[i]
65
- ln_weight = attn_weights['{}.weight'.format(ln_name)]
66
- ln_bias = attn_weights['{}.bias'.format(ln_name)]
67
- ln = torch.nn.LayerNorm(ln_weight.shape[0])
68
- ln.load_state_dict({"weight": ln_weight, "bias": ln_bias})
69
- layers.append(ln)
70
- if use_dropout:
71
- if (not last_layer) and (not penultimate_layer or last_layer_dropout):
72
- layers.append(torch.nn.Dropout(p=0.3))
73
- i += 1
74
-
75
- output.append(torch.nn.Sequential(*layers))
76
- out[dim] = torch.nn.ModuleList(output)
77
-
78
- class hypernetwork_patch:
79
- def __init__(self, hypernet, strength):
80
- self.hypernet = hypernet
81
- self.strength = strength
82
- def __call__(self, q, k, v, extra_options):
83
- dim = k.shape[-1]
84
- if dim in self.hypernet:
85
- hn = self.hypernet[dim]
86
- k = k + hn[0](k) * self.strength
87
- v = v + hn[1](v) * self.strength
88
-
89
- return q, k, v
90
-
91
- def to(self, device):
92
- for d in self.hypernet.keys():
93
- self.hypernet[d] = self.hypernet[d].to(device)
94
- return self
95
-
96
- return hypernetwork_patch(out, strength)
97
-
98
- class HypernetworkLoader:
99
- @classmethod
100
- def INPUT_TYPES(s):
101
- return {"required": { "model": ("MODEL",),
102
- "hypernetwork_name": (ldm_patched.utils.path_utils.get_filename_list("hypernetworks"), ),
103
- "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
104
- }}
105
- RETURN_TYPES = ("MODEL",)
106
- FUNCTION = "load_hypernetwork"
107
-
108
- CATEGORY = "loaders"
109
-
110
- def load_hypernetwork(self, model, hypernetwork_name, strength):
111
- hypernetwork_path = ldm_patched.utils.path_utils.get_full_path("hypernetworks", hypernetwork_name)
112
- model_hypernetwork = model.clone()
113
- patch = load_hypernetwork_patch(hypernetwork_path, strength)
114
- if patch is not None:
115
- model_hypernetwork.set_model_attn1_patch(patch)
116
- model_hypernetwork.set_model_attn2_patch(patch)
117
- return (model_hypernetwork,)
118
-
119
- NODE_CLASS_MAPPINGS = {
120
- "HypernetworkLoader": HypernetworkLoader
121
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_hypertile.py DELETED
@@ -1,85 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- #Taken from: https://github.com/tfernd/HyperTile/
4
-
5
- import math
6
- from einops import rearrange
7
- # Use torch rng for consistency across generations
8
- from torch import randint
9
-
10
- def random_divisor(value: int, min_value: int, /, max_options: int = 1) -> int:
11
- min_value = min(min_value, value)
12
-
13
- # All big divisors of value (inclusive)
14
- divisors = [i for i in range(min_value, value + 1) if value % i == 0]
15
-
16
- ns = [value // i for i in divisors[:max_options]] # has at least 1 element
17
-
18
- if len(ns) - 1 > 0:
19
- idx = randint(low=0, high=len(ns) - 1, size=(1,)).item()
20
- else:
21
- idx = 0
22
-
23
- return ns[idx]
24
-
25
- class HyperTile:
26
- @classmethod
27
- def INPUT_TYPES(s):
28
- return {"required": { "model": ("MODEL",),
29
- "tile_size": ("INT", {"default": 256, "min": 1, "max": 2048}),
30
- "swap_size": ("INT", {"default": 2, "min": 1, "max": 128}),
31
- "max_depth": ("INT", {"default": 0, "min": 0, "max": 10}),
32
- "scale_depth": ("BOOLEAN", {"default": False}),
33
- }}
34
- RETURN_TYPES = ("MODEL",)
35
- FUNCTION = "patch"
36
-
37
- CATEGORY = "model_patches"
38
-
39
- def patch(self, model, tile_size, swap_size, max_depth, scale_depth):
40
- model_channels = model.model.model_config.unet_config["model_channels"]
41
-
42
- latent_tile_size = max(32, tile_size) // 8
43
- self.temp = None
44
-
45
- def hypertile_in(q, k, v, extra_options):
46
- model_chans = q.shape[-2]
47
- orig_shape = extra_options['original_shape']
48
- apply_to = []
49
- for i in range(max_depth + 1):
50
- apply_to.append((orig_shape[-2] / (2 ** i)) * (orig_shape[-1] / (2 ** i)))
51
-
52
- if model_chans in apply_to:
53
- shape = extra_options["original_shape"]
54
- aspect_ratio = shape[-1] / shape[-2]
55
-
56
- hw = q.size(1)
57
- h, w = round(math.sqrt(hw * aspect_ratio)), round(math.sqrt(hw / aspect_ratio))
58
-
59
- factor = (2 ** apply_to.index(model_chans)) if scale_depth else 1
60
- nh = random_divisor(h, latent_tile_size * factor, swap_size)
61
- nw = random_divisor(w, latent_tile_size * factor, swap_size)
62
-
63
- if nh * nw > 1:
64
- q = rearrange(q, "b (nh h nw w) c -> (b nh nw) (h w) c", h=h // nh, w=w // nw, nh=nh, nw=nw)
65
- self.temp = (nh, nw, h, w)
66
- return q, k, v
67
-
68
- return q, k, v
69
- def hypertile_out(out, extra_options):
70
- if self.temp is not None:
71
- nh, nw, h, w = self.temp
72
- self.temp = None
73
- out = rearrange(out, "(b nh nw) hw c -> b nh nw hw c", nh=nh, nw=nw)
74
- out = rearrange(out, "b nh nw (h w) c -> b (nh h nw w) c", h=h // nh, w=w // nw)
75
- return out
76
-
77
-
78
- m = model.clone()
79
- m.set_model_attn1_patch(hypertile_in)
80
- m.set_model_attn1_output_patch(hypertile_out)
81
- return (m, )
82
-
83
- NODE_CLASS_MAPPINGS = {
84
- "HyperTile": HyperTile,
85
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_images.py DELETED
@@ -1,177 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import ldm_patched.contrib.external
4
- import ldm_patched.utils.path_utils
5
- from ldm_patched.modules.args_parser import args
6
-
7
- from PIL import Image
8
- from PIL.PngImagePlugin import PngInfo
9
-
10
- import numpy as np
11
- import json
12
- import os
13
-
14
- MAX_RESOLUTION = ldm_patched.contrib.external.MAX_RESOLUTION
15
-
16
- class ImageCrop:
17
- @classmethod
18
- def INPUT_TYPES(s):
19
- return {"required": { "image": ("IMAGE",),
20
- "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
21
- "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
22
- "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
23
- "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
24
- }}
25
- RETURN_TYPES = ("IMAGE",)
26
- FUNCTION = "crop"
27
-
28
- CATEGORY = "image/transform"
29
-
30
- def crop(self, image, width, height, x, y):
31
- x = min(x, image.shape[2] - 1)
32
- y = min(y, image.shape[1] - 1)
33
- to_x = width + x
34
- to_y = height + y
35
- img = image[:,y:to_y, x:to_x, :]
36
- return (img,)
37
-
38
- class RepeatImageBatch:
39
- @classmethod
40
- def INPUT_TYPES(s):
41
- return {"required": { "image": ("IMAGE",),
42
- "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
43
- }}
44
- RETURN_TYPES = ("IMAGE",)
45
- FUNCTION = "repeat"
46
-
47
- CATEGORY = "image/batch"
48
-
49
- def repeat(self, image, amount):
50
- s = image.repeat((amount, 1,1,1))
51
- return (s,)
52
-
53
- class SaveAnimatedWEBP:
54
- def __init__(self):
55
- self.output_dir = ldm_patched.utils.path_utils.get_output_directory()
56
- self.type = "output"
57
- self.prefix_append = ""
58
-
59
- methods = {"default": 4, "fastest": 0, "slowest": 6}
60
- @classmethod
61
- def INPUT_TYPES(s):
62
- return {"required":
63
- {"images": ("IMAGE", ),
64
- "filename_prefix": ("STRING", {"default": "ldm_patched"}),
65
- "fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
66
- "lossless": ("BOOLEAN", {"default": True}),
67
- "quality": ("INT", {"default": 80, "min": 0, "max": 100}),
68
- "method": (list(s.methods.keys()),),
69
- # "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}),
70
- },
71
- "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
72
- }
73
-
74
- RETURN_TYPES = ()
75
- FUNCTION = "save_images"
76
-
77
- OUTPUT_NODE = True
78
-
79
- CATEGORY = "image/animation"
80
-
81
- def save_images(self, images, fps, filename_prefix, lossless, quality, method, num_frames=0, prompt=None, extra_pnginfo=None):
82
- method = self.methods.get(method)
83
- filename_prefix += self.prefix_append
84
- full_output_folder, filename, counter, subfolder, filename_prefix = ldm_patched.utils.path_utils.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
85
- results = list()
86
- pil_images = []
87
- for image in images:
88
- i = 255. * image.cpu().numpy()
89
- img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
90
- pil_images.append(img)
91
-
92
- metadata = pil_images[0].getexif()
93
- if not args.disable_server_info:
94
- if prompt is not None:
95
- metadata[0x0110] = "prompt:{}".format(json.dumps(prompt))
96
- if extra_pnginfo is not None:
97
- inital_exif = 0x010f
98
- for x in extra_pnginfo:
99
- metadata[inital_exif] = "{}:{}".format(x, json.dumps(extra_pnginfo[x]))
100
- inital_exif -= 1
101
-
102
- if num_frames == 0:
103
- num_frames = len(pil_images)
104
-
105
- c = len(pil_images)
106
- for i in range(0, c, num_frames):
107
- file = f"{filename}_{counter:05}_.webp"
108
- pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], exif=metadata, lossless=lossless, quality=quality, method=method)
109
- results.append({
110
- "filename": file,
111
- "subfolder": subfolder,
112
- "type": self.type
113
- })
114
- counter += 1
115
-
116
- animated = num_frames != 1
117
- return { "ui": { "images": results, "animated": (animated,) } }
118
-
119
- class SaveAnimatedPNG:
120
- def __init__(self):
121
- self.output_dir = ldm_patched.utils.path_utils.get_output_directory()
122
- self.type = "output"
123
- self.prefix_append = ""
124
-
125
- @classmethod
126
- def INPUT_TYPES(s):
127
- return {"required":
128
- {"images": ("IMAGE", ),
129
- "filename_prefix": ("STRING", {"default": "ldm_patched"}),
130
- "fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
131
- "compress_level": ("INT", {"default": 4, "min": 0, "max": 9})
132
- },
133
- "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
134
- }
135
-
136
- RETURN_TYPES = ()
137
- FUNCTION = "save_images"
138
-
139
- OUTPUT_NODE = True
140
-
141
- CATEGORY = "image/animation"
142
-
143
- def save_images(self, images, fps, compress_level, filename_prefix="ldm_patched", prompt=None, extra_pnginfo=None):
144
- filename_prefix += self.prefix_append
145
- full_output_folder, filename, counter, subfolder, filename_prefix = ldm_patched.utils.path_utils.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
146
- results = list()
147
- pil_images = []
148
- for image in images:
149
- i = 255. * image.cpu().numpy()
150
- img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
151
- pil_images.append(img)
152
-
153
- metadata = None
154
- if not args.disable_server_info:
155
- metadata = PngInfo()
156
- if prompt is not None:
157
- metadata.add(b"ldm_patched", "prompt".encode("latin-1", "strict") + b"\0" + json.dumps(prompt).encode("latin-1", "strict"), after_idat=True)
158
- if extra_pnginfo is not None:
159
- for x in extra_pnginfo:
160
- metadata.add(b"ldm_patched", x.encode("latin-1", "strict") + b"\0" + json.dumps(extra_pnginfo[x]).encode("latin-1", "strict"), after_idat=True)
161
-
162
- file = f"{filename}_{counter:05}_.png"
163
- pil_images[0].save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level, save_all=True, duration=int(1000.0/fps), append_images=pil_images[1:])
164
- results.append({
165
- "filename": file,
166
- "subfolder": subfolder,
167
- "type": self.type
168
- })
169
-
170
- return { "ui": { "images": results, "animated": (True,)} }
171
-
172
- NODE_CLASS_MAPPINGS = {
173
- "ImageCrop": ImageCrop,
174
- "RepeatImageBatch": RepeatImageBatch,
175
- "SaveAnimatedWEBP": SaveAnimatedWEBP,
176
- "SaveAnimatedPNG": SaveAnimatedPNG,
177
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_latent.py DELETED
@@ -1,157 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import ldm_patched.modules.utils
4
- import torch
5
-
6
- def reshape_latent_to(target_shape, latent):
7
- if latent.shape[1:] != target_shape[1:]:
8
- latent = ldm_patched.modules.utils.common_upscale(latent, target_shape[3], target_shape[2], "bilinear", "center")
9
- return ldm_patched.modules.utils.repeat_to_batch_size(latent, target_shape[0])
10
-
11
-
12
- class LatentAdd:
13
- @classmethod
14
- def INPUT_TYPES(s):
15
- return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
16
-
17
- RETURN_TYPES = ("LATENT",)
18
- FUNCTION = "op"
19
-
20
- CATEGORY = "latent/advanced"
21
-
22
- def op(self, samples1, samples2):
23
- samples_out = samples1.copy()
24
-
25
- s1 = samples1["samples"]
26
- s2 = samples2["samples"]
27
-
28
- s2 = reshape_latent_to(s1.shape, s2)
29
- samples_out["samples"] = s1 + s2
30
- return (samples_out,)
31
-
32
- class LatentSubtract:
33
- @classmethod
34
- def INPUT_TYPES(s):
35
- return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
36
-
37
- RETURN_TYPES = ("LATENT",)
38
- FUNCTION = "op"
39
-
40
- CATEGORY = "latent/advanced"
41
-
42
- def op(self, samples1, samples2):
43
- samples_out = samples1.copy()
44
-
45
- s1 = samples1["samples"]
46
- s2 = samples2["samples"]
47
-
48
- s2 = reshape_latent_to(s1.shape, s2)
49
- samples_out["samples"] = s1 - s2
50
- return (samples_out,)
51
-
52
- class LatentMultiply:
53
- @classmethod
54
- def INPUT_TYPES(s):
55
- return {"required": { "samples": ("LATENT",),
56
- "multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
57
- }}
58
-
59
- RETURN_TYPES = ("LATENT",)
60
- FUNCTION = "op"
61
-
62
- CATEGORY = "latent/advanced"
63
-
64
- def op(self, samples, multiplier):
65
- samples_out = samples.copy()
66
-
67
- s1 = samples["samples"]
68
- samples_out["samples"] = s1 * multiplier
69
- return (samples_out,)
70
-
71
- class LatentInterpolate:
72
- @classmethod
73
- def INPUT_TYPES(s):
74
- return {"required": { "samples1": ("LATENT",),
75
- "samples2": ("LATENT",),
76
- "ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
77
- }}
78
-
79
- RETURN_TYPES = ("LATENT",)
80
- FUNCTION = "op"
81
-
82
- CATEGORY = "latent/advanced"
83
-
84
- def op(self, samples1, samples2, ratio):
85
- samples_out = samples1.copy()
86
-
87
- s1 = samples1["samples"]
88
- s2 = samples2["samples"]
89
-
90
- s2 = reshape_latent_to(s1.shape, s2)
91
-
92
- m1 = torch.linalg.vector_norm(s1, dim=(1))
93
- m2 = torch.linalg.vector_norm(s2, dim=(1))
94
-
95
- s1 = torch.nan_to_num(s1 / m1)
96
- s2 = torch.nan_to_num(s2 / m2)
97
-
98
- t = (s1 * ratio + s2 * (1.0 - ratio))
99
- mt = torch.linalg.vector_norm(t, dim=(1))
100
- st = torch.nan_to_num(t / mt)
101
-
102
- samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio))
103
- return (samples_out,)
104
-
105
- class LatentBatch:
106
- @classmethod
107
- def INPUT_TYPES(s):
108
- return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
109
-
110
- RETURN_TYPES = ("LATENT",)
111
- FUNCTION = "batch"
112
-
113
- CATEGORY = "latent/batch"
114
-
115
- def batch(self, samples1, samples2):
116
- samples_out = samples1.copy()
117
- s1 = samples1["samples"]
118
- s2 = samples2["samples"]
119
-
120
- if s1.shape[1:] != s2.shape[1:]:
121
- s2 = ldm_patched.modules.utils.common_upscale(s2, s1.shape[3], s1.shape[2], "bilinear", "center")
122
- s = torch.cat((s1, s2), dim=0)
123
- samples_out["samples"] = s
124
- samples_out["batch_index"] = samples1.get("batch_index", [x for x in range(0, s1.shape[0])]) + samples2.get("batch_index", [x for x in range(0, s2.shape[0])])
125
- return (samples_out,)
126
-
127
- class LatentBatchSeedBehavior:
128
- @classmethod
129
- def INPUT_TYPES(s):
130
- return {"required": { "samples": ("LATENT",),
131
- "seed_behavior": (["random", "fixed"],),}}
132
-
133
- RETURN_TYPES = ("LATENT",)
134
- FUNCTION = "op"
135
-
136
- CATEGORY = "latent/advanced"
137
-
138
- def op(self, samples, seed_behavior):
139
- samples_out = samples.copy()
140
- latent = samples["samples"]
141
- if seed_behavior == "random":
142
- if 'batch_index' in samples_out:
143
- samples_out.pop('batch_index')
144
- elif seed_behavior == "fixed":
145
- batch_number = samples_out.get("batch_index", [0])[0]
146
- samples_out["batch_index"] = [batch_number] * latent.shape[0]
147
-
148
- return (samples_out,)
149
-
150
- NODE_CLASS_MAPPINGS = {
151
- "LatentAdd": LatentAdd,
152
- "LatentSubtract": LatentSubtract,
153
- "LatentMultiply": LatentMultiply,
154
- "LatentInterpolate": LatentInterpolate,
155
- "LatentBatch": LatentBatch,
156
- "LatentBatchSeedBehavior": LatentBatchSeedBehavior,
157
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_mask.py DELETED
@@ -1,365 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import numpy as np
4
- import scipy.ndimage
5
- import torch
6
- import ldm_patched.modules.utils
7
-
8
- from ldm_patched.contrib.external import MAX_RESOLUTION
9
-
10
- def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False):
11
- source = source.to(destination.device)
12
- if resize_source:
13
- source = torch.nn.functional.interpolate(source, size=(destination.shape[2], destination.shape[3]), mode="bilinear")
14
-
15
- source = ldm_patched.modules.utils.repeat_to_batch_size(source, destination.shape[0])
16
-
17
- x = max(-source.shape[3] * multiplier, min(x, destination.shape[3] * multiplier))
18
- y = max(-source.shape[2] * multiplier, min(y, destination.shape[2] * multiplier))
19
-
20
- left, top = (x // multiplier, y // multiplier)
21
- right, bottom = (left + source.shape[3], top + source.shape[2],)
22
-
23
- if mask is None:
24
- mask = torch.ones_like(source)
25
- else:
26
- mask = mask.to(destination.device, copy=True)
27
- mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(source.shape[2], source.shape[3]), mode="bilinear")
28
- mask = ldm_patched.modules.utils.repeat_to_batch_size(mask, source.shape[0])
29
-
30
- # calculate the bounds of the source that will be overlapping the destination
31
- # this prevents the source trying to overwrite latent pixels that are out of bounds
32
- # of the destination
33
- visible_width, visible_height = (destination.shape[3] - left + min(0, x), destination.shape[2] - top + min(0, y),)
34
-
35
- mask = mask[:, :, :visible_height, :visible_width]
36
- inverse_mask = torch.ones_like(mask) - mask
37
-
38
- source_portion = mask * source[:, :, :visible_height, :visible_width]
39
- destination_portion = inverse_mask * destination[:, :, top:bottom, left:right]
40
-
41
- destination[:, :, top:bottom, left:right] = source_portion + destination_portion
42
- return destination
43
-
44
- class LatentCompositeMasked:
45
- @classmethod
46
- def INPUT_TYPES(s):
47
- return {
48
- "required": {
49
- "destination": ("LATENT",),
50
- "source": ("LATENT",),
51
- "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
52
- "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
53
- "resize_source": ("BOOLEAN", {"default": False}),
54
- },
55
- "optional": {
56
- "mask": ("MASK",),
57
- }
58
- }
59
- RETURN_TYPES = ("LATENT",)
60
- FUNCTION = "composite"
61
-
62
- CATEGORY = "latent"
63
-
64
- def composite(self, destination, source, x, y, resize_source, mask = None):
65
- output = destination.copy()
66
- destination = destination["samples"].clone()
67
- source = source["samples"]
68
- output["samples"] = composite(destination, source, x, y, mask, 8, resize_source)
69
- return (output,)
70
-
71
- class ImageCompositeMasked:
72
- @classmethod
73
- def INPUT_TYPES(s):
74
- return {
75
- "required": {
76
- "destination": ("IMAGE",),
77
- "source": ("IMAGE",),
78
- "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
79
- "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
80
- "resize_source": ("BOOLEAN", {"default": False}),
81
- },
82
- "optional": {
83
- "mask": ("MASK",),
84
- }
85
- }
86
- RETURN_TYPES = ("IMAGE",)
87
- FUNCTION = "composite"
88
-
89
- CATEGORY = "image"
90
-
91
- def composite(self, destination, source, x, y, resize_source, mask = None):
92
- destination = destination.clone().movedim(-1, 1)
93
- output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1)
94
- return (output,)
95
-
96
- class MaskToImage:
97
- @classmethod
98
- def INPUT_TYPES(s):
99
- return {
100
- "required": {
101
- "mask": ("MASK",),
102
- }
103
- }
104
-
105
- CATEGORY = "mask"
106
-
107
- RETURN_TYPES = ("IMAGE",)
108
- FUNCTION = "mask_to_image"
109
-
110
- def mask_to_image(self, mask):
111
- result = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
112
- return (result,)
113
-
114
- class ImageToMask:
115
- @classmethod
116
- def INPUT_TYPES(s):
117
- return {
118
- "required": {
119
- "image": ("IMAGE",),
120
- "channel": (["red", "green", "blue", "alpha"],),
121
- }
122
- }
123
-
124
- CATEGORY = "mask"
125
-
126
- RETURN_TYPES = ("MASK",)
127
- FUNCTION = "image_to_mask"
128
-
129
- def image_to_mask(self, image, channel):
130
- channels = ["red", "green", "blue", "alpha"]
131
- mask = image[:, :, :, channels.index(channel)]
132
- return (mask,)
133
-
134
- class ImageColorToMask:
135
- @classmethod
136
- def INPUT_TYPES(s):
137
- return {
138
- "required": {
139
- "image": ("IMAGE",),
140
- "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
141
- }
142
- }
143
-
144
- CATEGORY = "mask"
145
-
146
- RETURN_TYPES = ("MASK",)
147
- FUNCTION = "image_to_mask"
148
-
149
- def image_to_mask(self, image, color):
150
- temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int)
151
- temp = torch.bitwise_left_shift(temp[:,:,:,0], 16) + torch.bitwise_left_shift(temp[:,:,:,1], 8) + temp[:,:,:,2]
152
- mask = torch.where(temp == color, 255, 0).float()
153
- return (mask,)
154
-
155
- class SolidMask:
156
- @classmethod
157
- def INPUT_TYPES(cls):
158
- return {
159
- "required": {
160
- "value": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
161
- "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
162
- "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
163
- }
164
- }
165
-
166
- CATEGORY = "mask"
167
-
168
- RETURN_TYPES = ("MASK",)
169
-
170
- FUNCTION = "solid"
171
-
172
- def solid(self, value, width, height):
173
- out = torch.full((1, height, width), value, dtype=torch.float32, device="cpu")
174
- return (out,)
175
-
176
- class InvertMask:
177
- @classmethod
178
- def INPUT_TYPES(cls):
179
- return {
180
- "required": {
181
- "mask": ("MASK",),
182
- }
183
- }
184
-
185
- CATEGORY = "mask"
186
-
187
- RETURN_TYPES = ("MASK",)
188
-
189
- FUNCTION = "invert"
190
-
191
- def invert(self, mask):
192
- out = 1.0 - mask
193
- return (out,)
194
-
195
- class CropMask:
196
- @classmethod
197
- def INPUT_TYPES(cls):
198
- return {
199
- "required": {
200
- "mask": ("MASK",),
201
- "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
202
- "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
203
- "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
204
- "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
205
- }
206
- }
207
-
208
- CATEGORY = "mask"
209
-
210
- RETURN_TYPES = ("MASK",)
211
-
212
- FUNCTION = "crop"
213
-
214
- def crop(self, mask, x, y, width, height):
215
- mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1]))
216
- out = mask[:, y:y + height, x:x + width]
217
- return (out,)
218
-
219
- class MaskComposite:
220
- @classmethod
221
- def INPUT_TYPES(cls):
222
- return {
223
- "required": {
224
- "destination": ("MASK",),
225
- "source": ("MASK",),
226
- "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
227
- "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
228
- "operation": (["multiply", "add", "subtract", "and", "or", "xor"],),
229
- }
230
- }
231
-
232
- CATEGORY = "mask"
233
-
234
- RETURN_TYPES = ("MASK",)
235
-
236
- FUNCTION = "combine"
237
-
238
- def combine(self, destination, source, x, y, operation):
239
- output = destination.reshape((-1, destination.shape[-2], destination.shape[-1])).clone()
240
- source = source.reshape((-1, source.shape[-2], source.shape[-1]))
241
-
242
- left, top = (x, y,)
243
- right, bottom = (min(left + source.shape[-1], destination.shape[-1]), min(top + source.shape[-2], destination.shape[-2]))
244
- visible_width, visible_height = (right - left, bottom - top,)
245
-
246
- source_portion = source[:, :visible_height, :visible_width]
247
- destination_portion = destination[:, top:bottom, left:right]
248
-
249
- if operation == "multiply":
250
- output[:, top:bottom, left:right] = destination_portion * source_portion
251
- elif operation == "add":
252
- output[:, top:bottom, left:right] = destination_portion + source_portion
253
- elif operation == "subtract":
254
- output[:, top:bottom, left:right] = destination_portion - source_portion
255
- elif operation == "and":
256
- output[:, top:bottom, left:right] = torch.bitwise_and(destination_portion.round().bool(), source_portion.round().bool()).float()
257
- elif operation == "or":
258
- output[:, top:bottom, left:right] = torch.bitwise_or(destination_portion.round().bool(), source_portion.round().bool()).float()
259
- elif operation == "xor":
260
- output[:, top:bottom, left:right] = torch.bitwise_xor(destination_portion.round().bool(), source_portion.round().bool()).float()
261
-
262
- output = torch.clamp(output, 0.0, 1.0)
263
-
264
- return (output,)
265
-
266
- class FeatherMask:
267
- @classmethod
268
- def INPUT_TYPES(cls):
269
- return {
270
- "required": {
271
- "mask": ("MASK",),
272
- "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
273
- "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
274
- "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
275
- "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
276
- }
277
- }
278
-
279
- CATEGORY = "mask"
280
-
281
- RETURN_TYPES = ("MASK",)
282
-
283
- FUNCTION = "feather"
284
-
285
- def feather(self, mask, left, top, right, bottom):
286
- output = mask.reshape((-1, mask.shape[-2], mask.shape[-1])).clone()
287
-
288
- left = min(left, output.shape[-1])
289
- right = min(right, output.shape[-1])
290
- top = min(top, output.shape[-2])
291
- bottom = min(bottom, output.shape[-2])
292
-
293
- for x in range(left):
294
- feather_rate = (x + 1.0) / left
295
- output[:, :, x] *= feather_rate
296
-
297
- for x in range(right):
298
- feather_rate = (x + 1) / right
299
- output[:, :, -x] *= feather_rate
300
-
301
- for y in range(top):
302
- feather_rate = (y + 1) / top
303
- output[:, y, :] *= feather_rate
304
-
305
- for y in range(bottom):
306
- feather_rate = (y + 1) / bottom
307
- output[:, -y, :] *= feather_rate
308
-
309
- return (output,)
310
-
311
- class GrowMask:
312
- @classmethod
313
- def INPUT_TYPES(cls):
314
- return {
315
- "required": {
316
- "mask": ("MASK",),
317
- "expand": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1}),
318
- "tapered_corners": ("BOOLEAN", {"default": True}),
319
- },
320
- }
321
-
322
- CATEGORY = "mask"
323
-
324
- RETURN_TYPES = ("MASK",)
325
-
326
- FUNCTION = "expand_mask"
327
-
328
- def expand_mask(self, mask, expand, tapered_corners):
329
- c = 0 if tapered_corners else 1
330
- kernel = np.array([[c, 1, c],
331
- [1, 1, 1],
332
- [c, 1, c]])
333
- mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1]))
334
- out = []
335
- for m in mask:
336
- output = m.numpy()
337
- for _ in range(abs(expand)):
338
- if expand < 0:
339
- output = scipy.ndimage.grey_erosion(output, footprint=kernel)
340
- else:
341
- output = scipy.ndimage.grey_dilation(output, footprint=kernel)
342
- output = torch.from_numpy(output)
343
- out.append(output)
344
- return (torch.stack(out, dim=0),)
345
-
346
-
347
-
348
- NODE_CLASS_MAPPINGS = {
349
- "LatentCompositeMasked": LatentCompositeMasked,
350
- "ImageCompositeMasked": ImageCompositeMasked,
351
- "MaskToImage": MaskToImage,
352
- "ImageToMask": ImageToMask,
353
- "ImageColorToMask": ImageColorToMask,
354
- "SolidMask": SolidMask,
355
- "InvertMask": InvertMask,
356
- "CropMask": CropMask,
357
- "MaskComposite": MaskComposite,
358
- "FeatherMask": FeatherMask,
359
- "GrowMask": GrowMask,
360
- }
361
-
362
- NODE_DISPLAY_NAME_MAPPINGS = {
363
- "ImageToMask": "Convert Image to Mask",
364
- "MaskToImage": "Convert Mask to Image",
365
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_model_advanced.py DELETED
@@ -1,177 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import ldm_patched.utils.path_utils
4
- import ldm_patched.modules.sd
5
- import ldm_patched.modules.model_sampling
6
- import torch
7
-
8
- class LCM(ldm_patched.modules.model_sampling.EPS):
9
- def calculate_denoised(self, sigma, model_output, model_input):
10
- timestep = self.timestep(sigma).view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
11
- sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
12
- x0 = model_input - model_output * sigma
13
-
14
- sigma_data = 0.5
15
- scaled_timestep = timestep * 10.0 #timestep_scaling
16
-
17
- c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
18
- c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
19
-
20
- return c_out * x0 + c_skip * model_input
21
-
22
- class ModelSamplingDiscreteDistilled(ldm_patched.modules.model_sampling.ModelSamplingDiscrete):
23
- original_timesteps = 50
24
-
25
- def __init__(self, model_config=None):
26
- super().__init__(model_config)
27
-
28
- self.skip_steps = self.num_timesteps // self.original_timesteps
29
-
30
- sigmas_valid = torch.zeros((self.original_timesteps), dtype=torch.float32)
31
- for x in range(self.original_timesteps):
32
- sigmas_valid[self.original_timesteps - 1 - x] = self.sigmas[self.num_timesteps - 1 - x * self.skip_steps]
33
-
34
- self.set_sigmas(sigmas_valid)
35
-
36
- def timestep(self, sigma):
37
- log_sigma = sigma.log()
38
- dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
39
- return (dists.abs().argmin(dim=0).view(sigma.shape) * self.skip_steps + (self.skip_steps - 1)).to(sigma.device)
40
-
41
- def sigma(self, timestep):
42
- t = torch.clamp(((timestep.float().to(self.log_sigmas.device) - (self.skip_steps - 1)) / self.skip_steps).float(), min=0, max=(len(self.sigmas) - 1))
43
- low_idx = t.floor().long()
44
- high_idx = t.ceil().long()
45
- w = t.frac()
46
- log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
47
- return log_sigma.exp().to(timestep.device)
48
-
49
-
50
- def rescale_zero_terminal_snr_sigmas(sigmas):
51
- alphas_cumprod = 1 / ((sigmas * sigmas) + 1)
52
- alphas_bar_sqrt = alphas_cumprod.sqrt()
53
-
54
- # Store old values.
55
- alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
56
- alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
57
-
58
- # Shift so the last timestep is zero.
59
- alphas_bar_sqrt -= (alphas_bar_sqrt_T)
60
-
61
- # Scale so the first timestep is back to the old value.
62
- alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
63
-
64
- # Convert alphas_bar_sqrt to betas
65
- alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
66
- alphas_bar[-1] = 4.8973451890853435e-08
67
- return ((1 - alphas_bar) / alphas_bar) ** 0.5
68
-
69
- class ModelSamplingDiscrete:
70
- @classmethod
71
- def INPUT_TYPES(s):
72
- return {"required": { "model": ("MODEL",),
73
- "sampling": (["eps", "v_prediction", "lcm"],),
74
- "zsnr": ("BOOLEAN", {"default": False}),
75
- }}
76
-
77
- RETURN_TYPES = ("MODEL",)
78
- FUNCTION = "patch"
79
-
80
- CATEGORY = "advanced/model"
81
-
82
- def patch(self, model, sampling, zsnr):
83
- m = model.clone()
84
-
85
- sampling_base = ldm_patched.modules.model_sampling.ModelSamplingDiscrete
86
- if sampling == "eps":
87
- sampling_type = ldm_patched.modules.model_sampling.EPS
88
- elif sampling == "v_prediction":
89
- sampling_type = ldm_patched.modules.model_sampling.V_PREDICTION
90
- elif sampling == "lcm":
91
- sampling_type = LCM
92
- sampling_base = ModelSamplingDiscreteDistilled
93
-
94
- class ModelSamplingAdvanced(sampling_base, sampling_type):
95
- pass
96
-
97
- model_sampling = ModelSamplingAdvanced(model.model.model_config)
98
- if zsnr:
99
- model_sampling.set_sigmas(rescale_zero_terminal_snr_sigmas(model_sampling.sigmas))
100
-
101
- m.add_object_patch("model_sampling", model_sampling)
102
- return (m, )
103
-
104
- class ModelSamplingContinuousEDM:
105
- @classmethod
106
- def INPUT_TYPES(s):
107
- return {"required": { "model": ("MODEL",),
108
- "sampling": (["v_prediction", "eps"],),
109
- "sigma_max": ("FLOAT", {"default": 120.0, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
110
- "sigma_min": ("FLOAT", {"default": 0.002, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
111
- }}
112
-
113
- RETURN_TYPES = ("MODEL",)
114
- FUNCTION = "patch"
115
-
116
- CATEGORY = "advanced/model"
117
-
118
- def patch(self, model, sampling, sigma_max, sigma_min):
119
- m = model.clone()
120
-
121
- if sampling == "eps":
122
- sampling_type = ldm_patched.modules.model_sampling.EPS
123
- elif sampling == "v_prediction":
124
- sampling_type = ldm_patched.modules.model_sampling.V_PREDICTION
125
-
126
- class ModelSamplingAdvanced(ldm_patched.modules.model_sampling.ModelSamplingContinuousEDM, sampling_type):
127
- pass
128
-
129
- model_sampling = ModelSamplingAdvanced(model.model.model_config)
130
- model_sampling.set_sigma_range(sigma_min, sigma_max)
131
- m.add_object_patch("model_sampling", model_sampling)
132
- return (m, )
133
-
134
- class RescaleCFG:
135
- @classmethod
136
- def INPUT_TYPES(s):
137
- return {"required": { "model": ("MODEL",),
138
- "multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
139
- }}
140
- RETURN_TYPES = ("MODEL",)
141
- FUNCTION = "patch"
142
-
143
- CATEGORY = "advanced/model"
144
-
145
- def patch(self, model, multiplier):
146
- def rescale_cfg(args):
147
- cond = args["cond"]
148
- uncond = args["uncond"]
149
- cond_scale = args["cond_scale"]
150
- sigma = args["sigma"]
151
- sigma = sigma.view(sigma.shape[:1] + (1,) * (cond.ndim - 1))
152
- x_orig = args["input"]
153
-
154
- #rescale cfg has to be done on v-pred model output
155
- x = x_orig / (sigma * sigma + 1.0)
156
- cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
157
- uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
158
-
159
- #rescalecfg
160
- x_cfg = uncond + cond_scale * (cond - uncond)
161
- ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True)
162
- ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True)
163
-
164
- x_rescaled = x_cfg * (ro_pos / ro_cfg)
165
- x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg
166
-
167
- return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5)
168
-
169
- m = model.clone()
170
- m.set_model_sampler_cfg_function(rescale_cfg)
171
- return (m, )
172
-
173
- NODE_CLASS_MAPPINGS = {
174
- "ModelSamplingDiscrete": ModelSamplingDiscrete,
175
- "ModelSamplingContinuousEDM": ModelSamplingContinuousEDM,
176
- "RescaleCFG": RescaleCFG,
177
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_model_downscale.py DELETED
@@ -1,55 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import torch
4
- import ldm_patched.modules.utils
5
-
6
- class PatchModelAddDownscale:
7
- upscale_methods = ["bicubic", "nearest-exact", "bilinear", "area", "bislerp"]
8
- @classmethod
9
- def INPUT_TYPES(s):
10
- return {"required": { "model": ("MODEL",),
11
- "block_number": ("INT", {"default": 3, "min": 1, "max": 32, "step": 1}),
12
- "downscale_factor": ("FLOAT", {"default": 2.0, "min": 0.1, "max": 9.0, "step": 0.001}),
13
- "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
14
- "end_percent": ("FLOAT", {"default": 0.35, "min": 0.0, "max": 1.0, "step": 0.001}),
15
- "downscale_after_skip": ("BOOLEAN", {"default": True}),
16
- "downscale_method": (s.upscale_methods,),
17
- "upscale_method": (s.upscale_methods,),
18
- }}
19
- RETURN_TYPES = ("MODEL",)
20
- FUNCTION = "patch"
21
-
22
- CATEGORY = "_for_testing"
23
-
24
- def patch(self, model, block_number, downscale_factor, start_percent, end_percent, downscale_after_skip, downscale_method, upscale_method):
25
- sigma_start = model.model.model_sampling.percent_to_sigma(start_percent)
26
- sigma_end = model.model.model_sampling.percent_to_sigma(end_percent)
27
-
28
- def input_block_patch(h, transformer_options):
29
- if transformer_options["block"][1] == block_number:
30
- sigma = transformer_options["sigmas"][0].item()
31
- if sigma <= sigma_start and sigma >= sigma_end:
32
- h = ldm_patched.modules.utils.common_upscale(h, round(h.shape[-1] * (1.0 / downscale_factor)), round(h.shape[-2] * (1.0 / downscale_factor)), downscale_method, "disabled")
33
- return h
34
-
35
- def output_block_patch(h, hsp, transformer_options):
36
- if h.shape[2] != hsp.shape[2]:
37
- h = ldm_patched.modules.utils.common_upscale(h, hsp.shape[-1], hsp.shape[-2], upscale_method, "disabled")
38
- return h, hsp
39
-
40
- m = model.clone()
41
- if downscale_after_skip:
42
- m.set_model_input_block_patch_after_skip(input_block_patch)
43
- else:
44
- m.set_model_input_block_patch(input_block_patch)
45
- m.set_model_output_block_patch(output_block_patch)
46
- return (m, )
47
-
48
- NODE_CLASS_MAPPINGS = {
49
- "PatchModelAddDownscale": PatchModelAddDownscale,
50
- }
51
-
52
- NODE_DISPLAY_NAME_MAPPINGS = {
53
- # Sampling
54
- "PatchModelAddDownscale": "PatchModelAddDownscale (Kohya Deep Shrink)",
55
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_model_merging.py DELETED
@@ -1,286 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import ldm_patched.modules.sd
4
- import ldm_patched.modules.utils
5
- import ldm_patched.modules.model_base
6
- import ldm_patched.modules.model_management
7
-
8
- import ldm_patched.utils.path_utils
9
- import json
10
- import os
11
-
12
- from ldm_patched.modules.args_parser import args
13
-
14
- class ModelMergeSimple:
15
- @classmethod
16
- def INPUT_TYPES(s):
17
- return {"required": { "model1": ("MODEL",),
18
- "model2": ("MODEL",),
19
- "ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
20
- }}
21
- RETURN_TYPES = ("MODEL",)
22
- FUNCTION = "merge"
23
-
24
- CATEGORY = "advanced/model_merging"
25
-
26
- def merge(self, model1, model2, ratio):
27
- m = model1.clone()
28
- kp = model2.get_key_patches("diffusion_model.")
29
- for k in kp:
30
- m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
31
- return (m, )
32
-
33
- class ModelSubtract:
34
- @classmethod
35
- def INPUT_TYPES(s):
36
- return {"required": { "model1": ("MODEL",),
37
- "model2": ("MODEL",),
38
- "multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
39
- }}
40
- RETURN_TYPES = ("MODEL",)
41
- FUNCTION = "merge"
42
-
43
- CATEGORY = "advanced/model_merging"
44
-
45
- def merge(self, model1, model2, multiplier):
46
- m = model1.clone()
47
- kp = model2.get_key_patches("diffusion_model.")
48
- for k in kp:
49
- m.add_patches({k: kp[k]}, - multiplier, multiplier)
50
- return (m, )
51
-
52
- class ModelAdd:
53
- @classmethod
54
- def INPUT_TYPES(s):
55
- return {"required": { "model1": ("MODEL",),
56
- "model2": ("MODEL",),
57
- }}
58
- RETURN_TYPES = ("MODEL",)
59
- FUNCTION = "merge"
60
-
61
- CATEGORY = "advanced/model_merging"
62
-
63
- def merge(self, model1, model2):
64
- m = model1.clone()
65
- kp = model2.get_key_patches("diffusion_model.")
66
- for k in kp:
67
- m.add_patches({k: kp[k]}, 1.0, 1.0)
68
- return (m, )
69
-
70
-
71
- class CLIPMergeSimple:
72
- @classmethod
73
- def INPUT_TYPES(s):
74
- return {"required": { "clip1": ("CLIP",),
75
- "clip2": ("CLIP",),
76
- "ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
77
- }}
78
- RETURN_TYPES = ("CLIP",)
79
- FUNCTION = "merge"
80
-
81
- CATEGORY = "advanced/model_merging"
82
-
83
- def merge(self, clip1, clip2, ratio):
84
- m = clip1.clone()
85
- kp = clip2.get_key_patches()
86
- for k in kp:
87
- if k.endswith(".position_ids") or k.endswith(".logit_scale"):
88
- continue
89
- m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
90
- return (m, )
91
-
92
- class ModelMergeBlocks:
93
- @classmethod
94
- def INPUT_TYPES(s):
95
- return {"required": { "model1": ("MODEL",),
96
- "model2": ("MODEL",),
97
- "input": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
98
- "middle": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
99
- "out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
100
- }}
101
- RETURN_TYPES = ("MODEL",)
102
- FUNCTION = "merge"
103
-
104
- CATEGORY = "advanced/model_merging"
105
-
106
- def merge(self, model1, model2, **kwargs):
107
- m = model1.clone()
108
- kp = model2.get_key_patches("diffusion_model.")
109
- default_ratio = next(iter(kwargs.values()))
110
-
111
- for k in kp:
112
- ratio = default_ratio
113
- k_unet = k[len("diffusion_model."):]
114
-
115
- last_arg_size = 0
116
- for arg in kwargs:
117
- if k_unet.startswith(arg) and last_arg_size < len(arg):
118
- ratio = kwargs[arg]
119
- last_arg_size = len(arg)
120
-
121
- m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
122
- return (m, )
123
-
124
- def save_checkpoint(model, clip=None, vae=None, clip_vision=None, filename_prefix=None, output_dir=None, prompt=None, extra_pnginfo=None):
125
- full_output_folder, filename, counter, subfolder, filename_prefix = ldm_patched.utils.path_utils.get_save_image_path(filename_prefix, output_dir)
126
- prompt_info = ""
127
- if prompt is not None:
128
- prompt_info = json.dumps(prompt)
129
-
130
- metadata = {}
131
-
132
- enable_modelspec = True
133
- if isinstance(model.model, ldm_patched.modules.model_base.SDXL):
134
- metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-base"
135
- elif isinstance(model.model, ldm_patched.modules.model_base.SDXLRefiner):
136
- metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-refiner"
137
- else:
138
- enable_modelspec = False
139
-
140
- if enable_modelspec:
141
- metadata["modelspec.sai_model_spec"] = "1.0.0"
142
- metadata["modelspec.implementation"] = "sgm"
143
- metadata["modelspec.title"] = "{} {}".format(filename, counter)
144
-
145
- #TODO:
146
- # "stable-diffusion-v1", "stable-diffusion-v1-inpainting", "stable-diffusion-v2-512",
147
- # "stable-diffusion-v2-768-v", "stable-diffusion-v2-unclip-l", "stable-diffusion-v2-unclip-h",
148
- # "v2-inpainting"
149
-
150
- if model.model.model_type == ldm_patched.modules.model_base.ModelType.EPS:
151
- metadata["modelspec.predict_key"] = "epsilon"
152
- elif model.model.model_type == ldm_patched.modules.model_base.ModelType.V_PREDICTION:
153
- metadata["modelspec.predict_key"] = "v"
154
-
155
- if not args.disable_server_info:
156
- metadata["prompt"] = prompt_info
157
- if extra_pnginfo is not None:
158
- for x in extra_pnginfo:
159
- metadata[x] = json.dumps(extra_pnginfo[x])
160
-
161
- output_checkpoint = f"{filename}_{counter:05}_.safetensors"
162
- output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
163
-
164
- ldm_patched.modules.sd.save_checkpoint(output_checkpoint, model, clip, vae, clip_vision, metadata=metadata)
165
-
166
- class CheckpointSave:
167
- def __init__(self):
168
- self.output_dir = ldm_patched.utils.path_utils.get_output_directory()
169
-
170
- @classmethod
171
- def INPUT_TYPES(s):
172
- return {"required": { "model": ("MODEL",),
173
- "clip": ("CLIP",),
174
- "vae": ("VAE",),
175
- "filename_prefix": ("STRING", {"default": "checkpoints/ldm_patched"}),},
176
- "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
177
- RETURN_TYPES = ()
178
- FUNCTION = "save"
179
- OUTPUT_NODE = True
180
-
181
- CATEGORY = "advanced/model_merging"
182
-
183
- def save(self, model, clip, vae, filename_prefix, prompt=None, extra_pnginfo=None):
184
- save_checkpoint(model, clip=clip, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo)
185
- return {}
186
-
187
- class CLIPSave:
188
- def __init__(self):
189
- self.output_dir = ldm_patched.utils.path_utils.get_output_directory()
190
-
191
- @classmethod
192
- def INPUT_TYPES(s):
193
- return {"required": { "clip": ("CLIP",),
194
- "filename_prefix": ("STRING", {"default": "clip/ldm_patched"}),},
195
- "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
196
- RETURN_TYPES = ()
197
- FUNCTION = "save"
198
- OUTPUT_NODE = True
199
-
200
- CATEGORY = "advanced/model_merging"
201
-
202
- def save(self, clip, filename_prefix, prompt=None, extra_pnginfo=None):
203
- prompt_info = ""
204
- if prompt is not None:
205
- prompt_info = json.dumps(prompt)
206
-
207
- metadata = {}
208
- if not args.disable_server_info:
209
- metadata["prompt"] = prompt_info
210
- if extra_pnginfo is not None:
211
- for x in extra_pnginfo:
212
- metadata[x] = json.dumps(extra_pnginfo[x])
213
-
214
- ldm_patched.modules.model_management.load_models_gpu([clip.load_model()])
215
- clip_sd = clip.get_sd()
216
-
217
- for prefix in ["clip_l.", "clip_g.", ""]:
218
- k = list(filter(lambda a: a.startswith(prefix), clip_sd.keys()))
219
- current_clip_sd = {}
220
- for x in k:
221
- current_clip_sd[x] = clip_sd.pop(x)
222
- if len(current_clip_sd) == 0:
223
- continue
224
-
225
- p = prefix[:-1]
226
- replace_prefix = {}
227
- filename_prefix_ = filename_prefix
228
- if len(p) > 0:
229
- filename_prefix_ = "{}_{}".format(filename_prefix_, p)
230
- replace_prefix[prefix] = ""
231
- replace_prefix["transformer."] = ""
232
-
233
- full_output_folder, filename, counter, subfolder, filename_prefix_ = ldm_patched.utils.path_utils.get_save_image_path(filename_prefix_, self.output_dir)
234
-
235
- output_checkpoint = f"{filename}_{counter:05}_.safetensors"
236
- output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
237
-
238
- current_clip_sd = ldm_patched.modules.utils.state_dict_prefix_replace(current_clip_sd, replace_prefix)
239
-
240
- ldm_patched.modules.utils.save_torch_file(current_clip_sd, output_checkpoint, metadata=metadata)
241
- return {}
242
-
243
- class VAESave:
244
- def __init__(self):
245
- self.output_dir = ldm_patched.utils.path_utils.get_output_directory()
246
-
247
- @classmethod
248
- def INPUT_TYPES(s):
249
- return {"required": { "vae": ("VAE",),
250
- "filename_prefix": ("STRING", {"default": "vae/ldm_patched_vae"}),},
251
- "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
252
- RETURN_TYPES = ()
253
- FUNCTION = "save"
254
- OUTPUT_NODE = True
255
-
256
- CATEGORY = "advanced/model_merging"
257
-
258
- def save(self, vae, filename_prefix, prompt=None, extra_pnginfo=None):
259
- full_output_folder, filename, counter, subfolder, filename_prefix = ldm_patched.utils.path_utils.get_save_image_path(filename_prefix, self.output_dir)
260
- prompt_info = ""
261
- if prompt is not None:
262
- prompt_info = json.dumps(prompt)
263
-
264
- metadata = {}
265
- if not args.disable_server_info:
266
- metadata["prompt"] = prompt_info
267
- if extra_pnginfo is not None:
268
- for x in extra_pnginfo:
269
- metadata[x] = json.dumps(extra_pnginfo[x])
270
-
271
- output_checkpoint = f"{filename}_{counter:05}_.safetensors"
272
- output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
273
-
274
- ldm_patched.modules.utils.save_torch_file(vae.get_sd(), output_checkpoint, metadata=metadata)
275
- return {}
276
-
277
- NODE_CLASS_MAPPINGS = {
278
- "ModelMergeSimple": ModelMergeSimple,
279
- "ModelMergeBlocks": ModelMergeBlocks,
280
- "ModelMergeSubtract": ModelSubtract,
281
- "ModelMergeAdd": ModelAdd,
282
- "CheckpointSave": CheckpointSave,
283
- "CLIPMergeSimple": CLIPMergeSimple,
284
- "CLIPSave": CLIPSave,
285
- "VAESave": VAESave,
286
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_perpneg.py DELETED
@@ -1,57 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import torch
4
- import ldm_patched.modules.model_management
5
- import ldm_patched.modules.sample
6
- import ldm_patched.modules.samplers
7
- import ldm_patched.modules.utils
8
-
9
-
10
- class PerpNeg:
11
- @classmethod
12
- def INPUT_TYPES(s):
13
- return {"required": {"model": ("MODEL", ),
14
- "empty_conditioning": ("CONDITIONING", ),
15
- "neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}),
16
- }}
17
- RETURN_TYPES = ("MODEL",)
18
- FUNCTION = "patch"
19
-
20
- CATEGORY = "_for_testing"
21
-
22
- def patch(self, model, empty_conditioning, neg_scale):
23
- m = model.clone()
24
- nocond = ldm_patched.modules.sample.convert_cond(empty_conditioning)
25
-
26
- def cfg_function(args):
27
- model = args["model"]
28
- noise_pred_pos = args["cond_denoised"]
29
- noise_pred_neg = args["uncond_denoised"]
30
- cond_scale = args["cond_scale"]
31
- x = args["input"]
32
- sigma = args["sigma"]
33
- model_options = args["model_options"]
34
- nocond_processed = ldm_patched.modules.samplers.encode_model_conds(model.extra_conds, nocond, x, x.device, "negative")
35
-
36
- (noise_pred_nocond, _) = ldm_patched.modules.samplers.calc_cond_uncond_batch(model, nocond_processed, None, x, sigma, model_options)
37
-
38
- pos = noise_pred_pos - noise_pred_nocond
39
- neg = noise_pred_neg - noise_pred_nocond
40
- perp = ((torch.mul(pos, neg).sum())/(torch.norm(neg)**2)) * neg
41
- perp_neg = perp * neg_scale
42
- cfg_result = noise_pred_nocond + cond_scale*(pos - perp_neg)
43
- cfg_result = x - cfg_result
44
- return cfg_result
45
-
46
- m.set_model_sampler_cfg_function(cfg_function)
47
-
48
- return (m, )
49
-
50
-
51
- NODE_CLASS_MAPPINGS = {
52
- "PerpNeg": PerpNeg,
53
- }
54
-
55
- NODE_DISPLAY_NAME_MAPPINGS = {
56
- "PerpNeg": "Perp-Neg",
57
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_photomaker.py DELETED
@@ -1,189 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import torch
4
- import torch.nn as nn
5
- import ldm_patched.utils.path_utils
6
- import ldm_patched.modules.clip_model
7
- import ldm_patched.modules.clip_vision
8
- import ldm_patched.modules.ops
9
-
10
- # code for model from: https://github.com/TencentARC/PhotoMaker/blob/main/photomaker/model.py under Apache License Version 2.0
11
- VISION_CONFIG_DICT = {
12
- "hidden_size": 1024,
13
- "image_size": 224,
14
- "intermediate_size": 4096,
15
- "num_attention_heads": 16,
16
- "num_channels": 3,
17
- "num_hidden_layers": 24,
18
- "patch_size": 14,
19
- "projection_dim": 768,
20
- "hidden_act": "quick_gelu",
21
- }
22
-
23
- class MLP(nn.Module):
24
- def __init__(self, in_dim, out_dim, hidden_dim, use_residual=True, operations=ldm_patched.modules.ops):
25
- super().__init__()
26
- if use_residual:
27
- assert in_dim == out_dim
28
- self.layernorm = operations.LayerNorm(in_dim)
29
- self.fc1 = operations.Linear(in_dim, hidden_dim)
30
- self.fc2 = operations.Linear(hidden_dim, out_dim)
31
- self.use_residual = use_residual
32
- self.act_fn = nn.GELU()
33
-
34
- def forward(self, x):
35
- residual = x
36
- x = self.layernorm(x)
37
- x = self.fc1(x)
38
- x = self.act_fn(x)
39
- x = self.fc2(x)
40
- if self.use_residual:
41
- x = x + residual
42
- return x
43
-
44
-
45
- class FuseModule(nn.Module):
46
- def __init__(self, embed_dim, operations):
47
- super().__init__()
48
- self.mlp1 = MLP(embed_dim * 2, embed_dim, embed_dim, use_residual=False, operations=operations)
49
- self.mlp2 = MLP(embed_dim, embed_dim, embed_dim, use_residual=True, operations=operations)
50
- self.layer_norm = operations.LayerNorm(embed_dim)
51
-
52
- def fuse_fn(self, prompt_embeds, id_embeds):
53
- stacked_id_embeds = torch.cat([prompt_embeds, id_embeds], dim=-1)
54
- stacked_id_embeds = self.mlp1(stacked_id_embeds) + prompt_embeds
55
- stacked_id_embeds = self.mlp2(stacked_id_embeds)
56
- stacked_id_embeds = self.layer_norm(stacked_id_embeds)
57
- return stacked_id_embeds
58
-
59
- def forward(
60
- self,
61
- prompt_embeds,
62
- id_embeds,
63
- class_tokens_mask,
64
- ) -> torch.Tensor:
65
- # id_embeds shape: [b, max_num_inputs, 1, 2048]
66
- id_embeds = id_embeds.to(prompt_embeds.dtype)
67
- num_inputs = class_tokens_mask.sum().unsqueeze(0) # TODO: check for training case
68
- batch_size, max_num_inputs = id_embeds.shape[:2]
69
- # seq_length: 77
70
- seq_length = prompt_embeds.shape[1]
71
- # flat_id_embeds shape: [b*max_num_inputs, 1, 2048]
72
- flat_id_embeds = id_embeds.view(
73
- -1, id_embeds.shape[-2], id_embeds.shape[-1]
74
- )
75
- # valid_id_mask [b*max_num_inputs]
76
- valid_id_mask = (
77
- torch.arange(max_num_inputs, device=flat_id_embeds.device)[None, :]
78
- < num_inputs[:, None]
79
- )
80
- valid_id_embeds = flat_id_embeds[valid_id_mask.flatten()]
81
-
82
- prompt_embeds = prompt_embeds.view(-1, prompt_embeds.shape[-1])
83
- class_tokens_mask = class_tokens_mask.view(-1)
84
- valid_id_embeds = valid_id_embeds.view(-1, valid_id_embeds.shape[-1])
85
- # slice out the image token embeddings
86
- image_token_embeds = prompt_embeds[class_tokens_mask]
87
- stacked_id_embeds = self.fuse_fn(image_token_embeds, valid_id_embeds)
88
- assert class_tokens_mask.sum() == stacked_id_embeds.shape[0], f"{class_tokens_mask.sum()} != {stacked_id_embeds.shape[0]}"
89
- prompt_embeds.masked_scatter_(class_tokens_mask[:, None], stacked_id_embeds.to(prompt_embeds.dtype))
90
- updated_prompt_embeds = prompt_embeds.view(batch_size, seq_length, -1)
91
- return updated_prompt_embeds
92
-
93
- class PhotoMakerIDEncoder(ldm_patched.modules.clip_model.CLIPVisionModelProjection):
94
- def __init__(self):
95
- self.load_device = ldm_patched.modules.model_management.text_encoder_device()
96
- offload_device = ldm_patched.modules.model_management.text_encoder_offload_device()
97
- dtype = ldm_patched.modules.model_management.text_encoder_dtype(self.load_device)
98
-
99
- super().__init__(VISION_CONFIG_DICT, dtype, offload_device, ldm_patched.modules.ops.manual_cast)
100
- self.visual_projection_2 = ldm_patched.modules.ops.manual_cast.Linear(1024, 1280, bias=False)
101
- self.fuse_module = FuseModule(2048, ldm_patched.modules.ops.manual_cast)
102
-
103
- def forward(self, id_pixel_values, prompt_embeds, class_tokens_mask):
104
- b, num_inputs, c, h, w = id_pixel_values.shape
105
- id_pixel_values = id_pixel_values.view(b * num_inputs, c, h, w)
106
-
107
- shared_id_embeds = self.vision_model(id_pixel_values)[2]
108
- id_embeds = self.visual_projection(shared_id_embeds)
109
- id_embeds_2 = self.visual_projection_2(shared_id_embeds)
110
-
111
- id_embeds = id_embeds.view(b, num_inputs, 1, -1)
112
- id_embeds_2 = id_embeds_2.view(b, num_inputs, 1, -1)
113
-
114
- id_embeds = torch.cat((id_embeds, id_embeds_2), dim=-1)
115
- updated_prompt_embeds = self.fuse_module(prompt_embeds, id_embeds, class_tokens_mask)
116
-
117
- return updated_prompt_embeds
118
-
119
-
120
- class PhotoMakerLoader:
121
- @classmethod
122
- def INPUT_TYPES(s):
123
- return {"required": { "photomaker_model_name": (ldm_patched.utils.path_utils.get_filename_list("photomaker"), )}}
124
-
125
- RETURN_TYPES = ("PHOTOMAKER",)
126
- FUNCTION = "load_photomaker_model"
127
-
128
- CATEGORY = "_for_testing/photomaker"
129
-
130
- def load_photomaker_model(self, photomaker_model_name):
131
- photomaker_model_path = ldm_patched.utils.path_utils.get_full_path("photomaker", photomaker_model_name)
132
- photomaker_model = PhotoMakerIDEncoder()
133
- data = ldm_patched.modules.utils.load_torch_file(photomaker_model_path, safe_load=True)
134
- if "id_encoder" in data:
135
- data = data["id_encoder"]
136
- photomaker_model.load_state_dict(data)
137
- return (photomaker_model,)
138
-
139
-
140
- class PhotoMakerEncode:
141
- @classmethod
142
- def INPUT_TYPES(s):
143
- return {"required": { "photomaker": ("PHOTOMAKER",),
144
- "image": ("IMAGE",),
145
- "clip": ("CLIP", ),
146
- "text": ("STRING", {"multiline": True, "default": "photograph of photomaker"}),
147
- }}
148
-
149
- RETURN_TYPES = ("CONDITIONING",)
150
- FUNCTION = "apply_photomaker"
151
-
152
- CATEGORY = "_for_testing/photomaker"
153
-
154
- def apply_photomaker(self, photomaker, image, clip, text):
155
- special_token = "photomaker"
156
- pixel_values = ldm_patched.modules.clip_vision.clip_preprocess(image.to(photomaker.load_device)).float()
157
- try:
158
- index = text.split(" ").index(special_token) + 1
159
- except ValueError:
160
- index = -1
161
- tokens = clip.tokenize(text, return_word_ids=True)
162
- out_tokens = {}
163
- for k in tokens:
164
- out_tokens[k] = []
165
- for t in tokens[k]:
166
- f = list(filter(lambda x: x[2] != index, t))
167
- while len(f) < len(t):
168
- f.append(t[-1])
169
- out_tokens[k].append(f)
170
-
171
- cond, pooled = clip.encode_from_tokens(out_tokens, return_pooled=True)
172
-
173
- if index > 0:
174
- token_index = index - 1
175
- num_id_images = 1
176
- class_tokens_mask = [True if token_index <= i < token_index+num_id_images else False for i in range(77)]
177
- out = photomaker(id_pixel_values=pixel_values.unsqueeze(0), prompt_embeds=cond.to(photomaker.load_device),
178
- class_tokens_mask=torch.tensor(class_tokens_mask, dtype=torch.bool, device=photomaker.load_device).unsqueeze(0))
179
- else:
180
- out = cond
181
-
182
- return ([[out, {"pooled_output": pooled}]], )
183
-
184
-
185
- NODE_CLASS_MAPPINGS = {
186
- "PhotoMakerLoader": PhotoMakerLoader,
187
- "PhotoMakerEncode": PhotoMakerEncode,
188
- }
189
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_post_processing.py DELETED
@@ -1,278 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import numpy as np
4
- import torch
5
- import torch.nn.functional as F
6
- from PIL import Image
7
- import math
8
-
9
- import ldm_patched.modules.utils
10
-
11
-
12
- class Blend:
13
- def __init__(self):
14
- pass
15
-
16
- @classmethod
17
- def INPUT_TYPES(s):
18
- return {
19
- "required": {
20
- "image1": ("IMAGE",),
21
- "image2": ("IMAGE",),
22
- "blend_factor": ("FLOAT", {
23
- "default": 0.5,
24
- "min": 0.0,
25
- "max": 1.0,
26
- "step": 0.01
27
- }),
28
- "blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light", "difference"],),
29
- },
30
- }
31
-
32
- RETURN_TYPES = ("IMAGE",)
33
- FUNCTION = "blend_images"
34
-
35
- CATEGORY = "image/postprocessing"
36
-
37
- def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str):
38
- image2 = image2.to(image1.device)
39
- if image1.shape != image2.shape:
40
- image2 = image2.permute(0, 3, 1, 2)
41
- image2 = ldm_patched.modules.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center')
42
- image2 = image2.permute(0, 2, 3, 1)
43
-
44
- blended_image = self.blend_mode(image1, image2, blend_mode)
45
- blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
46
- blended_image = torch.clamp(blended_image, 0, 1)
47
- return (blended_image,)
48
-
49
- def blend_mode(self, img1, img2, mode):
50
- if mode == "normal":
51
- return img2
52
- elif mode == "multiply":
53
- return img1 * img2
54
- elif mode == "screen":
55
- return 1 - (1 - img1) * (1 - img2)
56
- elif mode == "overlay":
57
- return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
58
- elif mode == "soft_light":
59
- return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1))
60
- elif mode == "difference":
61
- return img1 - img2
62
- else:
63
- raise ValueError(f"Unsupported blend mode: {mode}")
64
-
65
- def g(self, x):
66
- return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))
67
-
68
- def gaussian_kernel(kernel_size: int, sigma: float, device=None):
69
- x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij")
70
- d = torch.sqrt(x * x + y * y)
71
- g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
72
- return g / g.sum()
73
-
74
- class Blur:
75
- def __init__(self):
76
- pass
77
-
78
- @classmethod
79
- def INPUT_TYPES(s):
80
- return {
81
- "required": {
82
- "image": ("IMAGE",),
83
- "blur_radius": ("INT", {
84
- "default": 1,
85
- "min": 1,
86
- "max": 31,
87
- "step": 1
88
- }),
89
- "sigma": ("FLOAT", {
90
- "default": 1.0,
91
- "min": 0.1,
92
- "max": 10.0,
93
- "step": 0.1
94
- }),
95
- },
96
- }
97
-
98
- RETURN_TYPES = ("IMAGE",)
99
- FUNCTION = "blur"
100
-
101
- CATEGORY = "image/postprocessing"
102
-
103
- def blur(self, image: torch.Tensor, blur_radius: int, sigma: float):
104
- if blur_radius == 0:
105
- return (image,)
106
-
107
- batch_size, height, width, channels = image.shape
108
-
109
- kernel_size = blur_radius * 2 + 1
110
- kernel = gaussian_kernel(kernel_size, sigma, device=image.device).repeat(channels, 1, 1).unsqueeze(1)
111
-
112
- image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
113
- padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect')
114
- blurred = F.conv2d(padded_image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius]
115
- blurred = blurred.permute(0, 2, 3, 1)
116
-
117
- return (blurred,)
118
-
119
- class Quantize:
120
- def __init__(self):
121
- pass
122
-
123
- @classmethod
124
- def INPUT_TYPES(s):
125
- return {
126
- "required": {
127
- "image": ("IMAGE",),
128
- "colors": ("INT", {
129
- "default": 256,
130
- "min": 1,
131
- "max": 256,
132
- "step": 1
133
- }),
134
- "dither": (["none", "floyd-steinberg", "bayer-2", "bayer-4", "bayer-8", "bayer-16"],),
135
- },
136
- }
137
-
138
- RETURN_TYPES = ("IMAGE",)
139
- FUNCTION = "quantize"
140
-
141
- CATEGORY = "image/postprocessing"
142
-
143
- def bayer(im, pal_im, order):
144
- def normalized_bayer_matrix(n):
145
- if n == 0:
146
- return np.zeros((1,1), "float32")
147
- else:
148
- q = 4 ** n
149
- m = q * normalized_bayer_matrix(n - 1)
150
- return np.bmat(((m-1.5, m+0.5), (m+1.5, m-0.5))) / q
151
-
152
- num_colors = len(pal_im.getpalette()) // 3
153
- spread = 2 * 256 / num_colors
154
- bayer_n = int(math.log2(order))
155
- bayer_matrix = torch.from_numpy(spread * normalized_bayer_matrix(bayer_n) + 0.5)
156
-
157
- result = torch.from_numpy(np.array(im).astype(np.float32))
158
- tw = math.ceil(result.shape[0] / bayer_matrix.shape[0])
159
- th = math.ceil(result.shape[1] / bayer_matrix.shape[1])
160
- tiled_matrix = bayer_matrix.tile(tw, th).unsqueeze(-1)
161
- result.add_(tiled_matrix[:result.shape[0],:result.shape[1]]).clamp_(0, 255)
162
- result = result.to(dtype=torch.uint8)
163
-
164
- im = Image.fromarray(result.cpu().numpy())
165
- im = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
166
- return im
167
-
168
- def quantize(self, image: torch.Tensor, colors: int, dither: str):
169
- batch_size, height, width, _ = image.shape
170
- result = torch.zeros_like(image)
171
-
172
- for b in range(batch_size):
173
- im = Image.fromarray((image[b] * 255).to(torch.uint8).numpy(), mode='RGB')
174
-
175
- pal_im = im.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
176
-
177
- if dither == "none":
178
- quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
179
- elif dither == "floyd-steinberg":
180
- quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.FLOYDSTEINBERG)
181
- elif dither.startswith("bayer"):
182
- order = int(dither.split('-')[-1])
183
- quantized_image = Quantize.bayer(im, pal_im, order)
184
-
185
- quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255
186
- result[b] = quantized_array
187
-
188
- return (result,)
189
-
190
- class Sharpen:
191
- def __init__(self):
192
- pass
193
-
194
- @classmethod
195
- def INPUT_TYPES(s):
196
- return {
197
- "required": {
198
- "image": ("IMAGE",),
199
- "sharpen_radius": ("INT", {
200
- "default": 1,
201
- "min": 1,
202
- "max": 31,
203
- "step": 1
204
- }),
205
- "sigma": ("FLOAT", {
206
- "default": 1.0,
207
- "min": 0.1,
208
- "max": 10.0,
209
- "step": 0.1
210
- }),
211
- "alpha": ("FLOAT", {
212
- "default": 1.0,
213
- "min": 0.0,
214
- "max": 5.0,
215
- "step": 0.1
216
- }),
217
- },
218
- }
219
-
220
- RETURN_TYPES = ("IMAGE",)
221
- FUNCTION = "sharpen"
222
-
223
- CATEGORY = "image/postprocessing"
224
-
225
- def sharpen(self, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float):
226
- if sharpen_radius == 0:
227
- return (image,)
228
-
229
- batch_size, height, width, channels = image.shape
230
-
231
- kernel_size = sharpen_radius * 2 + 1
232
- kernel = gaussian_kernel(kernel_size, sigma, device=image.device) * -(alpha*10)
233
- center = kernel_size // 2
234
- kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
235
- kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)
236
-
237
- tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
238
- tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect')
239
- sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
240
- sharpened = sharpened.permute(0, 2, 3, 1)
241
-
242
- result = torch.clamp(sharpened, 0, 1)
243
-
244
- return (result,)
245
-
246
- class ImageScaleToTotalPixels:
247
- upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
248
- crop_methods = ["disabled", "center"]
249
-
250
- @classmethod
251
- def INPUT_TYPES(s):
252
- return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
253
- "megapixels": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 16.0, "step": 0.01}),
254
- }}
255
- RETURN_TYPES = ("IMAGE",)
256
- FUNCTION = "upscale"
257
-
258
- CATEGORY = "image/upscaling"
259
-
260
- def upscale(self, image, upscale_method, megapixels):
261
- samples = image.movedim(-1,1)
262
- total = int(megapixels * 1024 * 1024)
263
-
264
- scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
265
- width = round(samples.shape[3] * scale_by)
266
- height = round(samples.shape[2] * scale_by)
267
-
268
- s = ldm_patched.modules.utils.common_upscale(samples, width, height, upscale_method, "disabled")
269
- s = s.movedim(1,-1)
270
- return (s,)
271
-
272
- NODE_CLASS_MAPPINGS = {
273
- "ImageBlend": Blend,
274
- "ImageBlur": Blur,
275
- "ImageQuantize": Quantize,
276
- "ImageSharpen": Sharpen,
277
- "ImageScaleToTotalPixels": ImageScaleToTotalPixels,
278
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_rebatch.py DELETED
@@ -1,140 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import torch
4
-
5
- class LatentRebatch:
6
- @classmethod
7
- def INPUT_TYPES(s):
8
- return {"required": { "latents": ("LATENT",),
9
- "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
10
- }}
11
- RETURN_TYPES = ("LATENT",)
12
- INPUT_IS_LIST = True
13
- OUTPUT_IS_LIST = (True, )
14
-
15
- FUNCTION = "rebatch"
16
-
17
- CATEGORY = "latent/batch"
18
-
19
- @staticmethod
20
- def get_batch(latents, list_ind, offset):
21
- '''prepare a batch out of the list of latents'''
22
- samples = latents[list_ind]['samples']
23
- shape = samples.shape
24
- mask = latents[list_ind]['noise_mask'] if 'noise_mask' in latents[list_ind] else torch.ones((shape[0], 1, shape[2]*8, shape[3]*8), device='cpu')
25
- if mask.shape[-1] != shape[-1] * 8 or mask.shape[-2] != shape[-2]:
26
- torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[-2]*8, shape[-1]*8), mode="bilinear")
27
- if mask.shape[0] < samples.shape[0]:
28
- mask = mask.repeat((shape[0] - 1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]]
29
- if 'batch_index' in latents[list_ind]:
30
- batch_inds = latents[list_ind]['batch_index']
31
- else:
32
- batch_inds = [x+offset for x in range(shape[0])]
33
- return samples, mask, batch_inds
34
-
35
- @staticmethod
36
- def get_slices(indexable, num, batch_size):
37
- '''divides an indexable object into num slices of length batch_size, and a remainder'''
38
- slices = []
39
- for i in range(num):
40
- slices.append(indexable[i*batch_size:(i+1)*batch_size])
41
- if num * batch_size < len(indexable):
42
- return slices, indexable[num * batch_size:]
43
- else:
44
- return slices, None
45
-
46
- @staticmethod
47
- def slice_batch(batch, num, batch_size):
48
- result = [LatentRebatch.get_slices(x, num, batch_size) for x in batch]
49
- return list(zip(*result))
50
-
51
- @staticmethod
52
- def cat_batch(batch1, batch2):
53
- if batch1[0] is None:
54
- return batch2
55
- result = [torch.cat((b1, b2)) if torch.is_tensor(b1) else b1 + b2 for b1, b2 in zip(batch1, batch2)]
56
- return result
57
-
58
- def rebatch(self, latents, batch_size):
59
- batch_size = batch_size[0]
60
-
61
- output_list = []
62
- current_batch = (None, None, None)
63
- processed = 0
64
-
65
- for i in range(len(latents)):
66
- # fetch new entry of list
67
- #samples, masks, indices = self.get_batch(latents, i)
68
- next_batch = self.get_batch(latents, i, processed)
69
- processed += len(next_batch[2])
70
- # set to current if current is None
71
- if current_batch[0] is None:
72
- current_batch = next_batch
73
- # add previous to list if dimensions do not match
74
- elif next_batch[0].shape[-1] != current_batch[0].shape[-1] or next_batch[0].shape[-2] != current_batch[0].shape[-2]:
75
- sliced, _ = self.slice_batch(current_batch, 1, batch_size)
76
- output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]})
77
- current_batch = next_batch
78
- # cat if everything checks out
79
- else:
80
- current_batch = self.cat_batch(current_batch, next_batch)
81
-
82
- # add to list if dimensions gone above target batch size
83
- if current_batch[0].shape[0] > batch_size:
84
- num = current_batch[0].shape[0] // batch_size
85
- sliced, remainder = self.slice_batch(current_batch, num, batch_size)
86
-
87
- for i in range(num):
88
- output_list.append({'samples': sliced[0][i], 'noise_mask': sliced[1][i], 'batch_index': sliced[2][i]})
89
-
90
- current_batch = remainder
91
-
92
- #add remainder
93
- if current_batch[0] is not None:
94
- sliced, _ = self.slice_batch(current_batch, 1, batch_size)
95
- output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]})
96
-
97
- #get rid of empty masks
98
- for s in output_list:
99
- if s['noise_mask'].mean() == 1.0:
100
- del s['noise_mask']
101
-
102
- return (output_list,)
103
-
104
- class ImageRebatch:
105
- @classmethod
106
- def INPUT_TYPES(s):
107
- return {"required": { "images": ("IMAGE",),
108
- "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
109
- }}
110
- RETURN_TYPES = ("IMAGE",)
111
- INPUT_IS_LIST = True
112
- OUTPUT_IS_LIST = (True, )
113
-
114
- FUNCTION = "rebatch"
115
-
116
- CATEGORY = "image/batch"
117
-
118
- def rebatch(self, images, batch_size):
119
- batch_size = batch_size[0]
120
-
121
- output_list = []
122
- all_images = []
123
- for img in images:
124
- for i in range(img.shape[0]):
125
- all_images.append(img[i:i+1])
126
-
127
- for i in range(0, len(all_images), batch_size):
128
- output_list.append(torch.cat(all_images[i:i+batch_size], dim=0))
129
-
130
- return (output_list,)
131
-
132
- NODE_CLASS_MAPPINGS = {
133
- "RebatchLatents": LatentRebatch,
134
- "RebatchImages": ImageRebatch,
135
- }
136
-
137
- NODE_DISPLAY_NAME_MAPPINGS = {
138
- "RebatchLatents": "Rebatch Latents",
139
- "RebatchImages": "Rebatch Images",
140
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_sag.py DELETED
@@ -1,172 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import torch
4
- from torch import einsum
5
- import torch.nn.functional as F
6
- import math
7
-
8
- from einops import rearrange, repeat
9
- import os
10
- from ldm_patched.ldm.modules.attention import optimized_attention, _ATTN_PRECISION
11
- import ldm_patched.modules.samplers
12
-
13
- # from ldm_patched.modules/ldm/modules/attention.py
14
- # but modified to return attention scores as well as output
15
- def attention_basic_with_sim(q, k, v, heads, mask=None):
16
- b, _, dim_head = q.shape
17
- dim_head //= heads
18
- scale = dim_head ** -0.5
19
-
20
- h = heads
21
- q, k, v = map(
22
- lambda t: t.unsqueeze(3)
23
- .reshape(b, -1, heads, dim_head)
24
- .permute(0, 2, 1, 3)
25
- .reshape(b * heads, -1, dim_head)
26
- .contiguous(),
27
- (q, k, v),
28
- )
29
-
30
- # force cast to fp32 to avoid overflowing
31
- if _ATTN_PRECISION =="fp32":
32
- sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
33
- else:
34
- sim = einsum('b i d, b j d -> b i j', q, k) * scale
35
-
36
- del q, k
37
-
38
- if mask is not None:
39
- mask = rearrange(mask, 'b ... -> b (...)')
40
- max_neg_value = -torch.finfo(sim.dtype).max
41
- mask = repeat(mask, 'b j -> (b h) () j', h=h)
42
- sim.masked_fill_(~mask, max_neg_value)
43
-
44
- # attention, what we cannot get enough of
45
- sim = sim.softmax(dim=-1)
46
-
47
- out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
48
- out = (
49
- out.unsqueeze(0)
50
- .reshape(b, heads, -1, dim_head)
51
- .permute(0, 2, 1, 3)
52
- .reshape(b, -1, heads * dim_head)
53
- )
54
- return (out, sim)
55
-
56
- def create_blur_map(x0, attn, sigma=3.0, threshold=1.0):
57
- # reshape and GAP the attention map
58
- _, hw1, hw2 = attn.shape
59
- b, _, lh, lw = x0.shape
60
- attn = attn.reshape(b, -1, hw1, hw2)
61
- # Global Average Pool
62
- mask = attn.mean(1, keepdim=False).sum(1, keepdim=False) > threshold
63
- ratio = 2**(math.ceil(math.sqrt(lh * lw / hw1)) - 1).bit_length()
64
- mid_shape = [math.ceil(lh / ratio), math.ceil(lw / ratio)]
65
-
66
- # Reshape
67
- mask = (
68
- mask.reshape(b, *mid_shape)
69
- .unsqueeze(1)
70
- .type(attn.dtype)
71
- )
72
- # Upsample
73
- mask = F.interpolate(mask, (lh, lw))
74
-
75
- blurred = gaussian_blur_2d(x0, kernel_size=9, sigma=sigma)
76
- blurred = blurred * mask + x0 * (1 - mask)
77
- return blurred
78
-
79
- def gaussian_blur_2d(img, kernel_size, sigma):
80
- ksize_half = (kernel_size - 1) * 0.5
81
-
82
- x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
83
-
84
- pdf = torch.exp(-0.5 * (x / sigma).pow(2))
85
-
86
- x_kernel = pdf / pdf.sum()
87
- x_kernel = x_kernel.to(device=img.device, dtype=img.dtype)
88
-
89
- kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :])
90
- kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1])
91
-
92
- padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2]
93
-
94
- img = F.pad(img, padding, mode="reflect")
95
- img = F.conv2d(img, kernel2d, groups=img.shape[-3])
96
- return img
97
-
98
- class SelfAttentionGuidance:
99
- @classmethod
100
- def INPUT_TYPES(s):
101
- return {"required": { "model": ("MODEL",),
102
- "scale": ("FLOAT", {"default": 0.5, "min": -2.0, "max": 5.0, "step": 0.1}),
103
- "blur_sigma": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 10.0, "step": 0.1}),
104
- }}
105
- RETURN_TYPES = ("MODEL",)
106
- FUNCTION = "patch"
107
-
108
- CATEGORY = "_for_testing"
109
-
110
- def patch(self, model, scale, blur_sigma):
111
- m = model.clone()
112
-
113
- attn_scores = None
114
-
115
- # TODO: make this work properly with chunked batches
116
- # currently, we can only save the attn from one UNet call
117
- def attn_and_record(q, k, v, extra_options):
118
- nonlocal attn_scores
119
- # if uncond, save the attention scores
120
- heads = extra_options["n_heads"]
121
- cond_or_uncond = extra_options["cond_or_uncond"]
122
- b = q.shape[0] // len(cond_or_uncond)
123
- if 1 in cond_or_uncond:
124
- uncond_index = cond_or_uncond.index(1)
125
- # do the entire attention operation, but save the attention scores to attn_scores
126
- (out, sim) = attention_basic_with_sim(q, k, v, heads=heads)
127
- # when using a higher batch size, I BELIEVE the result batch dimension is [uc1, ... ucn, c1, ... cn]
128
- n_slices = heads * b
129
- attn_scores = sim[n_slices * uncond_index:n_slices * (uncond_index+1)]
130
- return out
131
- else:
132
- return optimized_attention(q, k, v, heads=heads)
133
-
134
- def post_cfg_function(args):
135
- nonlocal attn_scores
136
- uncond_attn = attn_scores
137
-
138
- sag_scale = scale
139
- sag_sigma = blur_sigma
140
- sag_threshold = 1.0
141
- model = args["model"]
142
- uncond_pred = args["uncond_denoised"]
143
- uncond = args["uncond"]
144
- cfg_result = args["denoised"]
145
- sigma = args["sigma"]
146
- model_options = args["model_options"]
147
- x = args["input"]
148
- if min(cfg_result.shape[2:]) <= 4: #skip when too small to add padding
149
- return cfg_result
150
-
151
- # create the adversarially blurred image
152
- degraded = create_blur_map(uncond_pred, uncond_attn, sag_sigma, sag_threshold)
153
- degraded_noised = degraded + x - uncond_pred
154
- # call into the UNet
155
- (sag, _) = ldm_patched.modules.samplers.calc_cond_uncond_batch(model, uncond, None, degraded_noised, sigma, model_options)
156
- return cfg_result + (degraded - sag) * sag_scale
157
-
158
- m.set_model_sampler_post_cfg_function(post_cfg_function, disable_cfg1_optimization=True)
159
-
160
- # from diffusers:
161
- # unet.mid_block.attentions[0].transformer_blocks[0].attn1.patch
162
- m.set_model_attn1_replace(attn_and_record, "middle", 0, 0)
163
-
164
- return (m, )
165
-
166
- NODE_CLASS_MAPPINGS = {
167
- "SelfAttentionGuidance": SelfAttentionGuidance,
168
- }
169
-
170
- NODE_DISPLAY_NAME_MAPPINGS = {
171
- "SelfAttentionGuidance": "Self-Attention Guidance",
172
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_sdupscale.py DELETED
@@ -1,49 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import torch
4
- import ldm_patched.contrib.external
5
- import ldm_patched.modules.utils
6
-
7
- class SD_4XUpscale_Conditioning:
8
- @classmethod
9
- def INPUT_TYPES(s):
10
- return {"required": { "images": ("IMAGE",),
11
- "positive": ("CONDITIONING",),
12
- "negative": ("CONDITIONING",),
13
- "scale_ratio": ("FLOAT", {"default": 4.0, "min": 0.0, "max": 10.0, "step": 0.01}),
14
- "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
15
- }}
16
- RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
17
- RETURN_NAMES = ("positive", "negative", "latent")
18
-
19
- FUNCTION = "encode"
20
-
21
- CATEGORY = "conditioning/upscale_diffusion"
22
-
23
- def encode(self, images, positive, negative, scale_ratio, noise_augmentation):
24
- width = max(1, round(images.shape[-2] * scale_ratio))
25
- height = max(1, round(images.shape[-3] * scale_ratio))
26
-
27
- pixels = ldm_patched.modules.utils.common_upscale((images.movedim(-1,1) * 2.0) - 1.0, width // 4, height // 4, "bilinear", "center")
28
-
29
- out_cp = []
30
- out_cn = []
31
-
32
- for t in positive:
33
- n = [t[0], t[1].copy()]
34
- n[1]['concat_image'] = pixels
35
- n[1]['noise_augmentation'] = noise_augmentation
36
- out_cp.append(n)
37
-
38
- for t in negative:
39
- n = [t[0], t[1].copy()]
40
- n[1]['concat_image'] = pixels
41
- n[1]['noise_augmentation'] = noise_augmentation
42
- out_cn.append(n)
43
-
44
- latent = torch.zeros([images.shape[0], 4, height // 4, width // 4])
45
- return (out_cp, out_cn, {"samples":latent})
46
-
47
- NODE_CLASS_MAPPINGS = {
48
- "SD_4XUpscale_Conditioning": SD_4XUpscale_Conditioning,
49
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_stable3d.py DELETED
@@ -1,104 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import torch
4
- import ldm_patched.contrib.external
5
- import ldm_patched.modules.utils
6
-
7
- def camera_embeddings(elevation, azimuth):
8
- elevation = torch.as_tensor([elevation])
9
- azimuth = torch.as_tensor([azimuth])
10
- embeddings = torch.stack(
11
- [
12
- torch.deg2rad(
13
- (90 - elevation) - (90)
14
- ), # Zero123 polar is 90-elevation
15
- torch.sin(torch.deg2rad(azimuth)),
16
- torch.cos(torch.deg2rad(azimuth)),
17
- torch.deg2rad(
18
- 90 - torch.full_like(elevation, 0)
19
- ),
20
- ], dim=-1).unsqueeze(1)
21
-
22
- return embeddings
23
-
24
-
25
- class StableZero123_Conditioning:
26
- @classmethod
27
- def INPUT_TYPES(s):
28
- return {"required": { "clip_vision": ("CLIP_VISION",),
29
- "init_image": ("IMAGE",),
30
- "vae": ("VAE",),
31
- "width": ("INT", {"default": 256, "min": 16, "max": ldm_patched.contrib.external.MAX_RESOLUTION, "step": 8}),
32
- "height": ("INT", {"default": 256, "min": 16, "max": ldm_patched.contrib.external.MAX_RESOLUTION, "step": 8}),
33
- "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
34
- "elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
35
- "azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
36
- }}
37
- RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
38
- RETURN_NAMES = ("positive", "negative", "latent")
39
-
40
- FUNCTION = "encode"
41
-
42
- CATEGORY = "conditioning/3d_models"
43
-
44
- def encode(self, clip_vision, init_image, vae, width, height, batch_size, elevation, azimuth):
45
- output = clip_vision.encode_image(init_image)
46
- pooled = output.image_embeds.unsqueeze(0)
47
- pixels = ldm_patched.modules.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
48
- encode_pixels = pixels[:,:,:,:3]
49
- t = vae.encode(encode_pixels)
50
- cam_embeds = camera_embeddings(elevation, azimuth)
51
- cond = torch.cat([pooled, cam_embeds.to(pooled.device).repeat((pooled.shape[0], 1, 1))], dim=-1)
52
-
53
- positive = [[cond, {"concat_latent_image": t}]]
54
- negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t)}]]
55
- latent = torch.zeros([batch_size, 4, height // 8, width // 8])
56
- return (positive, negative, {"samples":latent})
57
-
58
- class StableZero123_Conditioning_Batched:
59
- @classmethod
60
- def INPUT_TYPES(s):
61
- return {"required": { "clip_vision": ("CLIP_VISION",),
62
- "init_image": ("IMAGE",),
63
- "vae": ("VAE",),
64
- "width": ("INT", {"default": 256, "min": 16, "max": ldm_patched.contrib.external.MAX_RESOLUTION, "step": 8}),
65
- "height": ("INT", {"default": 256, "min": 16, "max": ldm_patched.contrib.external.MAX_RESOLUTION, "step": 8}),
66
- "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
67
- "elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
68
- "azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
69
- "elevation_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
70
- "azimuth_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
71
- }}
72
- RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
73
- RETURN_NAMES = ("positive", "negative", "latent")
74
-
75
- FUNCTION = "encode"
76
-
77
- CATEGORY = "conditioning/3d_models"
78
-
79
- def encode(self, clip_vision, init_image, vae, width, height, batch_size, elevation, azimuth, elevation_batch_increment, azimuth_batch_increment):
80
- output = clip_vision.encode_image(init_image)
81
- pooled = output.image_embeds.unsqueeze(0)
82
- pixels = ldm_patched.modules.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
83
- encode_pixels = pixels[:,:,:,:3]
84
- t = vae.encode(encode_pixels)
85
-
86
- cam_embeds = []
87
- for i in range(batch_size):
88
- cam_embeds.append(camera_embeddings(elevation, azimuth))
89
- elevation += elevation_batch_increment
90
- azimuth += azimuth_batch_increment
91
-
92
- cam_embeds = torch.cat(cam_embeds, dim=0)
93
- cond = torch.cat([ldm_patched.modules.utils.repeat_to_batch_size(pooled, batch_size), cam_embeds], dim=-1)
94
-
95
- positive = [[cond, {"concat_latent_image": t}]]
96
- negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t)}]]
97
- latent = torch.zeros([batch_size, 4, height // 8, width // 8])
98
- return (positive, negative, {"samples":latent, "batch_index": [0] * batch_size})
99
-
100
-
101
- NODE_CLASS_MAPPINGS = {
102
- "StableZero123_Conditioning": StableZero123_Conditioning,
103
- "StableZero123_Conditioning_Batched": StableZero123_Conditioning_Batched,
104
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_tomesd.py DELETED
@@ -1,179 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- #Taken from: https://github.com/dbolya/tomesd
4
-
5
- import torch
6
- from typing import Tuple, Callable
7
- import math
8
-
9
- def do_nothing(x: torch.Tensor, mode:str=None):
10
- return x
11
-
12
-
13
- def mps_gather_workaround(input, dim, index):
14
- if input.shape[-1] == 1:
15
- return torch.gather(
16
- input.unsqueeze(-1),
17
- dim - 1 if dim < 0 else dim,
18
- index.unsqueeze(-1)
19
- ).squeeze(-1)
20
- else:
21
- return torch.gather(input, dim, index)
22
-
23
-
24
- def bipartite_soft_matching_random2d(metric: torch.Tensor,
25
- w: int, h: int, sx: int, sy: int, r: int,
26
- no_rand: bool = False) -> Tuple[Callable, Callable]:
27
- """
28
- Partitions the tokens into src and dst and merges r tokens from src to dst.
29
- Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.
30
- Args:
31
- - metric [B, N, C]: metric to use for similarity
32
- - w: image width in tokens
33
- - h: image height in tokens
34
- - sx: stride in the x dimension for dst, must divide w
35
- - sy: stride in the y dimension for dst, must divide h
36
- - r: number of tokens to remove (by merging)
37
- - no_rand: if true, disable randomness (use top left corner only)
38
- """
39
- B, N, _ = metric.shape
40
-
41
- if r <= 0 or w == 1 or h == 1:
42
- return do_nothing, do_nothing
43
-
44
- gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
45
-
46
- with torch.no_grad():
47
-
48
- hsy, wsx = h // sy, w // sx
49
-
50
- # For each sy by sx kernel, randomly assign one token to be dst and the rest src
51
- if no_rand:
52
- rand_idx = torch.zeros(hsy, wsx, 1, device=metric.device, dtype=torch.int64)
53
- else:
54
- rand_idx = torch.randint(sy*sx, size=(hsy, wsx, 1), device=metric.device)
55
-
56
- # The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
57
- idx_buffer_view = torch.zeros(hsy, wsx, sy*sx, device=metric.device, dtype=torch.int64)
58
- idx_buffer_view.scatter_(dim=2, index=rand_idx, src=-torch.ones_like(rand_idx, dtype=rand_idx.dtype))
59
- idx_buffer_view = idx_buffer_view.view(hsy, wsx, sy, sx).transpose(1, 2).reshape(hsy * sy, wsx * sx)
60
-
61
- # Image is not divisible by sx or sy so we need to move it into a new buffer
62
- if (hsy * sy) < h or (wsx * sx) < w:
63
- idx_buffer = torch.zeros(h, w, device=metric.device, dtype=torch.int64)
64
- idx_buffer[:(hsy * sy), :(wsx * sx)] = idx_buffer_view
65
- else:
66
- idx_buffer = idx_buffer_view
67
-
68
- # We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices
69
- rand_idx = idx_buffer.reshape(1, -1, 1).argsort(dim=1)
70
-
71
- # We're finished with these
72
- del idx_buffer, idx_buffer_view
73
-
74
- # rand_idx is currently dst|src, so split them
75
- num_dst = hsy * wsx
76
- a_idx = rand_idx[:, num_dst:, :] # src
77
- b_idx = rand_idx[:, :num_dst, :] # dst
78
-
79
- def split(x):
80
- C = x.shape[-1]
81
- src = gather(x, dim=1, index=a_idx.expand(B, N - num_dst, C))
82
- dst = gather(x, dim=1, index=b_idx.expand(B, num_dst, C))
83
- return src, dst
84
-
85
- # Cosine similarity between A and B
86
- metric = metric / metric.norm(dim=-1, keepdim=True)
87
- a, b = split(metric)
88
- scores = a @ b.transpose(-1, -2)
89
-
90
- # Can't reduce more than the # tokens in src
91
- r = min(a.shape[1], r)
92
-
93
- # Find the most similar greedily
94
- node_max, node_idx = scores.max(dim=-1)
95
- edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
96
-
97
- unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
98
- src_idx = edge_idx[..., :r, :] # Merged Tokens
99
- dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
100
-
101
- def merge(x: torch.Tensor, mode="mean") -> torch.Tensor:
102
- src, dst = split(x)
103
- n, t1, c = src.shape
104
-
105
- unm = gather(src, dim=-2, index=unm_idx.expand(n, t1 - r, c))
106
- src = gather(src, dim=-2, index=src_idx.expand(n, r, c))
107
- dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode)
108
-
109
- return torch.cat([unm, dst], dim=1)
110
-
111
- def unmerge(x: torch.Tensor) -> torch.Tensor:
112
- unm_len = unm_idx.shape[1]
113
- unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
114
- _, _, c = unm.shape
115
-
116
- src = gather(dst, dim=-2, index=dst_idx.expand(B, r, c))
117
-
118
- # Combine back to the original shape
119
- out = torch.zeros(B, N, c, device=x.device, dtype=x.dtype)
120
- out.scatter_(dim=-2, index=b_idx.expand(B, num_dst, c), src=dst)
121
- out.scatter_(dim=-2, index=gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=unm_idx).expand(B, unm_len, c), src=unm)
122
- out.scatter_(dim=-2, index=gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=src_idx).expand(B, r, c), src=src)
123
-
124
- return out
125
-
126
- return merge, unmerge
127
-
128
-
129
- def get_functions(x, ratio, original_shape):
130
- b, c, original_h, original_w = original_shape
131
- original_tokens = original_h * original_w
132
- downsample = int(math.ceil(math.sqrt(original_tokens // x.shape[1])))
133
- stride_x = 2
134
- stride_y = 2
135
- max_downsample = 1
136
-
137
- if downsample <= max_downsample:
138
- w = int(math.ceil(original_w / downsample))
139
- h = int(math.ceil(original_h / downsample))
140
- r = int(x.shape[1] * ratio)
141
- no_rand = False
142
- m, u = bipartite_soft_matching_random2d(x, w, h, stride_x, stride_y, r, no_rand)
143
- return m, u
144
-
145
- nothing = lambda y: y
146
- return nothing, nothing
147
-
148
-
149
-
150
- class TomePatchModel:
151
- @classmethod
152
- def INPUT_TYPES(s):
153
- return {"required": { "model": ("MODEL",),
154
- "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
155
- }}
156
- RETURN_TYPES = ("MODEL",)
157
- FUNCTION = "patch"
158
-
159
- CATEGORY = "_for_testing"
160
-
161
- def patch(self, model, ratio):
162
- self.u = None
163
- def tomesd_m(q, k, v, extra_options):
164
- #NOTE: In the reference code get_functions takes x (input of the transformer block) as the argument instead of q
165
- #however from my basic testing it seems that using q instead gives better results
166
- m, self.u = get_functions(q, ratio, extra_options["original_shape"])
167
- return m(q), k, v
168
- def tomesd_u(n, extra_options):
169
- return self.u(n)
170
-
171
- m = model.clone()
172
- m.set_model_attn1_patch(tomesd_m)
173
- m.set_model_attn1_output_patch(tomesd_u)
174
- return (m, )
175
-
176
-
177
- NODE_CLASS_MAPPINGS = {
178
- "TomePatchModel": TomePatchModel,
179
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_upscale_model.py DELETED
@@ -1,68 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import os
4
- from ldm_patched.pfn import model_loading
5
- from ldm_patched.modules import model_management
6
- import torch
7
- import ldm_patched.modules.utils
8
- import ldm_patched.utils.path_utils
9
-
10
- class UpscaleModelLoader:
11
- @classmethod
12
- def INPUT_TYPES(s):
13
- return {"required": { "model_name": (ldm_patched.utils.path_utils.get_filename_list("upscale_models"), ),
14
- }}
15
- RETURN_TYPES = ("UPSCALE_MODEL",)
16
- FUNCTION = "load_model"
17
-
18
- CATEGORY = "loaders"
19
-
20
- def load_model(self, model_name):
21
- model_path = ldm_patched.utils.path_utils.get_full_path("upscale_models", model_name)
22
- sd = ldm_patched.modules.utils.load_torch_file(model_path, safe_load=True)
23
- if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd:
24
- sd = ldm_patched.modules.utils.state_dict_prefix_replace(sd, {"module.":""})
25
- out = model_loading.load_state_dict(sd).eval()
26
- return (out, )
27
-
28
-
29
- class ImageUpscaleWithModel:
30
- @classmethod
31
- def INPUT_TYPES(s):
32
- return {"required": { "upscale_model": ("UPSCALE_MODEL",),
33
- "image": ("IMAGE",),
34
- }}
35
- RETURN_TYPES = ("IMAGE",)
36
- FUNCTION = "upscale"
37
-
38
- CATEGORY = "image/upscaling"
39
-
40
- def upscale(self, upscale_model, image):
41
- device = model_management.get_torch_device()
42
- upscale_model.to(device)
43
- in_img = image.movedim(-1,-3).to(device)
44
- free_memory = model_management.get_free_memory(device)
45
-
46
- tile = 512
47
- overlap = 32
48
-
49
- oom = True
50
- while oom:
51
- try:
52
- steps = in_img.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap)
53
- pbar = ldm_patched.modules.utils.ProgressBar(steps)
54
- s = ldm_patched.modules.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar)
55
- oom = False
56
- except model_management.OOM_EXCEPTION as e:
57
- tile //= 2
58
- if tile < 128:
59
- raise e
60
-
61
- upscale_model.cpu()
62
- s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0)
63
- return (s,)
64
-
65
- NODE_CLASS_MAPPINGS = {
66
- "UpscaleModelLoader": UpscaleModelLoader,
67
- "ImageUpscaleWithModel": ImageUpscaleWithModel
68
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/contrib/external_video_model.py DELETED
@@ -1,108 +0,0 @@
1
- # https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
2
-
3
- import ldm_patched.contrib.external
4
- import torch
5
- import ldm_patched.modules.utils
6
- import ldm_patched.modules.sd
7
- import ldm_patched.utils.path_utils
8
- import ldm_patched.contrib.external_model_merging
9
-
10
-
11
- class ImageOnlyCheckpointLoader:
12
- @classmethod
13
- def INPUT_TYPES(s):
14
- return {"required": { "ckpt_name": (ldm_patched.utils.path_utils.get_filename_list("checkpoints"), ),
15
- }}
16
- RETURN_TYPES = ("MODEL", "CLIP_VISION", "VAE")
17
- FUNCTION = "load_checkpoint"
18
-
19
- CATEGORY = "loaders/video_models"
20
-
21
- def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
22
- ckpt_path = ldm_patched.utils.path_utils.get_full_path("checkpoints", ckpt_name)
23
- out = ldm_patched.modules.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=False, output_clipvision=True, embedding_directory=ldm_patched.utils.path_utils.get_folder_paths("embeddings"))
24
- return (out[0], out[3], out[2])
25
-
26
-
27
- class SVD_img2vid_Conditioning:
28
- @classmethod
29
- def INPUT_TYPES(s):
30
- return {"required": { "clip_vision": ("CLIP_VISION",),
31
- "init_image": ("IMAGE",),
32
- "vae": ("VAE",),
33
- "width": ("INT", {"default": 1024, "min": 16, "max": ldm_patched.contrib.external.MAX_RESOLUTION, "step": 8}),
34
- "height": ("INT", {"default": 576, "min": 16, "max": ldm_patched.contrib.external.MAX_RESOLUTION, "step": 8}),
35
- "video_frames": ("INT", {"default": 14, "min": 1, "max": 4096}),
36
- "motion_bucket_id": ("INT", {"default": 127, "min": 1, "max": 1023}),
37
- "fps": ("INT", {"default": 6, "min": 1, "max": 1024}),
38
- "augmentation_level": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01})
39
- }}
40
- RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
41
- RETURN_NAMES = ("positive", "negative", "latent")
42
-
43
- FUNCTION = "encode"
44
-
45
- CATEGORY = "conditioning/video_models"
46
-
47
- def encode(self, clip_vision, init_image, vae, width, height, video_frames, motion_bucket_id, fps, augmentation_level):
48
- output = clip_vision.encode_image(init_image)
49
- pooled = output.image_embeds.unsqueeze(0)
50
- pixels = ldm_patched.modules.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
51
- encode_pixels = pixels[:,:,:,:3]
52
- if augmentation_level > 0:
53
- encode_pixels += torch.randn_like(pixels) * augmentation_level
54
- t = vae.encode(encode_pixels)
55
- positive = [[pooled, {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": t}]]
56
- negative = [[torch.zeros_like(pooled), {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": torch.zeros_like(t)}]]
57
- latent = torch.zeros([video_frames, 4, height // 8, width // 8])
58
- return (positive, negative, {"samples":latent})
59
-
60
- class VideoLinearCFGGuidance:
61
- @classmethod
62
- def INPUT_TYPES(s):
63
- return {"required": { "model": ("MODEL",),
64
- "min_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
65
- }}
66
- RETURN_TYPES = ("MODEL",)
67
- FUNCTION = "patch"
68
-
69
- CATEGORY = "sampling/video_models"
70
-
71
- def patch(self, model, min_cfg):
72
- def linear_cfg(args):
73
- cond = args["cond"]
74
- uncond = args["uncond"]
75
- cond_scale = args["cond_scale"]
76
-
77
- scale = torch.linspace(min_cfg, cond_scale, cond.shape[0], device=cond.device).reshape((cond.shape[0], 1, 1, 1))
78
- return uncond + scale * (cond - uncond)
79
-
80
- m = model.clone()
81
- m.set_model_sampler_cfg_function(linear_cfg)
82
- return (m, )
83
-
84
- class ImageOnlyCheckpointSave(ldm_patched.contrib.external_model_merging.CheckpointSave):
85
- CATEGORY = "_for_testing"
86
-
87
- @classmethod
88
- def INPUT_TYPES(s):
89
- return {"required": { "model": ("MODEL",),
90
- "clip_vision": ("CLIP_VISION",),
91
- "vae": ("VAE",),
92
- "filename_prefix": ("STRING", {"default": "checkpoints/ldm_patched"}),},
93
- "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
94
-
95
- def save(self, model, clip_vision, vae, filename_prefix, prompt=None, extra_pnginfo=None):
96
- ldm_patched.contrib.external_model_merging.save_checkpoint(model, clip_vision=clip_vision, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo)
97
- return {}
98
-
99
- NODE_CLASS_MAPPINGS = {
100
- "ImageOnlyCheckpointLoader": ImageOnlyCheckpointLoader,
101
- "SVD_img2vid_Conditioning": SVD_img2vid_Conditioning,
102
- "VideoLinearCFGGuidance": VideoLinearCFGGuidance,
103
- "ImageOnlyCheckpointSave": ImageOnlyCheckpointSave,
104
- }
105
-
106
- NODE_DISPLAY_NAME_MAPPINGS = {
107
- "ImageOnlyCheckpointLoader": "Image Only Checkpoint Loader (img2vid model)",
108
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/controlnet/__pycache__/cldm.cpython-310.pyc DELETED
Binary file (6.25 kB)
 
ldm_patched/controlnet/cldm.py DELETED
@@ -1,312 +0,0 @@
1
- #taken from: https://github.com/lllyasviel/ControlNet
2
- #and modified
3
-
4
- import torch
5
- import torch as th
6
- import torch.nn as nn
7
-
8
- from ldm_patched.ldm.modules.diffusionmodules.util import (
9
- zero_module,
10
- timestep_embedding,
11
- )
12
-
13
- from ldm_patched.ldm.modules.attention import SpatialTransformer
14
- from ldm_patched.ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
15
- from ldm_patched.ldm.util import exists
16
- import ldm_patched.modules.ops
17
-
18
- class ControlledUnetModel(UNetModel):
19
- #implemented in the ldm unet
20
- pass
21
-
22
- class ControlNet(nn.Module):
23
- def __init__(
24
- self,
25
- image_size,
26
- in_channels,
27
- model_channels,
28
- hint_channels,
29
- num_res_blocks,
30
- dropout=0,
31
- channel_mult=(1, 2, 4, 8),
32
- conv_resample=True,
33
- dims=2,
34
- num_classes=None,
35
- use_checkpoint=False,
36
- dtype=torch.float32,
37
- num_heads=-1,
38
- num_head_channels=-1,
39
- num_heads_upsample=-1,
40
- use_scale_shift_norm=False,
41
- resblock_updown=False,
42
- use_new_attention_order=False,
43
- use_spatial_transformer=False, # custom transformer support
44
- transformer_depth=1, # custom transformer support
45
- context_dim=None, # custom transformer support
46
- n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
47
- legacy=True,
48
- disable_self_attentions=None,
49
- num_attention_blocks=None,
50
- disable_middle_self_attn=False,
51
- use_linear_in_transformer=False,
52
- adm_in_channels=None,
53
- transformer_depth_middle=None,
54
- transformer_depth_output=None,
55
- device=None,
56
- operations=ldm_patched.modules.ops.disable_weight_init,
57
- **kwargs,
58
- ):
59
- super().__init__()
60
- assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
61
- if use_spatial_transformer:
62
- assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
63
-
64
- if context_dim is not None:
65
- assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
66
- # from omegaconf.listconfig import ListConfig
67
- # if type(context_dim) == ListConfig:
68
- # context_dim = list(context_dim)
69
-
70
- if num_heads_upsample == -1:
71
- num_heads_upsample = num_heads
72
-
73
- if num_heads == -1:
74
- assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
75
-
76
- if num_head_channels == -1:
77
- assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
78
-
79
- self.dims = dims
80
- self.image_size = image_size
81
- self.in_channels = in_channels
82
- self.model_channels = model_channels
83
-
84
- if isinstance(num_res_blocks, int):
85
- self.num_res_blocks = len(channel_mult) * [num_res_blocks]
86
- else:
87
- if len(num_res_blocks) != len(channel_mult):
88
- raise ValueError("provide num_res_blocks either as an int (globally constant) or "
89
- "as a list/tuple (per-level) with the same length as channel_mult")
90
- self.num_res_blocks = num_res_blocks
91
-
92
- if disable_self_attentions is not None:
93
- # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
94
- assert len(disable_self_attentions) == len(channel_mult)
95
- if num_attention_blocks is not None:
96
- assert len(num_attention_blocks) == len(self.num_res_blocks)
97
- assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
98
-
99
- transformer_depth = transformer_depth[:]
100
-
101
- self.dropout = dropout
102
- self.channel_mult = channel_mult
103
- self.conv_resample = conv_resample
104
- self.num_classes = num_classes
105
- self.use_checkpoint = use_checkpoint
106
- self.dtype = dtype
107
- self.num_heads = num_heads
108
- self.num_head_channels = num_head_channels
109
- self.num_heads_upsample = num_heads_upsample
110
- self.predict_codebook_ids = n_embed is not None
111
-
112
- time_embed_dim = model_channels * 4
113
- self.time_embed = nn.Sequential(
114
- operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
115
- nn.SiLU(),
116
- operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
117
- )
118
-
119
- if self.num_classes is not None:
120
- if isinstance(self.num_classes, int):
121
- self.label_emb = nn.Embedding(num_classes, time_embed_dim)
122
- elif self.num_classes == "continuous":
123
- print("setting up linear c_adm embedding layer")
124
- self.label_emb = nn.Linear(1, time_embed_dim)
125
- elif self.num_classes == "sequential":
126
- assert adm_in_channels is not None
127
- self.label_emb = nn.Sequential(
128
- nn.Sequential(
129
- operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
130
- nn.SiLU(),
131
- operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
132
- )
133
- )
134
- else:
135
- raise ValueError()
136
-
137
- self.input_blocks = nn.ModuleList(
138
- [
139
- TimestepEmbedSequential(
140
- operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
141
- )
142
- ]
143
- )
144
- self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
145
-
146
- self.input_hint_block = TimestepEmbedSequential(
147
- operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
148
- nn.SiLU(),
149
- operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
150
- nn.SiLU(),
151
- operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
152
- nn.SiLU(),
153
- operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
154
- nn.SiLU(),
155
- operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
156
- nn.SiLU(),
157
- operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
158
- nn.SiLU(),
159
- operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
160
- nn.SiLU(),
161
- operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
162
- )
163
-
164
- self._feature_size = model_channels
165
- input_block_chans = [model_channels]
166
- ch = model_channels
167
- ds = 1
168
- for level, mult in enumerate(channel_mult):
169
- for nr in range(self.num_res_blocks[level]):
170
- layers = [
171
- ResBlock(
172
- ch,
173
- time_embed_dim,
174
- dropout,
175
- out_channels=mult * model_channels,
176
- dims=dims,
177
- use_checkpoint=use_checkpoint,
178
- use_scale_shift_norm=use_scale_shift_norm,
179
- dtype=self.dtype,
180
- device=device,
181
- operations=operations,
182
- )
183
- ]
184
- ch = mult * model_channels
185
- num_transformers = transformer_depth.pop(0)
186
- if num_transformers > 0:
187
- if num_head_channels == -1:
188
- dim_head = ch // num_heads
189
- else:
190
- num_heads = ch // num_head_channels
191
- dim_head = num_head_channels
192
- if legacy:
193
- #num_heads = 1
194
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
195
- if exists(disable_self_attentions):
196
- disabled_sa = disable_self_attentions[level]
197
- else:
198
- disabled_sa = False
199
-
200
- if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
201
- layers.append(
202
- SpatialTransformer(
203
- ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
204
- disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
205
- use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
206
- )
207
- )
208
- self.input_blocks.append(TimestepEmbedSequential(*layers))
209
- self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
210
- self._feature_size += ch
211
- input_block_chans.append(ch)
212
- if level != len(channel_mult) - 1:
213
- out_ch = ch
214
- self.input_blocks.append(
215
- TimestepEmbedSequential(
216
- ResBlock(
217
- ch,
218
- time_embed_dim,
219
- dropout,
220
- out_channels=out_ch,
221
- dims=dims,
222
- use_checkpoint=use_checkpoint,
223
- use_scale_shift_norm=use_scale_shift_norm,
224
- down=True,
225
- dtype=self.dtype,
226
- device=device,
227
- operations=operations
228
- )
229
- if resblock_updown
230
- else Downsample(
231
- ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
232
- )
233
- )
234
- )
235
- ch = out_ch
236
- input_block_chans.append(ch)
237
- self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
238
- ds *= 2
239
- self._feature_size += ch
240
-
241
- if num_head_channels == -1:
242
- dim_head = ch // num_heads
243
- else:
244
- num_heads = ch // num_head_channels
245
- dim_head = num_head_channels
246
- if legacy:
247
- #num_heads = 1
248
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
249
- mid_block = [
250
- ResBlock(
251
- ch,
252
- time_embed_dim,
253
- dropout,
254
- dims=dims,
255
- use_checkpoint=use_checkpoint,
256
- use_scale_shift_norm=use_scale_shift_norm,
257
- dtype=self.dtype,
258
- device=device,
259
- operations=operations
260
- )]
261
- if transformer_depth_middle >= 0:
262
- mid_block += [SpatialTransformer( # always uses a self-attn
263
- ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
264
- disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
265
- use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
266
- ),
267
- ResBlock(
268
- ch,
269
- time_embed_dim,
270
- dropout,
271
- dims=dims,
272
- use_checkpoint=use_checkpoint,
273
- use_scale_shift_norm=use_scale_shift_norm,
274
- dtype=self.dtype,
275
- device=device,
276
- operations=operations
277
- )]
278
- self.middle_block = TimestepEmbedSequential(*mid_block)
279
- self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
280
- self._feature_size += ch
281
-
282
- def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
283
- return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
284
-
285
- def forward(self, x, hint, timesteps, context, y=None, **kwargs):
286
- t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
287
- emb = self.time_embed(t_emb)
288
-
289
- guided_hint = self.input_hint_block(hint, emb, context)
290
-
291
- outs = []
292
-
293
- hs = []
294
- if self.num_classes is not None:
295
- assert y.shape[0] == x.shape[0]
296
- emb = emb + self.label_emb(y)
297
-
298
- h = x
299
- for module, zero_conv in zip(self.input_blocks, self.zero_convs):
300
- if guided_hint is not None:
301
- h = module(h, emb, context)
302
- h += guided_hint
303
- guided_hint = None
304
- else:
305
- h = module(h, emb, context)
306
- outs.append(zero_conv(h, emb, context))
307
-
308
- h = self.middle_block(h, emb, context)
309
- outs.append(self.middle_block_out(h, emb, context))
310
-
311
- return outs
312
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/k_diffusion/__pycache__/sampling.cpython-310.pyc DELETED
Binary file (28 kB)
 
ldm_patched/k_diffusion/__pycache__/utils.cpython-310.pyc DELETED
Binary file (14.1 kB)
 
ldm_patched/k_diffusion/sampling.py DELETED
@@ -1,810 +0,0 @@
1
- import math
2
-
3
- from scipy import integrate
4
- import torch
5
- from torch import nn
6
- import torchsde
7
- from tqdm.auto import trange, tqdm
8
-
9
- from . import utils
10
-
11
-
12
- def append_zero(x):
13
- return torch.cat([x, x.new_zeros([1])])
14
-
15
-
16
- def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
17
- """Constructs the noise schedule of Karras et al. (2022)."""
18
- ramp = torch.linspace(0, 1, n, device=device)
19
- min_inv_rho = sigma_min ** (1 / rho)
20
- max_inv_rho = sigma_max ** (1 / rho)
21
- sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
22
- return append_zero(sigmas).to(device)
23
-
24
-
25
- def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'):
26
- """Constructs an exponential noise schedule."""
27
- sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp()
28
- return append_zero(sigmas)
29
-
30
-
31
- def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'):
32
- """Constructs an polynomial in log sigma noise schedule."""
33
- ramp = torch.linspace(1, 0, n, device=device) ** rho
34
- sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min))
35
- return append_zero(sigmas)
36
-
37
-
38
- def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
39
- """Constructs a continuous VP noise schedule."""
40
- t = torch.linspace(1, eps_s, n, device=device)
41
- sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1)
42
- return append_zero(sigmas)
43
-
44
-
45
- def to_d(x, sigma, denoised):
46
- """Converts a denoiser output to a Karras ODE derivative."""
47
- return (x - denoised) / utils.append_dims(sigma, x.ndim)
48
-
49
-
50
- def get_ancestral_step(sigma_from, sigma_to, eta=1.):
51
- """Calculates the noise level (sigma_down) to step down to and the amount
52
- of noise to add (sigma_up) when doing an ancestral sampling step."""
53
- if not eta:
54
- return sigma_to, 0.
55
- sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5)
56
- sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
57
- return sigma_down, sigma_up
58
-
59
-
60
- def default_noise_sampler(x):
61
- return lambda sigma, sigma_next: torch.randn_like(x)
62
-
63
-
64
- class BatchedBrownianTree:
65
- """A wrapper around torchsde.BrownianTree that enables batches of entropy."""
66
-
67
- def __init__(self, x, t0, t1, seed=None, **kwargs):
68
- self.cpu_tree = True
69
- if "cpu" in kwargs:
70
- self.cpu_tree = kwargs.pop("cpu")
71
- t0, t1, self.sign = self.sort(t0, t1)
72
- w0 = kwargs.get('w0', torch.zeros_like(x))
73
- if seed is None:
74
- seed = torch.randint(0, 2 ** 63 - 1, []).item()
75
- self.batched = True
76
- try:
77
- assert len(seed) == x.shape[0]
78
- w0 = w0[0]
79
- except TypeError:
80
- seed = [seed]
81
- self.batched = False
82
- if self.cpu_tree:
83
- self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed]
84
- else:
85
- self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
86
-
87
- @staticmethod
88
- def sort(a, b):
89
- return (a, b, 1) if a < b else (b, a, -1)
90
-
91
- def __call__(self, t0, t1):
92
- t0, t1, sign = self.sort(t0, t1)
93
- if self.cpu_tree:
94
- w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign)
95
- else:
96
- w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
97
-
98
- return w if self.batched else w[0]
99
-
100
-
101
- class BrownianTreeNoiseSampler:
102
- """A noise sampler backed by a torchsde.BrownianTree.
103
-
104
- Args:
105
- x (Tensor): The tensor whose shape, device and dtype to use to generate
106
- random samples.
107
- sigma_min (float): The low end of the valid interval.
108
- sigma_max (float): The high end of the valid interval.
109
- seed (int or List[int]): The random seed. If a list of seeds is
110
- supplied instead of a single integer, then the noise sampler will
111
- use one BrownianTree per batch item, each with its own seed.
112
- transform (callable): A function that maps sigma to the sampler's
113
- internal timestep.
114
- """
115
-
116
- def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False):
117
- self.transform = transform
118
- t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
119
- self.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu)
120
-
121
- def __call__(self, sigma, sigma_next):
122
- t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
123
- return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
124
-
125
-
126
- @torch.no_grad()
127
- def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
128
- """Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
129
- extra_args = {} if extra_args is None else extra_args
130
- s_in = x.new_ones([x.shape[0]])
131
- for i in trange(len(sigmas) - 1, disable=disable):
132
- gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
133
- sigma_hat = sigmas[i] * (gamma + 1)
134
- if gamma > 0:
135
- eps = torch.randn_like(x) * s_noise
136
- x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
137
- denoised = model(x, sigma_hat * s_in, **extra_args)
138
- d = to_d(x, sigma_hat, denoised)
139
- if callback is not None:
140
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
141
- dt = sigmas[i + 1] - sigma_hat
142
- # Euler method
143
- x = x + d * dt
144
- return x
145
-
146
-
147
- @torch.no_grad()
148
- def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
149
- """Ancestral sampling with Euler method steps."""
150
- extra_args = {} if extra_args is None else extra_args
151
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
152
- s_in = x.new_ones([x.shape[0]])
153
- for i in trange(len(sigmas) - 1, disable=disable):
154
- denoised = model(x, sigmas[i] * s_in, **extra_args)
155
- sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
156
- if callback is not None:
157
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
158
- d = to_d(x, sigmas[i], denoised)
159
- # Euler method
160
- dt = sigma_down - sigmas[i]
161
- x = x + d * dt
162
- if sigmas[i + 1] > 0:
163
- x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
164
- return x
165
-
166
-
167
- @torch.no_grad()
168
- def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
169
- """Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
170
- extra_args = {} if extra_args is None else extra_args
171
- s_in = x.new_ones([x.shape[0]])
172
- for i in trange(len(sigmas) - 1, disable=disable):
173
- gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
174
- sigma_hat = sigmas[i] * (gamma + 1)
175
- if gamma > 0:
176
- eps = torch.randn_like(x) * s_noise
177
- x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
178
- denoised = model(x, sigma_hat * s_in, **extra_args)
179
- d = to_d(x, sigma_hat, denoised)
180
- if callback is not None:
181
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
182
- dt = sigmas[i + 1] - sigma_hat
183
- if sigmas[i + 1] == 0:
184
- # Euler method
185
- x = x + d * dt
186
- else:
187
- # Heun's method
188
- x_2 = x + d * dt
189
- denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
190
- d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
191
- d_prime = (d + d_2) / 2
192
- x = x + d_prime * dt
193
- return x
194
-
195
-
196
- @torch.no_grad()
197
- def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
198
- """A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
199
- extra_args = {} if extra_args is None else extra_args
200
- s_in = x.new_ones([x.shape[0]])
201
- for i in trange(len(sigmas) - 1, disable=disable):
202
- gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
203
- sigma_hat = sigmas[i] * (gamma + 1)
204
- if gamma > 0:
205
- eps = torch.randn_like(x) * s_noise
206
- x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
207
- denoised = model(x, sigma_hat * s_in, **extra_args)
208
- d = to_d(x, sigma_hat, denoised)
209
- if callback is not None:
210
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
211
- if sigmas[i + 1] == 0:
212
- # Euler method
213
- dt = sigmas[i + 1] - sigma_hat
214
- x = x + d * dt
215
- else:
216
- # DPM-Solver-2
217
- sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
218
- dt_1 = sigma_mid - sigma_hat
219
- dt_2 = sigmas[i + 1] - sigma_hat
220
- x_2 = x + d * dt_1
221
- denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
222
- d_2 = to_d(x_2, sigma_mid, denoised_2)
223
- x = x + d_2 * dt_2
224
- return x
225
-
226
-
227
- @torch.no_grad()
228
- def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
229
- """Ancestral sampling with DPM-Solver second-order steps."""
230
- extra_args = {} if extra_args is None else extra_args
231
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
232
- s_in = x.new_ones([x.shape[0]])
233
- for i in trange(len(sigmas) - 1, disable=disable):
234
- denoised = model(x, sigmas[i] * s_in, **extra_args)
235
- sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
236
- if callback is not None:
237
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
238
- d = to_d(x, sigmas[i], denoised)
239
- if sigma_down == 0:
240
- # Euler method
241
- dt = sigma_down - sigmas[i]
242
- x = x + d * dt
243
- else:
244
- # DPM-Solver-2
245
- sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
246
- dt_1 = sigma_mid - sigmas[i]
247
- dt_2 = sigma_down - sigmas[i]
248
- x_2 = x + d * dt_1
249
- denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
250
- d_2 = to_d(x_2, sigma_mid, denoised_2)
251
- x = x + d_2 * dt_2
252
- x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
253
- return x
254
-
255
-
256
- def linear_multistep_coeff(order, t, i, j):
257
- if order - 1 > i:
258
- raise ValueError(f'Order {order} too high for step {i}')
259
- def fn(tau):
260
- prod = 1.
261
- for k in range(order):
262
- if j == k:
263
- continue
264
- prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
265
- return prod
266
- return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]
267
-
268
-
269
- @torch.no_grad()
270
- def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4):
271
- extra_args = {} if extra_args is None else extra_args
272
- s_in = x.new_ones([x.shape[0]])
273
- sigmas_cpu = sigmas.detach().cpu().numpy()
274
- ds = []
275
- for i in trange(len(sigmas) - 1, disable=disable):
276
- denoised = model(x, sigmas[i] * s_in, **extra_args)
277
- d = to_d(x, sigmas[i], denoised)
278
- ds.append(d)
279
- if len(ds) > order:
280
- ds.pop(0)
281
- if callback is not None:
282
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
283
- cur_order = min(i + 1, order)
284
- coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
285
- x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
286
- return x
287
-
288
-
289
- class PIDStepSizeController:
290
- """A PID controller for ODE adaptive step size control."""
291
- def __init__(self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8):
292
- self.h = h
293
- self.b1 = (pcoeff + icoeff + dcoeff) / order
294
- self.b2 = -(pcoeff + 2 * dcoeff) / order
295
- self.b3 = dcoeff / order
296
- self.accept_safety = accept_safety
297
- self.eps = eps
298
- self.errs = []
299
-
300
- def limiter(self, x):
301
- return 1 + math.atan(x - 1)
302
-
303
- def propose_step(self, error):
304
- inv_error = 1 / (float(error) + self.eps)
305
- if not self.errs:
306
- self.errs = [inv_error, inv_error, inv_error]
307
- self.errs[0] = inv_error
308
- factor = self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3
309
- factor = self.limiter(factor)
310
- accept = factor >= self.accept_safety
311
- if accept:
312
- self.errs[2] = self.errs[1]
313
- self.errs[1] = self.errs[0]
314
- self.h *= factor
315
- return accept
316
-
317
-
318
- class DPMSolver(nn.Module):
319
- """DPM-Solver. See https://arxiv.org/abs/2206.00927."""
320
-
321
- def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None):
322
- super().__init__()
323
- self.model = model
324
- self.extra_args = {} if extra_args is None else extra_args
325
- self.eps_callback = eps_callback
326
- self.info_callback = info_callback
327
-
328
- def t(self, sigma):
329
- return -sigma.log()
330
-
331
- def sigma(self, t):
332
- return t.neg().exp()
333
-
334
- def eps(self, eps_cache, key, x, t, *args, **kwargs):
335
- if key in eps_cache:
336
- return eps_cache[key], eps_cache
337
- sigma = self.sigma(t) * x.new_ones([x.shape[0]])
338
- eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t)
339
- if self.eps_callback is not None:
340
- self.eps_callback()
341
- return eps, {key: eps, **eps_cache}
342
-
343
- def dpm_solver_1_step(self, x, t, t_next, eps_cache=None):
344
- eps_cache = {} if eps_cache is None else eps_cache
345
- h = t_next - t
346
- eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
347
- x_1 = x - self.sigma(t_next) * h.expm1() * eps
348
- return x_1, eps_cache
349
-
350
- def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None):
351
- eps_cache = {} if eps_cache is None else eps_cache
352
- h = t_next - t
353
- eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
354
- s1 = t + r1 * h
355
- u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
356
- eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
357
- x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps)
358
- return x_2, eps_cache
359
-
360
- def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None):
361
- eps_cache = {} if eps_cache is None else eps_cache
362
- h = t_next - t
363
- eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
364
- s1 = t + r1 * h
365
- s2 = t + r2 * h
366
- u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
367
- eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
368
- u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps)
369
- eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2)
370
- x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps)
371
- return x_3, eps_cache
372
-
373
- def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None):
374
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
375
- if not t_end > t_start and eta:
376
- raise ValueError('eta must be 0 for reverse sampling')
377
-
378
- m = math.floor(nfe / 3) + 1
379
- ts = torch.linspace(t_start, t_end, m + 1, device=x.device)
380
-
381
- if nfe % 3 == 0:
382
- orders = [3] * (m - 2) + [2, 1]
383
- else:
384
- orders = [3] * (m - 1) + [nfe % 3]
385
-
386
- for i in range(len(orders)):
387
- eps_cache = {}
388
- t, t_next = ts[i], ts[i + 1]
389
- if eta:
390
- sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta)
391
- t_next_ = torch.minimum(t_end, self.t(sd))
392
- su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5
393
- else:
394
- t_next_, su = t_next, 0.
395
-
396
- eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
397
- denoised = x - self.sigma(t) * eps
398
- if self.info_callback is not None:
399
- self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised})
400
-
401
- if orders[i] == 1:
402
- x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache)
403
- elif orders[i] == 2:
404
- x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache)
405
- else:
406
- x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache)
407
-
408
- x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next))
409
-
410
- return x
411
-
412
- def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None):
413
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
414
- if order not in {2, 3}:
415
- raise ValueError('order should be 2 or 3')
416
- forward = t_end > t_start
417
- if not forward and eta:
418
- raise ValueError('eta must be 0 for reverse sampling')
419
- h_init = abs(h_init) * (1 if forward else -1)
420
- atol = torch.tensor(atol)
421
- rtol = torch.tensor(rtol)
422
- s = t_start
423
- x_prev = x
424
- accept = True
425
- pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety)
426
- info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0}
427
-
428
- while s < t_end - 1e-5 if forward else s > t_end + 1e-5:
429
- eps_cache = {}
430
- t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h)
431
- if eta:
432
- sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta)
433
- t_ = torch.minimum(t_end, self.t(sd))
434
- su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5
435
- else:
436
- t_, su = t, 0.
437
-
438
- eps, eps_cache = self.eps(eps_cache, 'eps', x, s)
439
- denoised = x - self.sigma(s) * eps
440
-
441
- if order == 2:
442
- x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache)
443
- x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache)
444
- else:
445
- x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache)
446
- x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache)
447
- delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs()))
448
- error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5
449
- accept = pid.propose_step(error)
450
- if accept:
451
- x_prev = x_low
452
- x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t))
453
- s = t
454
- info['n_accept'] += 1
455
- else:
456
- info['n_reject'] += 1
457
- info['nfe'] += order
458
- info['steps'] += 1
459
-
460
- if self.info_callback is not None:
461
- self.info_callback({'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error, 'h': pid.h, **info})
462
-
463
- return x, info
464
-
465
-
466
- @torch.no_grad()
467
- def sample_dpm_fast(model, x, sigma_min, sigma_max, n, extra_args=None, callback=None, disable=None, eta=0., s_noise=1., noise_sampler=None):
468
- """DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927."""
469
- if sigma_min <= 0 or sigma_max <= 0:
470
- raise ValueError('sigma_min and sigma_max must not be 0')
471
- with tqdm(total=n, disable=disable) as pbar:
472
- dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
473
- if callback is not None:
474
- dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
475
- return dpm_solver.dpm_solver_fast(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), n, eta, s_noise, noise_sampler)
476
-
477
-
478
- @torch.no_grad()
479
- def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callback=None, disable=None, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None, return_info=False):
480
- """DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927."""
481
- if sigma_min <= 0 or sigma_max <= 0:
482
- raise ValueError('sigma_min and sigma_max must not be 0')
483
- with tqdm(disable=disable) as pbar:
484
- dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
485
- if callback is not None:
486
- dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
487
- x, info = dpm_solver.dpm_solver_adaptive(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise, noise_sampler)
488
- if return_info:
489
- return x, info
490
- return x
491
-
492
-
493
- @torch.no_grad()
494
- def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
495
- """Ancestral sampling with DPM-Solver++(2S) second-order steps."""
496
- extra_args = {} if extra_args is None else extra_args
497
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
498
- s_in = x.new_ones([x.shape[0]])
499
- sigma_fn = lambda t: t.neg().exp()
500
- t_fn = lambda sigma: sigma.log().neg()
501
-
502
- for i in trange(len(sigmas) - 1, disable=disable):
503
- denoised = model(x, sigmas[i] * s_in, **extra_args)
504
- sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
505
- if callback is not None:
506
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
507
- if sigma_down == 0:
508
- # Euler method
509
- d = to_d(x, sigmas[i], denoised)
510
- dt = sigma_down - sigmas[i]
511
- x = x + d * dt
512
- else:
513
- # DPM-Solver++(2S)
514
- t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
515
- r = 1 / 2
516
- h = t_next - t
517
- s = t + r * h
518
- x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
519
- denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
520
- x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2
521
- # Noise addition
522
- if sigmas[i + 1] > 0:
523
- x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
524
- return x
525
-
526
-
527
- @torch.no_grad()
528
- def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
529
- """DPM-Solver++ (stochastic)."""
530
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
531
- seed = extra_args.get("seed", None)
532
- noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
533
- extra_args = {} if extra_args is None else extra_args
534
- s_in = x.new_ones([x.shape[0]])
535
- sigma_fn = lambda t: t.neg().exp()
536
- t_fn = lambda sigma: sigma.log().neg()
537
-
538
- for i in trange(len(sigmas) - 1, disable=disable):
539
- denoised = model(x, sigmas[i] * s_in, **extra_args)
540
- if callback is not None:
541
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
542
- if sigmas[i + 1] == 0:
543
- # Euler method
544
- d = to_d(x, sigmas[i], denoised)
545
- dt = sigmas[i + 1] - sigmas[i]
546
- x = x + d * dt
547
- else:
548
- # DPM-Solver++
549
- t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
550
- h = t_next - t
551
- s = t + h * r
552
- fac = 1 / (2 * r)
553
-
554
- # Step 1
555
- sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
556
- s_ = t_fn(sd)
557
- x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
558
- x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
559
- denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
560
-
561
- # Step 2
562
- sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
563
- t_next_ = t_fn(sd)
564
- denoised_d = (1 - fac) * denoised + fac * denoised_2
565
- x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
566
- x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
567
- return x
568
-
569
-
570
- @torch.no_grad()
571
- def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None):
572
- """DPM-Solver++(2M)."""
573
- extra_args = {} if extra_args is None else extra_args
574
- s_in = x.new_ones([x.shape[0]])
575
- sigma_fn = lambda t: t.neg().exp()
576
- t_fn = lambda sigma: sigma.log().neg()
577
- old_denoised = None
578
-
579
- for i in trange(len(sigmas) - 1, disable=disable):
580
- denoised = model(x, sigmas[i] * s_in, **extra_args)
581
- if callback is not None:
582
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
583
- t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
584
- h = t_next - t
585
- if old_denoised is None or sigmas[i + 1] == 0:
586
- x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
587
- else:
588
- h_last = t - t_fn(sigmas[i - 1])
589
- r = h_last / h
590
- denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
591
- x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
592
- old_denoised = denoised
593
- return x
594
-
595
- @torch.no_grad()
596
- def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
597
- """DPM-Solver++(2M) SDE."""
598
-
599
- if solver_type not in {'heun', 'midpoint'}:
600
- raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
601
-
602
- seed = extra_args.get("seed", None)
603
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
604
- noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
605
- extra_args = {} if extra_args is None else extra_args
606
- s_in = x.new_ones([x.shape[0]])
607
-
608
- old_denoised = None
609
- h_last = None
610
- h = None
611
-
612
- for i in trange(len(sigmas) - 1, disable=disable):
613
- denoised = model(x, sigmas[i] * s_in, **extra_args)
614
- if callback is not None:
615
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
616
- if sigmas[i + 1] == 0:
617
- # Denoising step
618
- x = denoised
619
- else:
620
- # DPM-Solver++(2M) SDE
621
- t, s = -sigmas[i].log(), -sigmas[i + 1].log()
622
- h = s - t
623
- eta_h = eta * h
624
-
625
- x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
626
-
627
- if old_denoised is not None:
628
- r = h_last / h
629
- if solver_type == 'heun':
630
- x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
631
- elif solver_type == 'midpoint':
632
- x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
633
-
634
- if eta:
635
- x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
636
-
637
- old_denoised = denoised
638
- h_last = h
639
- return x
640
-
641
- @torch.no_grad()
642
- def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
643
- """DPM-Solver++(3M) SDE."""
644
-
645
- seed = extra_args.get("seed", None)
646
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
647
- noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
648
- extra_args = {} if extra_args is None else extra_args
649
- s_in = x.new_ones([x.shape[0]])
650
-
651
- denoised_1, denoised_2 = None, None
652
- h, h_1, h_2 = None, None, None
653
-
654
- for i in trange(len(sigmas) - 1, disable=disable):
655
- denoised = model(x, sigmas[i] * s_in, **extra_args)
656
- if callback is not None:
657
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
658
- if sigmas[i + 1] == 0:
659
- # Denoising step
660
- x = denoised
661
- else:
662
- t, s = -sigmas[i].log(), -sigmas[i + 1].log()
663
- h = s - t
664
- h_eta = h * (eta + 1)
665
-
666
- x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised
667
-
668
- if h_2 is not None:
669
- r0 = h_1 / h
670
- r1 = h_2 / h
671
- d1_0 = (denoised - denoised_1) / r0
672
- d1_1 = (denoised_1 - denoised_2) / r1
673
- d1 = d1_0 + (d1_0 - d1_1) * r0 / (r0 + r1)
674
- d2 = (d1_0 - d1_1) / (r0 + r1)
675
- phi_2 = h_eta.neg().expm1() / h_eta + 1
676
- phi_3 = phi_2 / h_eta - 0.5
677
- x = x + phi_2 * d1 - phi_3 * d2
678
- elif h_1 is not None:
679
- r = h_1 / h
680
- d = (denoised - denoised_1) / r
681
- phi_2 = h_eta.neg().expm1() / h_eta + 1
682
- x = x + phi_2 * d
683
-
684
- if eta:
685
- x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
686
-
687
- denoised_1, denoised_2 = denoised, denoised_1
688
- h_1, h_2 = h, h_1
689
- return x
690
-
691
- @torch.no_grad()
692
- def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
693
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
694
- noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
695
- return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
696
-
697
- @torch.no_grad()
698
- def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
699
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
700
- noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
701
- return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
702
-
703
- @torch.no_grad()
704
- def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
705
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
706
- noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
707
- return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r)
708
-
709
-
710
- def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler):
711
- alpha_cumprod = 1 / ((sigma * sigma) + 1)
712
- alpha_cumprod_prev = 1 / ((sigma_prev * sigma_prev) + 1)
713
- alpha = (alpha_cumprod / alpha_cumprod_prev)
714
-
715
- mu = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise / (1 - alpha_cumprod).sqrt())
716
- if sigma_prev > 0:
717
- mu += ((1 - alpha) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise_sampler(sigma, sigma_prev)
718
- return mu
719
-
720
- def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None):
721
- extra_args = {} if extra_args is None else extra_args
722
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
723
- s_in = x.new_ones([x.shape[0]])
724
-
725
- for i in trange(len(sigmas) - 1, disable=disable):
726
- denoised = model(x, sigmas[i] * s_in, **extra_args)
727
- if callback is not None:
728
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
729
- x = step_function(x / torch.sqrt(1.0 + sigmas[i] ** 2.0), sigmas[i], sigmas[i + 1], (x - denoised) / sigmas[i], noise_sampler)
730
- if sigmas[i + 1] != 0:
731
- x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2.0)
732
- return x
733
-
734
-
735
- @torch.no_grad()
736
- def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
737
- return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step)
738
-
739
- @torch.no_grad()
740
- def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
741
- extra_args = {} if extra_args is None else extra_args
742
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
743
- s_in = x.new_ones([x.shape[0]])
744
- for i in trange(len(sigmas) - 1, disable=disable):
745
- denoised = model(x, sigmas[i] * s_in, **extra_args)
746
- if callback is not None:
747
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
748
-
749
- x = denoised
750
- if sigmas[i + 1] > 0:
751
- x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1])
752
- return x
753
-
754
-
755
-
756
- @torch.no_grad()
757
- def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
758
- # From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/
759
- extra_args = {} if extra_args is None else extra_args
760
- s_in = x.new_ones([x.shape[0]])
761
- s_end = sigmas[-1]
762
- for i in trange(len(sigmas) - 1, disable=disable):
763
- gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
764
- eps = torch.randn_like(x) * s_noise
765
- sigma_hat = sigmas[i] * (gamma + 1)
766
- if gamma > 0:
767
- x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
768
- denoised = model(x, sigma_hat * s_in, **extra_args)
769
- d = to_d(x, sigma_hat, denoised)
770
- if callback is not None:
771
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
772
- dt = sigmas[i + 1] - sigma_hat
773
- if sigmas[i + 1] == s_end:
774
- # Euler method
775
- x = x + d * dt
776
- elif sigmas[i + 2] == s_end:
777
-
778
- # Heun's method
779
- x_2 = x + d * dt
780
- denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
781
- d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
782
-
783
- w = 2 * sigmas[0]
784
- w2 = sigmas[i+1]/w
785
- w1 = 1 - w2
786
-
787
- d_prime = d * w1 + d_2 * w2
788
-
789
-
790
- x = x + d_prime * dt
791
-
792
- else:
793
- # Heun++
794
- x_2 = x + d * dt
795
- denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
796
- d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
797
- dt_2 = sigmas[i + 2] - sigmas[i + 1]
798
-
799
- x_3 = x_2 + d_2 * dt_2
800
- denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args)
801
- d_3 = to_d(x_3, sigmas[i + 2], denoised_3)
802
-
803
- w = 3 * sigmas[0]
804
- w2 = sigmas[i + 1] / w
805
- w3 = sigmas[i + 2] / w
806
- w1 = 1 - w2 - w3
807
-
808
- d_prime = w1 * d + w2 * d_2 + w3 * d_3
809
- x = x + d_prime * dt
810
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/k_diffusion/utils.py DELETED
@@ -1,313 +0,0 @@
1
- from contextlib import contextmanager
2
- import hashlib
3
- import math
4
- from pathlib import Path
5
- import shutil
6
- import urllib
7
- import warnings
8
-
9
- from PIL import Image
10
- import torch
11
- from torch import nn, optim
12
- from torch.utils import data
13
-
14
-
15
- def hf_datasets_augs_helper(examples, transform, image_key, mode='RGB'):
16
- """Apply passed in transforms for HuggingFace Datasets."""
17
- images = [transform(image.convert(mode)) for image in examples[image_key]]
18
- return {image_key: images}
19
-
20
-
21
- def append_dims(x, target_dims):
22
- """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
23
- dims_to_append = target_dims - x.ndim
24
- if dims_to_append < 0:
25
- raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
26
- expanded = x[(...,) + (None,) * dims_to_append]
27
- # MPS will get inf values if it tries to index into the new axes, but detaching fixes this.
28
- # https://github.com/pytorch/pytorch/issues/84364
29
- return expanded.detach().clone() if expanded.device.type == 'mps' else expanded
30
-
31
-
32
- def n_params(module):
33
- """Returns the number of trainable parameters in a module."""
34
- return sum(p.numel() for p in module.parameters())
35
-
36
-
37
- def download_file(path, url, digest=None):
38
- """Downloads a file if it does not exist, optionally checking its SHA-256 hash."""
39
- path = Path(path)
40
- path.parent.mkdir(parents=True, exist_ok=True)
41
- if not path.exists():
42
- with urllib.request.urlopen(url) as response, open(path, 'wb') as f:
43
- shutil.copyfileobj(response, f)
44
- if digest is not None:
45
- file_digest = hashlib.sha256(open(path, 'rb').read()).hexdigest()
46
- if digest != file_digest:
47
- raise OSError(f'hash of {path} (url: {url}) failed to validate')
48
- return path
49
-
50
-
51
- @contextmanager
52
- def train_mode(model, mode=True):
53
- """A context manager that places a model into training mode and restores
54
- the previous mode on exit."""
55
- modes = [module.training for module in model.modules()]
56
- try:
57
- yield model.train(mode)
58
- finally:
59
- for i, module in enumerate(model.modules()):
60
- module.training = modes[i]
61
-
62
-
63
- def eval_mode(model):
64
- """A context manager that places a model into evaluation mode and restores
65
- the previous mode on exit."""
66
- return train_mode(model, False)
67
-
68
-
69
- @torch.no_grad()
70
- def ema_update(model, averaged_model, decay):
71
- """Incorporates updated model parameters into an exponential moving averaged
72
- version of a model. It should be called after each optimizer step."""
73
- model_params = dict(model.named_parameters())
74
- averaged_params = dict(averaged_model.named_parameters())
75
- assert model_params.keys() == averaged_params.keys()
76
-
77
- for name, param in model_params.items():
78
- averaged_params[name].mul_(decay).add_(param, alpha=1 - decay)
79
-
80
- model_buffers = dict(model.named_buffers())
81
- averaged_buffers = dict(averaged_model.named_buffers())
82
- assert model_buffers.keys() == averaged_buffers.keys()
83
-
84
- for name, buf in model_buffers.items():
85
- averaged_buffers[name].copy_(buf)
86
-
87
-
88
- class EMAWarmup:
89
- """Implements an EMA warmup using an inverse decay schedule.
90
- If inv_gamma=1 and power=1, implements a simple average. inv_gamma=1, power=2/3 are
91
- good values for models you plan to train for a million or more steps (reaches decay
92
- factor 0.999 at 31.6K steps, 0.9999 at 1M steps), inv_gamma=1, power=3/4 for models
93
- you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at
94
- 215.4k steps).
95
- Args:
96
- inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
97
- power (float): Exponential factor of EMA warmup. Default: 1.
98
- min_value (float): The minimum EMA decay rate. Default: 0.
99
- max_value (float): The maximum EMA decay rate. Default: 1.
100
- start_at (int): The epoch to start averaging at. Default: 0.
101
- last_epoch (int): The index of last epoch. Default: 0.
102
- """
103
-
104
- def __init__(self, inv_gamma=1., power=1., min_value=0., max_value=1., start_at=0,
105
- last_epoch=0):
106
- self.inv_gamma = inv_gamma
107
- self.power = power
108
- self.min_value = min_value
109
- self.max_value = max_value
110
- self.start_at = start_at
111
- self.last_epoch = last_epoch
112
-
113
- def state_dict(self):
114
- """Returns the state of the class as a :class:`dict`."""
115
- return dict(self.__dict__.items())
116
-
117
- def load_state_dict(self, state_dict):
118
- """Loads the class's state.
119
- Args:
120
- state_dict (dict): scaler state. Should be an object returned
121
- from a call to :meth:`state_dict`.
122
- """
123
- self.__dict__.update(state_dict)
124
-
125
- def get_value(self):
126
- """Gets the current EMA decay rate."""
127
- epoch = max(0, self.last_epoch - self.start_at)
128
- value = 1 - (1 + epoch / self.inv_gamma) ** -self.power
129
- return 0. if epoch < 0 else min(self.max_value, max(self.min_value, value))
130
-
131
- def step(self):
132
- """Updates the step count."""
133
- self.last_epoch += 1
134
-
135
-
136
- class InverseLR(optim.lr_scheduler._LRScheduler):
137
- """Implements an inverse decay learning rate schedule with an optional exponential
138
- warmup. When last_epoch=-1, sets initial lr as lr.
139
- inv_gamma is the number of steps/epochs required for the learning rate to decay to
140
- (1 / 2)**power of its original value.
141
- Args:
142
- optimizer (Optimizer): Wrapped optimizer.
143
- inv_gamma (float): Inverse multiplicative factor of learning rate decay. Default: 1.
144
- power (float): Exponential factor of learning rate decay. Default: 1.
145
- warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
146
- Default: 0.
147
- min_lr (float): The minimum learning rate. Default: 0.
148
- last_epoch (int): The index of last epoch. Default: -1.
149
- verbose (bool): If ``True``, prints a message to stdout for
150
- each update. Default: ``False``.
151
- """
152
-
153
- def __init__(self, optimizer, inv_gamma=1., power=1., warmup=0., min_lr=0.,
154
- last_epoch=-1, verbose=False):
155
- self.inv_gamma = inv_gamma
156
- self.power = power
157
- if not 0. <= warmup < 1:
158
- raise ValueError('Invalid value for warmup')
159
- self.warmup = warmup
160
- self.min_lr = min_lr
161
- super().__init__(optimizer, last_epoch, verbose)
162
-
163
- def get_lr(self):
164
- if not self._get_lr_called_within_step:
165
- warnings.warn("To get the last learning rate computed by the scheduler, "
166
- "please use `get_last_lr()`.")
167
-
168
- return self._get_closed_form_lr()
169
-
170
- def _get_closed_form_lr(self):
171
- warmup = 1 - self.warmup ** (self.last_epoch + 1)
172
- lr_mult = (1 + self.last_epoch / self.inv_gamma) ** -self.power
173
- return [warmup * max(self.min_lr, base_lr * lr_mult)
174
- for base_lr in self.base_lrs]
175
-
176
-
177
- class ExponentialLR(optim.lr_scheduler._LRScheduler):
178
- """Implements an exponential learning rate schedule with an optional exponential
179
- warmup. When last_epoch=-1, sets initial lr as lr. Decays the learning rate
180
- continuously by decay (default 0.5) every num_steps steps.
181
- Args:
182
- optimizer (Optimizer): Wrapped optimizer.
183
- num_steps (float): The number of steps to decay the learning rate by decay in.
184
- decay (float): The factor by which to decay the learning rate every num_steps
185
- steps. Default: 0.5.
186
- warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
187
- Default: 0.
188
- min_lr (float): The minimum learning rate. Default: 0.
189
- last_epoch (int): The index of last epoch. Default: -1.
190
- verbose (bool): If ``True``, prints a message to stdout for
191
- each update. Default: ``False``.
192
- """
193
-
194
- def __init__(self, optimizer, num_steps, decay=0.5, warmup=0., min_lr=0.,
195
- last_epoch=-1, verbose=False):
196
- self.num_steps = num_steps
197
- self.decay = decay
198
- if not 0. <= warmup < 1:
199
- raise ValueError('Invalid value for warmup')
200
- self.warmup = warmup
201
- self.min_lr = min_lr
202
- super().__init__(optimizer, last_epoch, verbose)
203
-
204
- def get_lr(self):
205
- if not self._get_lr_called_within_step:
206
- warnings.warn("To get the last learning rate computed by the scheduler, "
207
- "please use `get_last_lr()`.")
208
-
209
- return self._get_closed_form_lr()
210
-
211
- def _get_closed_form_lr(self):
212
- warmup = 1 - self.warmup ** (self.last_epoch + 1)
213
- lr_mult = (self.decay ** (1 / self.num_steps)) ** self.last_epoch
214
- return [warmup * max(self.min_lr, base_lr * lr_mult)
215
- for base_lr in self.base_lrs]
216
-
217
-
218
- def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32):
219
- """Draws samples from an lognormal distribution."""
220
- return (torch.randn(shape, device=device, dtype=dtype) * scale + loc).exp()
221
-
222
-
223
- def rand_log_logistic(shape, loc=0., scale=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
224
- """Draws samples from an optionally truncated log-logistic distribution."""
225
- min_value = torch.as_tensor(min_value, device=device, dtype=torch.float64)
226
- max_value = torch.as_tensor(max_value, device=device, dtype=torch.float64)
227
- min_cdf = min_value.log().sub(loc).div(scale).sigmoid()
228
- max_cdf = max_value.log().sub(loc).div(scale).sigmoid()
229
- u = torch.rand(shape, device=device, dtype=torch.float64) * (max_cdf - min_cdf) + min_cdf
230
- return u.logit().mul(scale).add(loc).exp().to(dtype)
231
-
232
-
233
- def rand_log_uniform(shape, min_value, max_value, device='cpu', dtype=torch.float32):
234
- """Draws samples from an log-uniform distribution."""
235
- min_value = math.log(min_value)
236
- max_value = math.log(max_value)
237
- return (torch.rand(shape, device=device, dtype=dtype) * (max_value - min_value) + min_value).exp()
238
-
239
-
240
- def rand_v_diffusion(shape, sigma_data=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
241
- """Draws samples from a truncated v-diffusion training timestep distribution."""
242
- min_cdf = math.atan(min_value / sigma_data) * 2 / math.pi
243
- max_cdf = math.atan(max_value / sigma_data) * 2 / math.pi
244
- u = torch.rand(shape, device=device, dtype=dtype) * (max_cdf - min_cdf) + min_cdf
245
- return torch.tan(u * math.pi / 2) * sigma_data
246
-
247
-
248
- def rand_split_log_normal(shape, loc, scale_1, scale_2, device='cpu', dtype=torch.float32):
249
- """Draws samples from a split lognormal distribution."""
250
- n = torch.randn(shape, device=device, dtype=dtype).abs()
251
- u = torch.rand(shape, device=device, dtype=dtype)
252
- n_left = n * -scale_1 + loc
253
- n_right = n * scale_2 + loc
254
- ratio = scale_1 / (scale_1 + scale_2)
255
- return torch.where(u < ratio, n_left, n_right).exp()
256
-
257
-
258
- class FolderOfImages(data.Dataset):
259
- """Recursively finds all images in a directory. It does not support
260
- classes/targets."""
261
-
262
- IMG_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp'}
263
-
264
- def __init__(self, root, transform=None):
265
- super().__init__()
266
- self.root = Path(root)
267
- self.transform = nn.Identity() if transform is None else transform
268
- self.paths = sorted(path for path in self.root.rglob('*') if path.suffix.lower() in self.IMG_EXTENSIONS)
269
-
270
- def __repr__(self):
271
- return f'FolderOfImages(root="{self.root}", len: {len(self)})'
272
-
273
- def __len__(self):
274
- return len(self.paths)
275
-
276
- def __getitem__(self, key):
277
- path = self.paths[key]
278
- with open(path, 'rb') as f:
279
- image = Image.open(f).convert('RGB')
280
- image = self.transform(image)
281
- return image,
282
-
283
-
284
- class CSVLogger:
285
- def __init__(self, filename, columns):
286
- self.filename = Path(filename)
287
- self.columns = columns
288
- if self.filename.exists():
289
- self.file = open(self.filename, 'a')
290
- else:
291
- self.file = open(self.filename, 'w')
292
- self.write(*self.columns)
293
-
294
- def write(self, *args):
295
- print(*args, sep=',', file=self.file, flush=True)
296
-
297
-
298
- @contextmanager
299
- def tf32_mode(cudnn=None, matmul=None):
300
- """A context manager that sets whether TF32 is allowed on cuDNN or matmul."""
301
- cudnn_old = torch.backends.cudnn.allow_tf32
302
- matmul_old = torch.backends.cuda.matmul.allow_tf32
303
- try:
304
- if cudnn is not None:
305
- torch.backends.cudnn.allow_tf32 = cudnn
306
- if matmul is not None:
307
- torch.backends.cuda.matmul.allow_tf32 = matmul
308
- yield
309
- finally:
310
- if cudnn is not None:
311
- torch.backends.cudnn.allow_tf32 = cudnn_old
312
- if matmul is not None:
313
- torch.backends.cuda.matmul.allow_tf32 = matmul_old
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/ldm/__pycache__/util.cpython-310.pyc DELETED
Binary file (6.28 kB)
 
ldm_patched/ldm/models/__pycache__/autoencoder.cpython-310.pyc DELETED
Binary file (8.64 kB)
 
ldm_patched/ldm/models/autoencoder.py DELETED
@@ -1,228 +0,0 @@
1
- import torch
2
- # import pytorch_lightning as pl
3
- import torch.nn.functional as F
4
- from contextlib import contextmanager
5
- from typing import Any, Dict, List, Optional, Tuple, Union
6
-
7
- from ldm_patched.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
8
-
9
- from ldm_patched.ldm.util import instantiate_from_config
10
- from ldm_patched.ldm.modules.ema import LitEma
11
- import ldm_patched.modules.ops
12
-
13
- class DiagonalGaussianRegularizer(torch.nn.Module):
14
- def __init__(self, sample: bool = True):
15
- super().__init__()
16
- self.sample = sample
17
-
18
- def get_trainable_parameters(self) -> Any:
19
- yield from ()
20
-
21
- def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
22
- log = dict()
23
- posterior = DiagonalGaussianDistribution(z)
24
- if self.sample:
25
- z = posterior.sample()
26
- else:
27
- z = posterior.mode()
28
- kl_loss = posterior.kl()
29
- kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
30
- log["kl_loss"] = kl_loss
31
- return z, log
32
-
33
-
34
- class AbstractAutoencoder(torch.nn.Module):
35
- """
36
- This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators,
37
- unCLIP models, etc. Hence, it is fairly general, and specific features
38
- (e.g. discriminator training, encoding, decoding) must be implemented in subclasses.
39
- """
40
-
41
- def __init__(
42
- self,
43
- ema_decay: Union[None, float] = None,
44
- monitor: Union[None, str] = None,
45
- input_key: str = "jpg",
46
- **kwargs,
47
- ):
48
- super().__init__()
49
-
50
- self.input_key = input_key
51
- self.use_ema = ema_decay is not None
52
- if monitor is not None:
53
- self.monitor = monitor
54
-
55
- if self.use_ema:
56
- self.model_ema = LitEma(self, decay=ema_decay)
57
- logpy.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
58
-
59
- def get_input(self, batch) -> Any:
60
- raise NotImplementedError()
61
-
62
- def on_train_batch_end(self, *args, **kwargs):
63
- # for EMA computation
64
- if self.use_ema:
65
- self.model_ema(self)
66
-
67
- @contextmanager
68
- def ema_scope(self, context=None):
69
- if self.use_ema:
70
- self.model_ema.store(self.parameters())
71
- self.model_ema.copy_to(self)
72
- if context is not None:
73
- logpy.info(f"{context}: Switched to EMA weights")
74
- try:
75
- yield None
76
- finally:
77
- if self.use_ema:
78
- self.model_ema.restore(self.parameters())
79
- if context is not None:
80
- logpy.info(f"{context}: Restored training weights")
81
-
82
- def encode(self, *args, **kwargs) -> torch.Tensor:
83
- raise NotImplementedError("encode()-method of abstract base class called")
84
-
85
- def decode(self, *args, **kwargs) -> torch.Tensor:
86
- raise NotImplementedError("decode()-method of abstract base class called")
87
-
88
- def instantiate_optimizer_from_config(self, params, lr, cfg):
89
- logpy.info(f"loading >>> {cfg['target']} <<< optimizer from config")
90
- return get_obj_from_str(cfg["target"])(
91
- params, lr=lr, **cfg.get("params", dict())
92
- )
93
-
94
- def configure_optimizers(self) -> Any:
95
- raise NotImplementedError()
96
-
97
-
98
- class AutoencodingEngine(AbstractAutoencoder):
99
- """
100
- Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL
101
- (we also restore them explicitly as special cases for legacy reasons).
102
- Regularizations such as KL or VQ are moved to the regularizer class.
103
- """
104
-
105
- def __init__(
106
- self,
107
- *args,
108
- encoder_config: Dict,
109
- decoder_config: Dict,
110
- regularizer_config: Dict,
111
- **kwargs,
112
- ):
113
- super().__init__(*args, **kwargs)
114
-
115
- self.encoder: torch.nn.Module = instantiate_from_config(encoder_config)
116
- self.decoder: torch.nn.Module = instantiate_from_config(decoder_config)
117
- self.regularization: AbstractRegularizer = instantiate_from_config(
118
- regularizer_config
119
- )
120
-
121
- def get_last_layer(self):
122
- return self.decoder.get_last_layer()
123
-
124
- def encode(
125
- self,
126
- x: torch.Tensor,
127
- return_reg_log: bool = False,
128
- unregularized: bool = False,
129
- ) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
130
- z = self.encoder(x)
131
- if unregularized:
132
- return z, dict()
133
- z, reg_log = self.regularization(z)
134
- if return_reg_log:
135
- return z, reg_log
136
- return z
137
-
138
- def decode(self, z: torch.Tensor, **kwargs) -> torch.Tensor:
139
- x = self.decoder(z, **kwargs)
140
- return x
141
-
142
- def forward(
143
- self, x: torch.Tensor, **additional_decode_kwargs
144
- ) -> Tuple[torch.Tensor, torch.Tensor, dict]:
145
- z, reg_log = self.encode(x, return_reg_log=True)
146
- dec = self.decode(z, **additional_decode_kwargs)
147
- return z, dec, reg_log
148
-
149
-
150
- class AutoencodingEngineLegacy(AutoencodingEngine):
151
- def __init__(self, embed_dim: int, **kwargs):
152
- self.max_batch_size = kwargs.pop("max_batch_size", None)
153
- ddconfig = kwargs.pop("ddconfig")
154
- super().__init__(
155
- encoder_config={
156
- "target": "ldm_patched.ldm.modules.diffusionmodules.model.Encoder",
157
- "params": ddconfig,
158
- },
159
- decoder_config={
160
- "target": "ldm_patched.ldm.modules.diffusionmodules.model.Decoder",
161
- "params": ddconfig,
162
- },
163
- **kwargs,
164
- )
165
- self.quant_conv = ldm_patched.modules.ops.disable_weight_init.Conv2d(
166
- (1 + ddconfig["double_z"]) * ddconfig["z_channels"],
167
- (1 + ddconfig["double_z"]) * embed_dim,
168
- 1,
169
- )
170
- self.post_quant_conv = ldm_patched.modules.ops.disable_weight_init.Conv2d(embed_dim, ddconfig["z_channels"], 1)
171
- self.embed_dim = embed_dim
172
-
173
- def get_autoencoder_params(self) -> list:
174
- params = super().get_autoencoder_params()
175
- return params
176
-
177
- def encode(
178
- self, x: torch.Tensor, return_reg_log: bool = False
179
- ) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
180
- if self.max_batch_size is None:
181
- z = self.encoder(x)
182
- z = self.quant_conv(z)
183
- else:
184
- N = x.shape[0]
185
- bs = self.max_batch_size
186
- n_batches = int(math.ceil(N / bs))
187
- z = list()
188
- for i_batch in range(n_batches):
189
- z_batch = self.encoder(x[i_batch * bs : (i_batch + 1) * bs])
190
- z_batch = self.quant_conv(z_batch)
191
- z.append(z_batch)
192
- z = torch.cat(z, 0)
193
-
194
- z, reg_log = self.regularization(z)
195
- if return_reg_log:
196
- return z, reg_log
197
- return z
198
-
199
- def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor:
200
- if self.max_batch_size is None:
201
- dec = self.post_quant_conv(z)
202
- dec = self.decoder(dec, **decoder_kwargs)
203
- else:
204
- N = z.shape[0]
205
- bs = self.max_batch_size
206
- n_batches = int(math.ceil(N / bs))
207
- dec = list()
208
- for i_batch in range(n_batches):
209
- dec_batch = self.post_quant_conv(z[i_batch * bs : (i_batch + 1) * bs])
210
- dec_batch = self.decoder(dec_batch, **decoder_kwargs)
211
- dec.append(dec_batch)
212
- dec = torch.cat(dec, 0)
213
-
214
- return dec
215
-
216
-
217
- class AutoencoderKL(AutoencodingEngineLegacy):
218
- def __init__(self, **kwargs):
219
- if "lossconfig" in kwargs:
220
- kwargs["loss_config"] = kwargs.pop("lossconfig")
221
- super().__init__(
222
- regularizer_config={
223
- "target": (
224
- "ldm_patched.ldm.models.autoencoder.DiagonalGaussianRegularizer"
225
- )
226
- },
227
- **kwargs,
228
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/ldm/modules/__pycache__/attention.cpython-310.pyc DELETED
Binary file (18.6 kB)
 
ldm_patched/ldm/modules/__pycache__/ema.cpython-310.pyc DELETED
Binary file (3.29 kB)
 
ldm_patched/ldm/modules/__pycache__/sub_quadratic_attention.cpython-310.pyc DELETED
Binary file (8.15 kB)
 
ldm_patched/ldm/modules/attention.py DELETED
@@ -1,781 +0,0 @@
1
- import math
2
- import torch
3
- import torch.nn.functional as F
4
- from torch import nn, einsum
5
- from einops import rearrange, repeat
6
- from typing import Optional, Any
7
-
8
- from .diffusionmodules.util import checkpoint, AlphaBlender, timestep_embedding
9
- from .sub_quadratic_attention import efficient_dot_product_attention
10
-
11
- from ldm_patched.modules import model_management
12
-
13
- if model_management.xformers_enabled():
14
- import xformers
15
- import xformers.ops
16
-
17
- from ldm_patched.modules.args_parser import args
18
- import ldm_patched.modules.ops
19
- ops = ldm_patched.modules.ops.disable_weight_init
20
-
21
- # CrossAttn precision handling
22
- if args.disable_attention_upcast:
23
- print("disabling upcasting of attention")
24
- _ATTN_PRECISION = "fp16"
25
- else:
26
- _ATTN_PRECISION = "fp32"
27
-
28
-
29
- def exists(val):
30
- return val is not None
31
-
32
-
33
- def uniq(arr):
34
- return{el: True for el in arr}.keys()
35
-
36
-
37
- def default(val, d):
38
- if exists(val):
39
- return val
40
- return d
41
-
42
-
43
- def max_neg_value(t):
44
- return -torch.finfo(t.dtype).max
45
-
46
-
47
- def init_(tensor):
48
- dim = tensor.shape[-1]
49
- std = 1 / math.sqrt(dim)
50
- tensor.uniform_(-std, std)
51
- return tensor
52
-
53
-
54
- # feedforward
55
- class GEGLU(nn.Module):
56
- def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops):
57
- super().__init__()
58
- self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
59
-
60
- def forward(self, x):
61
- x, gate = self.proj(x).chunk(2, dim=-1)
62
- return x * F.gelu(gate)
63
-
64
-
65
- class FeedForward(nn.Module):
66
- def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=ops):
67
- super().__init__()
68
- inner_dim = int(dim * mult)
69
- dim_out = default(dim_out, dim)
70
- project_in = nn.Sequential(
71
- operations.Linear(dim, inner_dim, dtype=dtype, device=device),
72
- nn.GELU()
73
- ) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
74
-
75
- self.net = nn.Sequential(
76
- project_in,
77
- nn.Dropout(dropout),
78
- operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
79
- )
80
-
81
- def forward(self, x):
82
- return self.net(x)
83
-
84
- def Normalize(in_channels, dtype=None, device=None):
85
- return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
86
-
87
- def attention_basic(q, k, v, heads, mask=None):
88
- b, _, dim_head = q.shape
89
- dim_head //= heads
90
- scale = dim_head ** -0.5
91
-
92
- h = heads
93
- q, k, v = map(
94
- lambda t: t.unsqueeze(3)
95
- .reshape(b, -1, heads, dim_head)
96
- .permute(0, 2, 1, 3)
97
- .reshape(b * heads, -1, dim_head)
98
- .contiguous(),
99
- (q, k, v),
100
- )
101
-
102
- # force cast to fp32 to avoid overflowing
103
- if _ATTN_PRECISION =="fp32":
104
- sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
105
- else:
106
- sim = einsum('b i d, b j d -> b i j', q, k) * scale
107
-
108
- del q, k
109
-
110
- if exists(mask):
111
- if mask.dtype == torch.bool:
112
- mask = rearrange(mask, 'b ... -> b (...)') #TODO: check if this bool part matches pytorch attention
113
- max_neg_value = -torch.finfo(sim.dtype).max
114
- mask = repeat(mask, 'b j -> (b h) () j', h=h)
115
- sim.masked_fill_(~mask, max_neg_value)
116
- else:
117
- sim += mask
118
-
119
- # attention, what we cannot get enough of
120
- sim = sim.softmax(dim=-1)
121
-
122
- out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
123
- out = (
124
- out.unsqueeze(0)
125
- .reshape(b, heads, -1, dim_head)
126
- .permute(0, 2, 1, 3)
127
- .reshape(b, -1, heads * dim_head)
128
- )
129
- return out
130
-
131
-
132
- def attention_sub_quad(query, key, value, heads, mask=None):
133
- b, _, dim_head = query.shape
134
- dim_head //= heads
135
-
136
- scale = dim_head ** -0.5
137
- query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
138
- value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
139
-
140
- key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)
141
-
142
- dtype = query.dtype
143
- upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
144
- if upcast_attention:
145
- bytes_per_token = torch.finfo(torch.float32).bits//8
146
- else:
147
- bytes_per_token = torch.finfo(query.dtype).bits//8
148
- batch_x_heads, q_tokens, _ = query.shape
149
- _, _, k_tokens = key.shape
150
- qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
151
-
152
- mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
153
-
154
- kv_chunk_size_min = None
155
- kv_chunk_size = None
156
- query_chunk_size = None
157
-
158
- for x in [4096, 2048, 1024, 512, 256]:
159
- count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0)
160
- if count >= k_tokens:
161
- kv_chunk_size = k_tokens
162
- query_chunk_size = x
163
- break
164
-
165
- if query_chunk_size is None:
166
- query_chunk_size = 512
167
-
168
- hidden_states = efficient_dot_product_attention(
169
- query,
170
- key,
171
- value,
172
- query_chunk_size=query_chunk_size,
173
- kv_chunk_size=kv_chunk_size,
174
- kv_chunk_size_min=kv_chunk_size_min,
175
- use_checkpoint=False,
176
- upcast_attention=upcast_attention,
177
- mask=mask,
178
- )
179
-
180
- hidden_states = hidden_states.to(dtype)
181
-
182
- hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
183
- return hidden_states
184
-
185
- def attention_split(q, k, v, heads, mask=None):
186
- b, _, dim_head = q.shape
187
- dim_head //= heads
188
- scale = dim_head ** -0.5
189
-
190
- h = heads
191
- q, k, v = map(
192
- lambda t: t.unsqueeze(3)
193
- .reshape(b, -1, heads, dim_head)
194
- .permute(0, 2, 1, 3)
195
- .reshape(b * heads, -1, dim_head)
196
- .contiguous(),
197
- (q, k, v),
198
- )
199
-
200
- r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
201
-
202
- mem_free_total = model_management.get_free_memory(q.device)
203
-
204
- if _ATTN_PRECISION =="fp32":
205
- element_size = 4
206
- else:
207
- element_size = q.element_size()
208
-
209
- gb = 1024 ** 3
210
- tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size
211
- modifier = 3
212
- mem_required = tensor_size * modifier
213
- steps = 1
214
-
215
-
216
- if mem_required > mem_free_total:
217
- steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
218
- # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
219
- # f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
220
-
221
- if steps > 64:
222
- max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
223
- raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
224
- f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')
225
-
226
- # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
227
- first_op_done = False
228
- cleared_cache = False
229
- while True:
230
- try:
231
- slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
232
- for i in range(0, q.shape[1], slice_size):
233
- end = i + slice_size
234
- if _ATTN_PRECISION =="fp32":
235
- with torch.autocast(enabled=False, device_type = 'cuda'):
236
- s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
237
- else:
238
- s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale
239
-
240
- if mask is not None:
241
- if len(mask.shape) == 2:
242
- s1 += mask[i:end]
243
- else:
244
- s1 += mask[:, i:end]
245
-
246
- s2 = s1.softmax(dim=-1).to(v.dtype)
247
- del s1
248
- first_op_done = True
249
-
250
- r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
251
- del s2
252
- break
253
- except model_management.OOM_EXCEPTION as e:
254
- if first_op_done == False:
255
- model_management.soft_empty_cache(True)
256
- if cleared_cache == False:
257
- cleared_cache = True
258
- print("out of memory error, emptying cache and trying again")
259
- continue
260
- steps *= 2
261
- if steps > 64:
262
- raise e
263
- print("out of memory error, increasing steps and trying again", steps)
264
- else:
265
- raise e
266
-
267
- del q, k, v
268
-
269
- r1 = (
270
- r1.unsqueeze(0)
271
- .reshape(b, heads, -1, dim_head)
272
- .permute(0, 2, 1, 3)
273
- .reshape(b, -1, heads * dim_head)
274
- )
275
- return r1
276
-
277
- BROKEN_XFORMERS = False
278
- try:
279
- x_vers = xformers.__version__
280
- #I think 0.0.23 is also broken (q with bs bigger than 65535 gives CUDA error)
281
- BROKEN_XFORMERS = x_vers.startswith("0.0.21") or x_vers.startswith("0.0.22") or x_vers.startswith("0.0.23")
282
- except:
283
- pass
284
-
285
- def attention_xformers(q, k, v, heads, mask=None):
286
- b, _, dim_head = q.shape
287
- dim_head //= heads
288
- if BROKEN_XFORMERS:
289
- if b * heads > 65535:
290
- return attention_pytorch(q, k, v, heads, mask)
291
-
292
- q, k, v = map(
293
- lambda t: t.unsqueeze(3)
294
- .reshape(b, -1, heads, dim_head)
295
- .permute(0, 2, 1, 3)
296
- .reshape(b * heads, -1, dim_head)
297
- .contiguous(),
298
- (q, k, v),
299
- )
300
-
301
- if mask is not None:
302
- pad = 8 - q.shape[1] % 8
303
- mask_out = torch.empty([q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device)
304
- mask_out[:, :, :mask.shape[-1]] = mask
305
- mask = mask_out[:, :, :mask.shape[-1]]
306
-
307
- out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
308
-
309
- out = (
310
- out.unsqueeze(0)
311
- .reshape(b, heads, -1, dim_head)
312
- .permute(0, 2, 1, 3)
313
- .reshape(b, -1, heads * dim_head)
314
- )
315
- return out
316
-
317
- def attention_pytorch(q, k, v, heads, mask=None):
318
- b, _, dim_head = q.shape
319
- dim_head //= heads
320
- q, k, v = map(
321
- lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
322
- (q, k, v),
323
- )
324
-
325
- out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
326
- out = (
327
- out.transpose(1, 2).reshape(b, -1, heads * dim_head)
328
- )
329
- return out
330
-
331
-
332
- optimized_attention = attention_basic
333
-
334
- if model_management.xformers_enabled():
335
- print("Using xformers cross attention")
336
- optimized_attention = attention_xformers
337
- elif model_management.pytorch_attention_enabled():
338
- print("Using pytorch cross attention")
339
- optimized_attention = attention_pytorch
340
- else:
341
- if args.attention_split:
342
- print("Using split optimization for cross attention")
343
- optimized_attention = attention_split
344
- else:
345
- print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --attention-split")
346
- optimized_attention = attention_sub_quad
347
-
348
- optimized_attention_masked = optimized_attention
349
-
350
- def optimized_attention_for_device(device, mask=False, small_input=False):
351
- if small_input:
352
- if model_management.pytorch_attention_enabled():
353
- return attention_pytorch #TODO: need to confirm but this is probably slightly faster for small inputs in all cases
354
- else:
355
- return attention_basic
356
-
357
- if device == torch.device("cpu"):
358
- return attention_sub_quad
359
-
360
- if mask:
361
- return optimized_attention_masked
362
-
363
- return optimized_attention
364
-
365
-
366
- class CrossAttention(nn.Module):
367
- def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=ops):
368
- super().__init__()
369
- inner_dim = dim_head * heads
370
- context_dim = default(context_dim, query_dim)
371
-
372
- self.heads = heads
373
- self.dim_head = dim_head
374
-
375
- self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
376
- self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
377
- self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
378
-
379
- self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
380
-
381
- def forward(self, x, context=None, value=None, mask=None):
382
- q = self.to_q(x)
383
- context = default(context, x)
384
- k = self.to_k(context)
385
- if value is not None:
386
- v = self.to_v(value)
387
- del value
388
- else:
389
- v = self.to_v(context)
390
-
391
- if mask is None:
392
- out = optimized_attention(q, k, v, self.heads)
393
- else:
394
- out = optimized_attention_masked(q, k, v, self.heads, mask)
395
- return self.to_out(out)
396
-
397
-
398
- class BasicTransformerBlock(nn.Module):
399
- def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None,
400
- disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, dtype=None, device=None, operations=ops):
401
- super().__init__()
402
-
403
- self.ff_in = ff_in or inner_dim is not None
404
- if inner_dim is None:
405
- inner_dim = dim
406
-
407
- self.is_res = inner_dim == dim
408
-
409
- if self.ff_in:
410
- self.norm_in = operations.LayerNorm(dim, dtype=dtype, device=device)
411
- self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
412
-
413
- self.disable_self_attn = disable_self_attn
414
- self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout,
415
- context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device, operations=operations) # is a self-attention if not self.disable_self_attn
416
- self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
417
-
418
- if disable_temporal_crossattention:
419
- if switch_temporal_ca_to_sa:
420
- raise ValueError
421
- else:
422
- self.attn2 = None
423
- else:
424
- context_dim_attn2 = None
425
- if not switch_temporal_ca_to_sa:
426
- context_dim_attn2 = context_dim
427
-
428
- self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2,
429
- heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations) # is self-attn if context is none
430
- self.norm2 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
431
-
432
- self.norm1 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
433
- self.norm3 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
434
- self.checkpoint = checkpoint
435
- self.n_heads = n_heads
436
- self.d_head = d_head
437
- self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa
438
-
439
- def forward(self, x, context=None, transformer_options={}):
440
- return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint)
441
-
442
- def _forward(self, x, context=None, transformer_options={}):
443
- extra_options = {}
444
- block = transformer_options.get("block", None)
445
- block_index = transformer_options.get("block_index", 0)
446
- transformer_patches = {}
447
- transformer_patches_replace = {}
448
-
449
- for k in transformer_options:
450
- if k == "patches":
451
- transformer_patches = transformer_options[k]
452
- elif k == "patches_replace":
453
- transformer_patches_replace = transformer_options[k]
454
- else:
455
- extra_options[k] = transformer_options[k]
456
-
457
- extra_options["n_heads"] = self.n_heads
458
- extra_options["dim_head"] = self.d_head
459
-
460
- if self.ff_in:
461
- x_skip = x
462
- x = self.ff_in(self.norm_in(x))
463
- if self.is_res:
464
- x += x_skip
465
-
466
- n = self.norm1(x)
467
- if self.disable_self_attn:
468
- context_attn1 = context
469
- else:
470
- context_attn1 = None
471
- value_attn1 = None
472
-
473
- if "attn1_patch" in transformer_patches:
474
- patch = transformer_patches["attn1_patch"]
475
- if context_attn1 is None:
476
- context_attn1 = n
477
- value_attn1 = context_attn1
478
- for p in patch:
479
- n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
480
-
481
- if block is not None:
482
- transformer_block = (block[0], block[1], block_index)
483
- else:
484
- transformer_block = None
485
- attn1_replace_patch = transformer_patches_replace.get("attn1", {})
486
- block_attn1 = transformer_block
487
- if block_attn1 not in attn1_replace_patch:
488
- block_attn1 = block
489
-
490
- if block_attn1 in attn1_replace_patch:
491
- if context_attn1 is None:
492
- context_attn1 = n
493
- value_attn1 = n
494
- n = self.attn1.to_q(n)
495
- context_attn1 = self.attn1.to_k(context_attn1)
496
- value_attn1 = self.attn1.to_v(value_attn1)
497
- n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
498
- n = self.attn1.to_out(n)
499
- else:
500
- n = self.attn1(n, context=context_attn1, value=value_attn1)
501
-
502
- if "attn1_output_patch" in transformer_patches:
503
- patch = transformer_patches["attn1_output_patch"]
504
- for p in patch:
505
- n = p(n, extra_options)
506
-
507
- x += n
508
- if "middle_patch" in transformer_patches:
509
- patch = transformer_patches["middle_patch"]
510
- for p in patch:
511
- x = p(x, extra_options)
512
-
513
- if self.attn2 is not None:
514
- n = self.norm2(x)
515
- if self.switch_temporal_ca_to_sa:
516
- context_attn2 = n
517
- else:
518
- context_attn2 = context
519
- value_attn2 = None
520
- if "attn2_patch" in transformer_patches:
521
- patch = transformer_patches["attn2_patch"]
522
- value_attn2 = context_attn2
523
- for p in patch:
524
- n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)
525
-
526
- attn2_replace_patch = transformer_patches_replace.get("attn2", {})
527
- block_attn2 = transformer_block
528
- if block_attn2 not in attn2_replace_patch:
529
- block_attn2 = block
530
-
531
- if block_attn2 in attn2_replace_patch:
532
- if value_attn2 is None:
533
- value_attn2 = context_attn2
534
- n = self.attn2.to_q(n)
535
- context_attn2 = self.attn2.to_k(context_attn2)
536
- value_attn2 = self.attn2.to_v(value_attn2)
537
- n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
538
- n = self.attn2.to_out(n)
539
- else:
540
- n = self.attn2(n, context=context_attn2, value=value_attn2)
541
-
542
- if "attn2_output_patch" in transformer_patches:
543
- patch = transformer_patches["attn2_output_patch"]
544
- for p in patch:
545
- n = p(n, extra_options)
546
-
547
- x += n
548
- if self.is_res:
549
- x_skip = x
550
- x = self.ff(self.norm3(x))
551
- if self.is_res:
552
- x += x_skip
553
-
554
- return x
555
-
556
-
557
- class SpatialTransformer(nn.Module):
558
- """
559
- Transformer block for image-like data.
560
- First, project the input (aka embedding)
561
- and reshape to b, t, d.
562
- Then apply standard transformer action.
563
- Finally, reshape to image
564
- NEW: use_linear for more efficiency instead of the 1x1 convs
565
- """
566
- def __init__(self, in_channels, n_heads, d_head,
567
- depth=1, dropout=0., context_dim=None,
568
- disable_self_attn=False, use_linear=False,
569
- use_checkpoint=True, dtype=None, device=None, operations=ops):
570
- super().__init__()
571
- if exists(context_dim) and not isinstance(context_dim, list):
572
- context_dim = [context_dim] * depth
573
- self.in_channels = in_channels
574
- inner_dim = n_heads * d_head
575
- self.norm = operations.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
576
- if not use_linear:
577
- self.proj_in = operations.Conv2d(in_channels,
578
- inner_dim,
579
- kernel_size=1,
580
- stride=1,
581
- padding=0, dtype=dtype, device=device)
582
- else:
583
- self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
584
-
585
- self.transformer_blocks = nn.ModuleList(
586
- [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
587
- disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device, operations=operations)
588
- for d in range(depth)]
589
- )
590
- if not use_linear:
591
- self.proj_out = operations.Conv2d(inner_dim,in_channels,
592
- kernel_size=1,
593
- stride=1,
594
- padding=0, dtype=dtype, device=device)
595
- else:
596
- self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
597
- self.use_linear = use_linear
598
-
599
- def forward(self, x, context=None, transformer_options={}):
600
- # note: if no context is given, cross-attention defaults to self-attention
601
- if not isinstance(context, list):
602
- context = [context] * len(self.transformer_blocks)
603
- b, c, h, w = x.shape
604
- x_in = x
605
- x = self.norm(x)
606
- if not self.use_linear:
607
- x = self.proj_in(x)
608
- x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
609
- if self.use_linear:
610
- x = self.proj_in(x)
611
- for i, block in enumerate(self.transformer_blocks):
612
- transformer_options["block_index"] = i
613
- x = block(x, context=context[i], transformer_options=transformer_options)
614
- if self.use_linear:
615
- x = self.proj_out(x)
616
- x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
617
- if not self.use_linear:
618
- x = self.proj_out(x)
619
- return x + x_in
620
-
621
-
622
- class SpatialVideoTransformer(SpatialTransformer):
623
- def __init__(
624
- self,
625
- in_channels,
626
- n_heads,
627
- d_head,
628
- depth=1,
629
- dropout=0.0,
630
- use_linear=False,
631
- context_dim=None,
632
- use_spatial_context=False,
633
- timesteps=None,
634
- merge_strategy: str = "fixed",
635
- merge_factor: float = 0.5,
636
- time_context_dim=None,
637
- ff_in=False,
638
- checkpoint=False,
639
- time_depth=1,
640
- disable_self_attn=False,
641
- disable_temporal_crossattention=False,
642
- max_time_embed_period: int = 10000,
643
- dtype=None, device=None, operations=ops
644
- ):
645
- super().__init__(
646
- in_channels,
647
- n_heads,
648
- d_head,
649
- depth=depth,
650
- dropout=dropout,
651
- use_checkpoint=checkpoint,
652
- context_dim=context_dim,
653
- use_linear=use_linear,
654
- disable_self_attn=disable_self_attn,
655
- dtype=dtype, device=device, operations=operations
656
- )
657
- self.time_depth = time_depth
658
- self.depth = depth
659
- self.max_time_embed_period = max_time_embed_period
660
-
661
- time_mix_d_head = d_head
662
- n_time_mix_heads = n_heads
663
-
664
- time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads)
665
-
666
- inner_dim = n_heads * d_head
667
- if use_spatial_context:
668
- time_context_dim = context_dim
669
-
670
- self.time_stack = nn.ModuleList(
671
- [
672
- BasicTransformerBlock(
673
- inner_dim,
674
- n_time_mix_heads,
675
- time_mix_d_head,
676
- dropout=dropout,
677
- context_dim=time_context_dim,
678
- # timesteps=timesteps,
679
- checkpoint=checkpoint,
680
- ff_in=ff_in,
681
- inner_dim=time_mix_inner_dim,
682
- disable_self_attn=disable_self_attn,
683
- disable_temporal_crossattention=disable_temporal_crossattention,
684
- dtype=dtype, device=device, operations=operations
685
- )
686
- for _ in range(self.depth)
687
- ]
688
- )
689
-
690
- assert len(self.time_stack) == len(self.transformer_blocks)
691
-
692
- self.use_spatial_context = use_spatial_context
693
- self.in_channels = in_channels
694
-
695
- time_embed_dim = self.in_channels * 4
696
- self.time_pos_embed = nn.Sequential(
697
- operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device),
698
- nn.SiLU(),
699
- operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device),
700
- )
701
-
702
- self.time_mixer = AlphaBlender(
703
- alpha=merge_factor, merge_strategy=merge_strategy
704
- )
705
-
706
- def forward(
707
- self,
708
- x: torch.Tensor,
709
- context: Optional[torch.Tensor] = None,
710
- time_context: Optional[torch.Tensor] = None,
711
- timesteps: Optional[int] = None,
712
- image_only_indicator: Optional[torch.Tensor] = None,
713
- transformer_options={}
714
- ) -> torch.Tensor:
715
- _, _, h, w = x.shape
716
- x_in = x
717
- spatial_context = None
718
- if exists(context):
719
- spatial_context = context
720
-
721
- if self.use_spatial_context:
722
- assert (
723
- context.ndim == 3
724
- ), f"n dims of spatial context should be 3 but are {context.ndim}"
725
-
726
- if time_context is None:
727
- time_context = context
728
- time_context_first_timestep = time_context[::timesteps]
729
- time_context = repeat(
730
- time_context_first_timestep, "b ... -> (b n) ...", n=h * w
731
- )
732
- elif time_context is not None and not self.use_spatial_context:
733
- time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w)
734
- if time_context.ndim == 2:
735
- time_context = rearrange(time_context, "b c -> b 1 c")
736
-
737
- x = self.norm(x)
738
- if not self.use_linear:
739
- x = self.proj_in(x)
740
- x = rearrange(x, "b c h w -> b (h w) c")
741
- if self.use_linear:
742
- x = self.proj_in(x)
743
-
744
- num_frames = torch.arange(timesteps, device=x.device)
745
- num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
746
- num_frames = rearrange(num_frames, "b t -> (b t)")
747
- t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype)
748
- emb = self.time_pos_embed(t_emb)
749
- emb = emb[:, None, :]
750
-
751
- for it_, (block, mix_block) in enumerate(
752
- zip(self.transformer_blocks, self.time_stack)
753
- ):
754
- transformer_options["block_index"] = it_
755
- x = block(
756
- x,
757
- context=spatial_context,
758
- transformer_options=transformer_options,
759
- )
760
-
761
- x_mix = x
762
- x_mix = x_mix + emb
763
-
764
- B, S, C = x_mix.shape
765
- x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps)
766
- x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options
767
- x_mix = rearrange(
768
- x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
769
- )
770
-
771
- x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator)
772
-
773
- if self.use_linear:
774
- x = self.proj_out(x)
775
- x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
776
- if not self.use_linear:
777
- x = self.proj_out(x)
778
- out = x + x_in
779
- return out
780
-
781
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/ldm/modules/diffusionmodules/__init__.py DELETED
File without changes
ldm_patched/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (262 Bytes)
 
ldm_patched/ldm/modules/diffusionmodules/__pycache__/model.cpython-310.pyc DELETED
Binary file (15 kB)
 
ldm_patched/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc DELETED
Binary file (19.4 kB)
 
ldm_patched/ldm/modules/diffusionmodules/__pycache__/upscaling.cpython-310.pyc DELETED
Binary file (3.91 kB)
 
ldm_patched/ldm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc DELETED
Binary file (10.4 kB)
 
ldm_patched/ldm/modules/diffusionmodules/model.py DELETED
@@ -1,650 +0,0 @@
1
- # pytorch_diffusion + derived encoder decoder
2
- import math
3
- import torch
4
- import torch.nn as nn
5
- import numpy as np
6
- from einops import rearrange
7
- from typing import Optional, Any
8
-
9
- from ldm_patched.modules import model_management
10
- import ldm_patched.modules.ops
11
- ops = ldm_patched.modules.ops.disable_weight_init
12
-
13
- if model_management.xformers_enabled_vae():
14
- import xformers
15
- import xformers.ops
16
-
17
- def get_timestep_embedding(timesteps, embedding_dim):
18
- """
19
- This matches the implementation in Denoising Diffusion Probabilistic Models:
20
- From Fairseq.
21
- Build sinusoidal embeddings.
22
- This matches the implementation in tensor2tensor, but differs slightly
23
- from the description in Section 3.5 of "Attention Is All You Need".
24
- """
25
- assert len(timesteps.shape) == 1
26
-
27
- half_dim = embedding_dim // 2
28
- emb = math.log(10000) / (half_dim - 1)
29
- emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
30
- emb = emb.to(device=timesteps.device)
31
- emb = timesteps.float()[:, None] * emb[None, :]
32
- emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
33
- if embedding_dim % 2 == 1: # zero pad
34
- emb = torch.nn.functional.pad(emb, (0,1,0,0))
35
- return emb
36
-
37
-
38
- def nonlinearity(x):
39
- # swish
40
- return x*torch.sigmoid(x)
41
-
42
-
43
- def Normalize(in_channels, num_groups=32):
44
- return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
45
-
46
-
47
- class Upsample(nn.Module):
48
- def __init__(self, in_channels, with_conv):
49
- super().__init__()
50
- self.with_conv = with_conv
51
- if self.with_conv:
52
- self.conv = ops.Conv2d(in_channels,
53
- in_channels,
54
- kernel_size=3,
55
- stride=1,
56
- padding=1)
57
-
58
- def forward(self, x):
59
- try:
60
- x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
61
- except: #operation not implemented for bf16
62
- b, c, h, w = x.shape
63
- out = torch.empty((b, c, h*2, w*2), dtype=x.dtype, layout=x.layout, device=x.device)
64
- split = 8
65
- l = out.shape[1] // split
66
- for i in range(0, out.shape[1], l):
67
- out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=2.0, mode="nearest").to(x.dtype)
68
- del x
69
- x = out
70
-
71
- if self.with_conv:
72
- x = self.conv(x)
73
- return x
74
-
75
-
76
- class Downsample(nn.Module):
77
- def __init__(self, in_channels, with_conv):
78
- super().__init__()
79
- self.with_conv = with_conv
80
- if self.with_conv:
81
- # no asymmetric padding in torch conv, must do it ourselves
82
- self.conv = ops.Conv2d(in_channels,
83
- in_channels,
84
- kernel_size=3,
85
- stride=2,
86
- padding=0)
87
-
88
- def forward(self, x):
89
- if self.with_conv:
90
- pad = (0,1,0,1)
91
- x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
92
- x = self.conv(x)
93
- else:
94
- x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
95
- return x
96
-
97
-
98
- class ResnetBlock(nn.Module):
99
- def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
100
- dropout, temb_channels=512):
101
- super().__init__()
102
- self.in_channels = in_channels
103
- out_channels = in_channels if out_channels is None else out_channels
104
- self.out_channels = out_channels
105
- self.use_conv_shortcut = conv_shortcut
106
-
107
- self.swish = torch.nn.SiLU(inplace=True)
108
- self.norm1 = Normalize(in_channels)
109
- self.conv1 = ops.Conv2d(in_channels,
110
- out_channels,
111
- kernel_size=3,
112
- stride=1,
113
- padding=1)
114
- if temb_channels > 0:
115
- self.temb_proj = ops.Linear(temb_channels,
116
- out_channels)
117
- self.norm2 = Normalize(out_channels)
118
- self.dropout = torch.nn.Dropout(dropout, inplace=True)
119
- self.conv2 = ops.Conv2d(out_channels,
120
- out_channels,
121
- kernel_size=3,
122
- stride=1,
123
- padding=1)
124
- if self.in_channels != self.out_channels:
125
- if self.use_conv_shortcut:
126
- self.conv_shortcut = ops.Conv2d(in_channels,
127
- out_channels,
128
- kernel_size=3,
129
- stride=1,
130
- padding=1)
131
- else:
132
- self.nin_shortcut = ops.Conv2d(in_channels,
133
- out_channels,
134
- kernel_size=1,
135
- stride=1,
136
- padding=0)
137
-
138
- def forward(self, x, temb):
139
- h = x
140
- h = self.norm1(h)
141
- h = self.swish(h)
142
- h = self.conv1(h)
143
-
144
- if temb is not None:
145
- h = h + self.temb_proj(self.swish(temb))[:,:,None,None]
146
-
147
- h = self.norm2(h)
148
- h = self.swish(h)
149
- h = self.dropout(h)
150
- h = self.conv2(h)
151
-
152
- if self.in_channels != self.out_channels:
153
- if self.use_conv_shortcut:
154
- x = self.conv_shortcut(x)
155
- else:
156
- x = self.nin_shortcut(x)
157
-
158
- return x+h
159
-
160
- def slice_attention(q, k, v):
161
- r1 = torch.zeros_like(k, device=q.device)
162
- scale = (int(q.shape[-1])**(-0.5))
163
-
164
- mem_free_total = model_management.get_free_memory(q.device)
165
-
166
- gb = 1024 ** 3
167
- tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
168
- modifier = 3 if q.element_size() == 2 else 2.5
169
- mem_required = tensor_size * modifier
170
- steps = 1
171
-
172
- if mem_required > mem_free_total:
173
- steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
174
-
175
- while True:
176
- try:
177
- slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
178
- for i in range(0, q.shape[1], slice_size):
179
- end = i + slice_size
180
- s1 = torch.bmm(q[:, i:end], k) * scale
181
-
182
- s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1)
183
- del s1
184
-
185
- r1[:, :, i:end] = torch.bmm(v, s2)
186
- del s2
187
- break
188
- except model_management.OOM_EXCEPTION as e:
189
- model_management.soft_empty_cache(True)
190
- steps *= 2
191
- if steps > 128:
192
- raise e
193
- print("out of memory error, increasing steps and trying again", steps)
194
-
195
- return r1
196
-
197
- def normal_attention(q, k, v):
198
- # compute attention
199
- b,c,h,w = q.shape
200
-
201
- q = q.reshape(b,c,h*w)
202
- q = q.permute(0,2,1) # b,hw,c
203
- k = k.reshape(b,c,h*w) # b,c,hw
204
- v = v.reshape(b,c,h*w)
205
-
206
- r1 = slice_attention(q, k, v)
207
- h_ = r1.reshape(b,c,h,w)
208
- del r1
209
- return h_
210
-
211
- def xformers_attention(q, k, v):
212
- # compute attention
213
- B, C, H, W = q.shape
214
- q, k, v = map(
215
- lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(),
216
- (q, k, v),
217
- )
218
-
219
- try:
220
- out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
221
- out = out.transpose(1, 2).reshape(B, C, H, W)
222
- except NotImplementedError as e:
223
- out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
224
- return out
225
-
226
- def pytorch_attention(q, k, v):
227
- # compute attention
228
- B, C, H, W = q.shape
229
- q, k, v = map(
230
- lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
231
- (q, k, v),
232
- )
233
-
234
- try:
235
- out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
236
- out = out.transpose(2, 3).reshape(B, C, H, W)
237
- except model_management.OOM_EXCEPTION as e:
238
- print("scaled_dot_product_attention OOMed: switched to slice attention")
239
- out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
240
- return out
241
-
242
-
243
- class AttnBlock(nn.Module):
244
- def __init__(self, in_channels):
245
- super().__init__()
246
- self.in_channels = in_channels
247
-
248
- self.norm = Normalize(in_channels)
249
- self.q = ops.Conv2d(in_channels,
250
- in_channels,
251
- kernel_size=1,
252
- stride=1,
253
- padding=0)
254
- self.k = ops.Conv2d(in_channels,
255
- in_channels,
256
- kernel_size=1,
257
- stride=1,
258
- padding=0)
259
- self.v = ops.Conv2d(in_channels,
260
- in_channels,
261
- kernel_size=1,
262
- stride=1,
263
- padding=0)
264
- self.proj_out = ops.Conv2d(in_channels,
265
- in_channels,
266
- kernel_size=1,
267
- stride=1,
268
- padding=0)
269
-
270
- if model_management.xformers_enabled_vae():
271
- print("Using xformers attention in VAE")
272
- self.optimized_attention = xformers_attention
273
- elif model_management.pytorch_attention_enabled():
274
- print("Using pytorch attention in VAE")
275
- self.optimized_attention = pytorch_attention
276
- else:
277
- print("Using split attention in VAE")
278
- self.optimized_attention = normal_attention
279
-
280
- def forward(self, x):
281
- h_ = x
282
- h_ = self.norm(h_)
283
- q = self.q(h_)
284
- k = self.k(h_)
285
- v = self.v(h_)
286
-
287
- h_ = self.optimized_attention(q, k, v)
288
-
289
- h_ = self.proj_out(h_)
290
-
291
- return x+h_
292
-
293
-
294
- def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
295
- return AttnBlock(in_channels)
296
-
297
-
298
- class Model(nn.Module):
299
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
300
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
301
- resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
302
- super().__init__()
303
- if use_linear_attn: attn_type = "linear"
304
- self.ch = ch
305
- self.temb_ch = self.ch*4
306
- self.num_resolutions = len(ch_mult)
307
- self.num_res_blocks = num_res_blocks
308
- self.resolution = resolution
309
- self.in_channels = in_channels
310
-
311
- self.use_timestep = use_timestep
312
- if self.use_timestep:
313
- # timestep embedding
314
- self.temb = nn.Module()
315
- self.temb.dense = nn.ModuleList([
316
- ops.Linear(self.ch,
317
- self.temb_ch),
318
- ops.Linear(self.temb_ch,
319
- self.temb_ch),
320
- ])
321
-
322
- # downsampling
323
- self.conv_in = ops.Conv2d(in_channels,
324
- self.ch,
325
- kernel_size=3,
326
- stride=1,
327
- padding=1)
328
-
329
- curr_res = resolution
330
- in_ch_mult = (1,)+tuple(ch_mult)
331
- self.down = nn.ModuleList()
332
- for i_level in range(self.num_resolutions):
333
- block = nn.ModuleList()
334
- attn = nn.ModuleList()
335
- block_in = ch*in_ch_mult[i_level]
336
- block_out = ch*ch_mult[i_level]
337
- for i_block in range(self.num_res_blocks):
338
- block.append(ResnetBlock(in_channels=block_in,
339
- out_channels=block_out,
340
- temb_channels=self.temb_ch,
341
- dropout=dropout))
342
- block_in = block_out
343
- if curr_res in attn_resolutions:
344
- attn.append(make_attn(block_in, attn_type=attn_type))
345
- down = nn.Module()
346
- down.block = block
347
- down.attn = attn
348
- if i_level != self.num_resolutions-1:
349
- down.downsample = Downsample(block_in, resamp_with_conv)
350
- curr_res = curr_res // 2
351
- self.down.append(down)
352
-
353
- # middle
354
- self.mid = nn.Module()
355
- self.mid.block_1 = ResnetBlock(in_channels=block_in,
356
- out_channels=block_in,
357
- temb_channels=self.temb_ch,
358
- dropout=dropout)
359
- self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
360
- self.mid.block_2 = ResnetBlock(in_channels=block_in,
361
- out_channels=block_in,
362
- temb_channels=self.temb_ch,
363
- dropout=dropout)
364
-
365
- # upsampling
366
- self.up = nn.ModuleList()
367
- for i_level in reversed(range(self.num_resolutions)):
368
- block = nn.ModuleList()
369
- attn = nn.ModuleList()
370
- block_out = ch*ch_mult[i_level]
371
- skip_in = ch*ch_mult[i_level]
372
- for i_block in range(self.num_res_blocks+1):
373
- if i_block == self.num_res_blocks:
374
- skip_in = ch*in_ch_mult[i_level]
375
- block.append(ResnetBlock(in_channels=block_in+skip_in,
376
- out_channels=block_out,
377
- temb_channels=self.temb_ch,
378
- dropout=dropout))
379
- block_in = block_out
380
- if curr_res in attn_resolutions:
381
- attn.append(make_attn(block_in, attn_type=attn_type))
382
- up = nn.Module()
383
- up.block = block
384
- up.attn = attn
385
- if i_level != 0:
386
- up.upsample = Upsample(block_in, resamp_with_conv)
387
- curr_res = curr_res * 2
388
- self.up.insert(0, up) # prepend to get consistent order
389
-
390
- # end
391
- self.norm_out = Normalize(block_in)
392
- self.conv_out = ops.Conv2d(block_in,
393
- out_ch,
394
- kernel_size=3,
395
- stride=1,
396
- padding=1)
397
-
398
- def forward(self, x, t=None, context=None):
399
- #assert x.shape[2] == x.shape[3] == self.resolution
400
- if context is not None:
401
- # assume aligned context, cat along channel axis
402
- x = torch.cat((x, context), dim=1)
403
- if self.use_timestep:
404
- # timestep embedding
405
- assert t is not None
406
- temb = get_timestep_embedding(t, self.ch)
407
- temb = self.temb.dense[0](temb)
408
- temb = nonlinearity(temb)
409
- temb = self.temb.dense[1](temb)
410
- else:
411
- temb = None
412
-
413
- # downsampling
414
- hs = [self.conv_in(x)]
415
- for i_level in range(self.num_resolutions):
416
- for i_block in range(self.num_res_blocks):
417
- h = self.down[i_level].block[i_block](hs[-1], temb)
418
- if len(self.down[i_level].attn) > 0:
419
- h = self.down[i_level].attn[i_block](h)
420
- hs.append(h)
421
- if i_level != self.num_resolutions-1:
422
- hs.append(self.down[i_level].downsample(hs[-1]))
423
-
424
- # middle
425
- h = hs[-1]
426
- h = self.mid.block_1(h, temb)
427
- h = self.mid.attn_1(h)
428
- h = self.mid.block_2(h, temb)
429
-
430
- # upsampling
431
- for i_level in reversed(range(self.num_resolutions)):
432
- for i_block in range(self.num_res_blocks+1):
433
- h = self.up[i_level].block[i_block](
434
- torch.cat([h, hs.pop()], dim=1), temb)
435
- if len(self.up[i_level].attn) > 0:
436
- h = self.up[i_level].attn[i_block](h)
437
- if i_level != 0:
438
- h = self.up[i_level].upsample(h)
439
-
440
- # end
441
- h = self.norm_out(h)
442
- h = nonlinearity(h)
443
- h = self.conv_out(h)
444
- return h
445
-
446
- def get_last_layer(self):
447
- return self.conv_out.weight
448
-
449
-
450
- class Encoder(nn.Module):
451
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
452
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
453
- resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
454
- **ignore_kwargs):
455
- super().__init__()
456
- if use_linear_attn: attn_type = "linear"
457
- self.ch = ch
458
- self.temb_ch = 0
459
- self.num_resolutions = len(ch_mult)
460
- self.num_res_blocks = num_res_blocks
461
- self.resolution = resolution
462
- self.in_channels = in_channels
463
-
464
- # downsampling
465
- self.conv_in = ops.Conv2d(in_channels,
466
- self.ch,
467
- kernel_size=3,
468
- stride=1,
469
- padding=1)
470
-
471
- curr_res = resolution
472
- in_ch_mult = (1,)+tuple(ch_mult)
473
- self.in_ch_mult = in_ch_mult
474
- self.down = nn.ModuleList()
475
- for i_level in range(self.num_resolutions):
476
- block = nn.ModuleList()
477
- attn = nn.ModuleList()
478
- block_in = ch*in_ch_mult[i_level]
479
- block_out = ch*ch_mult[i_level]
480
- for i_block in range(self.num_res_blocks):
481
- block.append(ResnetBlock(in_channels=block_in,
482
- out_channels=block_out,
483
- temb_channels=self.temb_ch,
484
- dropout=dropout))
485
- block_in = block_out
486
- if curr_res in attn_resolutions:
487
- attn.append(make_attn(block_in, attn_type=attn_type))
488
- down = nn.Module()
489
- down.block = block
490
- down.attn = attn
491
- if i_level != self.num_resolutions-1:
492
- down.downsample = Downsample(block_in, resamp_with_conv)
493
- curr_res = curr_res // 2
494
- self.down.append(down)
495
-
496
- # middle
497
- self.mid = nn.Module()
498
- self.mid.block_1 = ResnetBlock(in_channels=block_in,
499
- out_channels=block_in,
500
- temb_channels=self.temb_ch,
501
- dropout=dropout)
502
- self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
503
- self.mid.block_2 = ResnetBlock(in_channels=block_in,
504
- out_channels=block_in,
505
- temb_channels=self.temb_ch,
506
- dropout=dropout)
507
-
508
- # end
509
- self.norm_out = Normalize(block_in)
510
- self.conv_out = ops.Conv2d(block_in,
511
- 2*z_channels if double_z else z_channels,
512
- kernel_size=3,
513
- stride=1,
514
- padding=1)
515
-
516
- def forward(self, x):
517
- # timestep embedding
518
- temb = None
519
- # downsampling
520
- h = self.conv_in(x)
521
- for i_level in range(self.num_resolutions):
522
- for i_block in range(self.num_res_blocks):
523
- h = self.down[i_level].block[i_block](h, temb)
524
- if len(self.down[i_level].attn) > 0:
525
- h = self.down[i_level].attn[i_block](h)
526
- if i_level != self.num_resolutions-1:
527
- h = self.down[i_level].downsample(h)
528
-
529
- # middle
530
- h = self.mid.block_1(h, temb)
531
- h = self.mid.attn_1(h)
532
- h = self.mid.block_2(h, temb)
533
-
534
- # end
535
- h = self.norm_out(h)
536
- h = nonlinearity(h)
537
- h = self.conv_out(h)
538
- return h
539
-
540
-
541
- class Decoder(nn.Module):
542
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
543
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
544
- resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
545
- conv_out_op=ops.Conv2d,
546
- resnet_op=ResnetBlock,
547
- attn_op=AttnBlock,
548
- **ignorekwargs):
549
- super().__init__()
550
- if use_linear_attn: attn_type = "linear"
551
- self.ch = ch
552
- self.temb_ch = 0
553
- self.num_resolutions = len(ch_mult)
554
- self.num_res_blocks = num_res_blocks
555
- self.resolution = resolution
556
- self.in_channels = in_channels
557
- self.give_pre_end = give_pre_end
558
- self.tanh_out = tanh_out
559
-
560
- # compute in_ch_mult, block_in and curr_res at lowest res
561
- in_ch_mult = (1,)+tuple(ch_mult)
562
- block_in = ch*ch_mult[self.num_resolutions-1]
563
- curr_res = resolution // 2**(self.num_resolutions-1)
564
- self.z_shape = (1,z_channels,curr_res,curr_res)
565
- print("Working with z of shape {} = {} dimensions.".format(
566
- self.z_shape, np.prod(self.z_shape)))
567
-
568
- # z to block_in
569
- self.conv_in = ops.Conv2d(z_channels,
570
- block_in,
571
- kernel_size=3,
572
- stride=1,
573
- padding=1)
574
-
575
- # middle
576
- self.mid = nn.Module()
577
- self.mid.block_1 = resnet_op(in_channels=block_in,
578
- out_channels=block_in,
579
- temb_channels=self.temb_ch,
580
- dropout=dropout)
581
- self.mid.attn_1 = attn_op(block_in)
582
- self.mid.block_2 = resnet_op(in_channels=block_in,
583
- out_channels=block_in,
584
- temb_channels=self.temb_ch,
585
- dropout=dropout)
586
-
587
- # upsampling
588
- self.up = nn.ModuleList()
589
- for i_level in reversed(range(self.num_resolutions)):
590
- block = nn.ModuleList()
591
- attn = nn.ModuleList()
592
- block_out = ch*ch_mult[i_level]
593
- for i_block in range(self.num_res_blocks+1):
594
- block.append(resnet_op(in_channels=block_in,
595
- out_channels=block_out,
596
- temb_channels=self.temb_ch,
597
- dropout=dropout))
598
- block_in = block_out
599
- if curr_res in attn_resolutions:
600
- attn.append(attn_op(block_in))
601
- up = nn.Module()
602
- up.block = block
603
- up.attn = attn
604
- if i_level != 0:
605
- up.upsample = Upsample(block_in, resamp_with_conv)
606
- curr_res = curr_res * 2
607
- self.up.insert(0, up) # prepend to get consistent order
608
-
609
- # end
610
- self.norm_out = Normalize(block_in)
611
- self.conv_out = conv_out_op(block_in,
612
- out_ch,
613
- kernel_size=3,
614
- stride=1,
615
- padding=1)
616
-
617
- def forward(self, z, **kwargs):
618
- #assert z.shape[1:] == self.z_shape[1:]
619
- self.last_z_shape = z.shape
620
-
621
- # timestep embedding
622
- temb = None
623
-
624
- # z to block_in
625
- h = self.conv_in(z)
626
-
627
- # middle
628
- h = self.mid.block_1(h, temb, **kwargs)
629
- h = self.mid.attn_1(h, **kwargs)
630
- h = self.mid.block_2(h, temb, **kwargs)
631
-
632
- # upsampling
633
- for i_level in reversed(range(self.num_resolutions)):
634
- for i_block in range(self.num_res_blocks+1):
635
- h = self.up[i_level].block[i_block](h, temb, **kwargs)
636
- if len(self.up[i_level].attn) > 0:
637
- h = self.up[i_level].attn[i_block](h, **kwargs)
638
- if i_level != 0:
639
- h = self.up[i_level].upsample(h)
640
-
641
- # end
642
- if self.give_pre_end:
643
- return h
644
-
645
- h = self.norm_out(h)
646
- h = nonlinearity(h)
647
- h = self.conv_out(h, **kwargs)
648
- if self.tanh_out:
649
- h = torch.tanh(h)
650
- return h
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm_patched/ldm/modules/diffusionmodules/openaimodel.py DELETED
@@ -1,886 +0,0 @@
1
- from abc import abstractmethod
2
-
3
- import torch as th
4
- import torch.nn as nn
5
- import torch.nn.functional as F
6
- from einops import rearrange
7
-
8
- from .util import (
9
- checkpoint,
10
- avg_pool_nd,
11
- zero_module,
12
- timestep_embedding,
13
- AlphaBlender,
14
- )
15
- from ..attention import SpatialTransformer, SpatialVideoTransformer, default
16
- from ldm_patched.ldm.util import exists
17
- import ldm_patched.modules.ops
18
- ops = ldm_patched.modules.ops.disable_weight_init
19
-
20
- class TimestepBlock(nn.Module):
21
- """
22
- Any module where forward() takes timestep embeddings as a second argument.
23
- """
24
-
25
- @abstractmethod
26
- def forward(self, x, emb):
27
- """
28
- Apply the module to `x` given `emb` timestep embeddings.
29
- """
30
-
31
- #This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index"
32
- def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None, time_context=None, num_video_frames=None, image_only_indicator=None):
33
- for layer in ts:
34
- if isinstance(layer, VideoResBlock):
35
- x = layer(x, emb, num_video_frames, image_only_indicator)
36
- elif isinstance(layer, TimestepBlock):
37
- x = layer(x, emb)
38
- elif isinstance(layer, SpatialVideoTransformer):
39
- x = layer(x, context, time_context, num_video_frames, image_only_indicator, transformer_options)
40
- if "transformer_index" in transformer_options:
41
- transformer_options["transformer_index"] += 1
42
- elif isinstance(layer, SpatialTransformer):
43
- x = layer(x, context, transformer_options)
44
- if "transformer_index" in transformer_options:
45
- transformer_options["transformer_index"] += 1
46
- elif isinstance(layer, Upsample):
47
- x = layer(x, output_shape=output_shape)
48
- else:
49
- x = layer(x)
50
- return x
51
-
52
- class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
53
- """
54
- A sequential module that passes timestep embeddings to the children that
55
- support it as an extra input.
56
- """
57
-
58
- def forward(self, *args, **kwargs):
59
- return forward_timestep_embed(self, *args, **kwargs)
60
-
61
- class Upsample(nn.Module):
62
- """
63
- An upsampling layer with an optional convolution.
64
- :param channels: channels in the inputs and outputs.
65
- :param use_conv: a bool determining if a convolution is applied.
66
- :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
67
- upsampling occurs in the inner-two dimensions.
68
- """
69
-
70
- def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
71
- super().__init__()
72
- self.channels = channels
73
- self.out_channels = out_channels or channels
74
- self.use_conv = use_conv
75
- self.dims = dims
76
- if use_conv:
77
- self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device)
78
-
79
- def forward(self, x, output_shape=None):
80
- assert x.shape[1] == self.channels
81
- if self.dims == 3:
82
- shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2]
83
- if output_shape is not None:
84
- shape[1] = output_shape[3]
85
- shape[2] = output_shape[4]
86
- else:
87
- shape = [x.shape[2] * 2, x.shape[3] * 2]
88
- if output_shape is not None:
89
- shape[0] = output_shape[2]
90
- shape[1] = output_shape[3]
91
-
92
- x = F.interpolate(x, size=shape, mode="nearest")
93
- if self.use_conv:
94
- x = self.conv(x)
95
- return x
96
-
97
- class Downsample(nn.Module):
98
- """
99
- A downsampling layer with an optional convolution.
100
- :param channels: channels in the inputs and outputs.
101
- :param use_conv: a bool determining if a convolution is applied.
102
- :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
103
- downsampling occurs in the inner-two dimensions.
104
- """
105
-
106
- def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
107
- super().__init__()
108
- self.channels = channels
109
- self.out_channels = out_channels or channels
110
- self.use_conv = use_conv
111
- self.dims = dims
112
- stride = 2 if dims != 3 else (1, 2, 2)
113
- if use_conv:
114
- self.op = operations.conv_nd(
115
- dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device
116
- )
117
- else:
118
- assert self.channels == self.out_channels
119
- self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
120
-
121
- def forward(self, x):
122
- assert x.shape[1] == self.channels
123
- return self.op(x)
124
-
125
-
126
- class ResBlock(TimestepBlock):
127
- """
128
- A residual block that can optionally change the number of channels.
129
- :param channels: the number of input channels.
130
- :param emb_channels: the number of timestep embedding channels.
131
- :param dropout: the rate of dropout.
132
- :param out_channels: if specified, the number of out channels.
133
- :param use_conv: if True and out_channels is specified, use a spatial
134
- convolution instead of a smaller 1x1 convolution to change the
135
- channels in the skip connection.
136
- :param dims: determines if the signal is 1D, 2D, or 3D.
137
- :param use_checkpoint: if True, use gradient checkpointing on this module.
138
- :param up: if True, use this block for upsampling.
139
- :param down: if True, use this block for downsampling.
140
- """
141
-
142
- def __init__(
143
- self,
144
- channels,
145
- emb_channels,
146
- dropout,
147
- out_channels=None,
148
- use_conv=False,
149
- use_scale_shift_norm=False,
150
- dims=2,
151
- use_checkpoint=False,
152
- up=False,
153
- down=False,
154
- kernel_size=3,
155
- exchange_temb_dims=False,
156
- skip_t_emb=False,
157
- dtype=None,
158
- device=None,
159
- operations=ops
160
- ):
161
- super().__init__()
162
- self.channels = channels
163
- self.emb_channels = emb_channels
164
- self.dropout = dropout
165
- self.out_channels = out_channels or channels
166
- self.use_conv = use_conv
167
- self.use_checkpoint = use_checkpoint
168
- self.use_scale_shift_norm = use_scale_shift_norm
169
- self.exchange_temb_dims = exchange_temb_dims
170
-
171
- if isinstance(kernel_size, list):
172
- padding = [k // 2 for k in kernel_size]
173
- else:
174
- padding = kernel_size // 2
175
-
176
- self.in_layers = nn.Sequential(
177
- operations.GroupNorm(32, channels, dtype=dtype, device=device),
178
- nn.SiLU(),
179
- operations.conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device),
180
- )
181
-
182
- self.updown = up or down
183
-
184
- if up:
185
- self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
186
- self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
187
- elif down:
188
- self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
189
- self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
190
- else:
191
- self.h_upd = self.x_upd = nn.Identity()
192
-
193
- self.skip_t_emb = skip_t_emb
194
- if self.skip_t_emb:
195
- self.emb_layers = None
196
- self.exchange_temb_dims = False
197
- else:
198
- self.emb_layers = nn.Sequential(
199
- nn.SiLU(),
200
- operations.Linear(
201
- emb_channels,
202
- 2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device
203
- ),
204
- )
205
- self.out_layers = nn.Sequential(
206
- operations.GroupNorm(32, self.out_channels, dtype=dtype, device=device),
207
- nn.SiLU(),
208
- nn.Dropout(p=dropout),
209
- operations.conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device)
210
- ,
211
- )
212
-
213
- if self.out_channels == channels:
214
- self.skip_connection = nn.Identity()
215
- elif use_conv:
216
- self.skip_connection = operations.conv_nd(
217
- dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device
218
- )
219
- else:
220
- self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
221
-
222
- def forward(self, x, emb):
223
- """
224
- Apply the block to a Tensor, conditioned on a timestep embedding.
225
- :param x: an [N x C x ...] Tensor of features.
226
- :param emb: an [N x emb_channels] Tensor of timestep embeddings.
227
- :return: an [N x C x ...] Tensor of outputs.
228
- """
229
- return checkpoint(
230
- self._forward, (x, emb), self.parameters(), self.use_checkpoint
231
- )
232
-
233
-
234
- def _forward(self, x, emb):
235
- if self.updown:
236
- in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
237
- h = in_rest(x)
238
- h = self.h_upd(h)
239
- x = self.x_upd(x)
240
- h = in_conv(h)
241
- else:
242
- h = self.in_layers(x)
243
-
244
- emb_out = None
245
- if not self.skip_t_emb:
246
- emb_out = self.emb_layers(emb).type(h.dtype)
247
- while len(emb_out.shape) < len(h.shape):
248
- emb_out = emb_out[..., None]
249
- if self.use_scale_shift_norm:
250
- out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
251
- h = out_norm(h)
252
- if emb_out is not None:
253
- scale, shift = th.chunk(emb_out, 2, dim=1)
254
- h *= (1 + scale)
255
- h += shift
256
- h = out_rest(h)
257
- else:
258
- if emb_out is not None:
259
- if self.exchange_temb_dims:
260
- emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
261
- h = h + emb_out
262
- h = self.out_layers(h)
263
- return self.skip_connection(x) + h
264
-
265
-
266
- class VideoResBlock(ResBlock):
267
- def __init__(
268
- self,
269
- channels: int,
270
- emb_channels: int,
271
- dropout: float,
272
- video_kernel_size=3,
273
- merge_strategy: str = "fixed",
274
- merge_factor: float = 0.5,
275
- out_channels=None,
276
- use_conv: bool = False,
277
- use_scale_shift_norm: bool = False,
278
- dims: int = 2,
279
- use_checkpoint: bool = False,
280
- up: bool = False,
281
- down: bool = False,
282
- dtype=None,
283
- device=None,
284
- operations=ops
285
- ):
286
- super().__init__(
287
- channels,
288
- emb_channels,
289
- dropout,
290
- out_channels=out_channels,
291
- use_conv=use_conv,
292
- use_scale_shift_norm=use_scale_shift_norm,
293
- dims=dims,
294
- use_checkpoint=use_checkpoint,
295
- up=up,
296
- down=down,
297
- dtype=dtype,
298
- device=device,
299
- operations=operations
300
- )
301
-
302
- self.time_stack = ResBlock(
303
- default(out_channels, channels),
304
- emb_channels,
305
- dropout=dropout,
306
- dims=3,
307
- out_channels=default(out_channels, channels),
308
- use_scale_shift_norm=False,
309
- use_conv=False,
310
- up=False,
311
- down=False,
312
- kernel_size=video_kernel_size,
313
- use_checkpoint=use_checkpoint,
314
- exchange_temb_dims=True,
315
- dtype=dtype,
316
- device=device,
317
- operations=operations
318
- )
319
- self.time_mixer = AlphaBlender(
320
- alpha=merge_factor,
321
- merge_strategy=merge_strategy,
322
- rearrange_pattern="b t -> b 1 t 1 1",
323
- )
324
-
325
- def forward(
326
- self,
327
- x: th.Tensor,
328
- emb: th.Tensor,
329
- num_video_frames: int,
330
- image_only_indicator = None,
331
- ) -> th.Tensor:
332
- x = super().forward(x, emb)
333
-
334
- x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
335
- x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
336
-
337
- x = self.time_stack(
338
- x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames)
339
- )
340
- x = self.time_mixer(
341
- x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator
342
- )
343
- x = rearrange(x, "b c t h w -> (b t) c h w")
344
- return x
345
-
346
-
347
- class Timestep(nn.Module):
348
- def __init__(self, dim):
349
- super().__init__()
350
- self.dim = dim
351
-
352
- def forward(self, t):
353
- return timestep_embedding(t, self.dim)
354
-
355
- def apply_control(h, control, name):
356
- if control is not None and name in control and len(control[name]) > 0:
357
- ctrl = control[name].pop()
358
- if ctrl is not None:
359
- try:
360
- h += ctrl
361
- except:
362
- print("warning control could not be applied", h.shape, ctrl.shape)
363
- return h
364
-
365
- class UNetModel(nn.Module):
366
- """
367
- The full UNet model with attention and timestep embedding.
368
- :param in_channels: channels in the input Tensor.
369
- :param model_channels: base channel count for the model.
370
- :param out_channels: channels in the output Tensor.
371
- :param num_res_blocks: number of residual blocks per downsample.
372
- :param dropout: the dropout probability.
373
- :param channel_mult: channel multiplier for each level of the UNet.
374
- :param conv_resample: if True, use learned convolutions for upsampling and
375
- downsampling.
376
- :param dims: determines if the signal is 1D, 2D, or 3D.
377
- :param num_classes: if specified (as an int), then this model will be
378
- class-conditional with `num_classes` classes.
379
- :param use_checkpoint: use gradient checkpointing to reduce memory usage.
380
- :param num_heads: the number of attention heads in each attention layer.
381
- :param num_heads_channels: if specified, ignore num_heads and instead use
382
- a fixed channel width per attention head.
383
- :param num_heads_upsample: works with num_heads to set a different number
384
- of heads for upsampling. Deprecated.
385
- :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
386
- :param resblock_updown: use residual blocks for up/downsampling.
387
- :param use_new_attention_order: use a different attention pattern for potentially
388
- increased efficiency.
389
- """
390
-
391
- def __init__(
392
- self,
393
- image_size,
394
- in_channels,
395
- model_channels,
396
- out_channels,
397
- num_res_blocks,
398
- dropout=0,
399
- channel_mult=(1, 2, 4, 8),
400
- conv_resample=True,
401
- dims=2,
402
- num_classes=None,
403
- use_checkpoint=False,
404
- dtype=th.float32,
405
- num_heads=-1,
406
- num_head_channels=-1,
407
- num_heads_upsample=-1,
408
- use_scale_shift_norm=False,
409
- resblock_updown=False,
410
- use_new_attention_order=False,
411
- use_spatial_transformer=False, # custom transformer support
412
- transformer_depth=1, # custom transformer support
413
- context_dim=None, # custom transformer support
414
- n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
415
- legacy=True,
416
- disable_self_attentions=None,
417
- num_attention_blocks=None,
418
- disable_middle_self_attn=False,
419
- use_linear_in_transformer=False,
420
- adm_in_channels=None,
421
- transformer_depth_middle=None,
422
- transformer_depth_output=None,
423
- use_temporal_resblock=False,
424
- use_temporal_attention=False,
425
- time_context_dim=None,
426
- extra_ff_mix_layer=False,
427
- use_spatial_context=False,
428
- merge_strategy=None,
429
- merge_factor=0.0,
430
- video_kernel_size=None,
431
- disable_temporal_crossattention=False,
432
- max_ddpm_temb_period=10000,
433
- device=None,
434
- operations=ops,
435
- ):
436
- super().__init__()
437
-
438
- if context_dim is not None:
439
- assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
440
- # from omegaconf.listconfig import ListConfig
441
- # if type(context_dim) == ListConfig:
442
- # context_dim = list(context_dim)
443
-
444
- if num_heads_upsample == -1:
445
- num_heads_upsample = num_heads
446
-
447
- if num_heads == -1:
448
- assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
449
-
450
- if num_head_channels == -1:
451
- assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
452
-
453
- self.in_channels = in_channels
454
- self.model_channels = model_channels
455
- self.out_channels = out_channels
456
-
457
- if isinstance(num_res_blocks, int):
458
- self.num_res_blocks = len(channel_mult) * [num_res_blocks]
459
- else:
460
- if len(num_res_blocks) != len(channel_mult):
461
- raise ValueError("provide num_res_blocks either as an int (globally constant) or "
462
- "as a list/tuple (per-level) with the same length as channel_mult")
463
- self.num_res_blocks = num_res_blocks
464
-
465
- if disable_self_attentions is not None:
466
- # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
467
- assert len(disable_self_attentions) == len(channel_mult)
468
- if num_attention_blocks is not None:
469
- assert len(num_attention_blocks) == len(self.num_res_blocks)
470
-
471
- transformer_depth = transformer_depth[:]
472
- transformer_depth_output = transformer_depth_output[:]
473
-
474
- self.dropout = dropout
475
- self.channel_mult = channel_mult
476
- self.conv_resample = conv_resample
477
- self.num_classes = num_classes
478
- self.use_checkpoint = use_checkpoint
479
- self.dtype = dtype
480
- self.num_heads = num_heads
481
- self.num_head_channels = num_head_channels
482
- self.num_heads_upsample = num_heads_upsample
483
- self.use_temporal_resblocks = use_temporal_resblock
484
- self.predict_codebook_ids = n_embed is not None
485
-
486
- self.default_num_video_frames = None
487
- self.default_image_only_indicator = None
488
-
489
- time_embed_dim = model_channels * 4
490
- self.time_embed = nn.Sequential(
491
- operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
492
- nn.SiLU(),
493
- operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
494
- )
495
-
496
- if self.num_classes is not None:
497
- if isinstance(self.num_classes, int):
498
- self.label_emb = nn.Embedding(num_classes, time_embed_dim, dtype=self.dtype, device=device)
499
- elif self.num_classes == "continuous":
500
- print("setting up linear c_adm embedding layer")
501
- self.label_emb = nn.Linear(1, time_embed_dim)
502
- elif self.num_classes == "sequential":
503
- assert adm_in_channels is not None
504
- self.label_emb = nn.Sequential(
505
- nn.Sequential(
506
- operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
507
- nn.SiLU(),
508
- operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
509
- )
510
- )
511
- else:
512
- raise ValueError()
513
-
514
- self.input_blocks = nn.ModuleList(
515
- [
516
- TimestepEmbedSequential(
517
- operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
518
- )
519
- ]
520
- )
521
- self._feature_size = model_channels
522
- input_block_chans = [model_channels]
523
- ch = model_channels
524
- ds = 1
525
-
526
- def get_attention_layer(
527
- ch,
528
- num_heads,
529
- dim_head,
530
- depth=1,
531
- context_dim=None,
532
- use_checkpoint=False,
533
- disable_self_attn=False,
534
- ):
535
- if use_temporal_attention:
536
- return SpatialVideoTransformer(
537
- ch,
538
- num_heads,
539
- dim_head,
540
- depth=depth,
541
- context_dim=context_dim,
542
- time_context_dim=time_context_dim,
543
- dropout=dropout,
544
- ff_in=extra_ff_mix_layer,
545
- use_spatial_context=use_spatial_context,
546
- merge_strategy=merge_strategy,
547
- merge_factor=merge_factor,
548
- checkpoint=use_checkpoint,
549
- use_linear=use_linear_in_transformer,
550
- disable_self_attn=disable_self_attn,
551
- disable_temporal_crossattention=disable_temporal_crossattention,
552
- max_time_embed_period=max_ddpm_temb_period,
553
- dtype=self.dtype, device=device, operations=operations
554
- )
555
- else:
556
- return SpatialTransformer(
557
- ch, num_heads, dim_head, depth=depth, context_dim=context_dim,
558
- disable_self_attn=disable_self_attn, use_linear=use_linear_in_transformer,
559
- use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
560
- )
561
-
562
- def get_resblock(
563
- merge_factor,
564
- merge_strategy,
565
- video_kernel_size,
566
- ch,
567
- time_embed_dim,
568
- dropout,
569
- out_channels,
570
- dims,
571
- use_checkpoint,
572
- use_scale_shift_norm,
573
- down=False,
574
- up=False,
575
- dtype=None,
576
- device=None,
577
- operations=ops
578
- ):
579
- if self.use_temporal_resblocks:
580
- return VideoResBlock(
581
- merge_factor=merge_factor,
582
- merge_strategy=merge_strategy,
583
- video_kernel_size=video_kernel_size,
584
- channels=ch,
585
- emb_channels=time_embed_dim,
586
- dropout=dropout,
587
- out_channels=out_channels,
588
- dims=dims,
589
- use_checkpoint=use_checkpoint,
590
- use_scale_shift_norm=use_scale_shift_norm,
591
- down=down,
592
- up=up,
593
- dtype=dtype,
594
- device=device,
595
- operations=operations
596
- )
597
- else:
598
- return ResBlock(
599
- channels=ch,
600
- emb_channels=time_embed_dim,
601
- dropout=dropout,
602
- out_channels=out_channels,
603
- use_checkpoint=use_checkpoint,
604
- dims=dims,
605
- use_scale_shift_norm=use_scale_shift_norm,
606
- down=down,
607
- up=up,
608
- dtype=dtype,
609
- device=device,
610
- operations=operations
611
- )
612
-
613
- for level, mult in enumerate(channel_mult):
614
- for nr in range(self.num_res_blocks[level]):
615
- layers = [
616
- get_resblock(
617
- merge_factor=merge_factor,
618
- merge_strategy=merge_strategy,
619
- video_kernel_size=video_kernel_size,
620
- ch=ch,
621
- time_embed_dim=time_embed_dim,
622
- dropout=dropout,
623
- out_channels=mult * model_channels,
624
- dims=dims,
625
- use_checkpoint=use_checkpoint,
626
- use_scale_shift_norm=use_scale_shift_norm,
627
- dtype=self.dtype,
628
- device=device,
629
- operations=operations,
630
- )
631
- ]
632
- ch = mult * model_channels
633
- num_transformers = transformer_depth.pop(0)
634
- if num_transformers > 0:
635
- if num_head_channels == -1:
636
- dim_head = ch // num_heads
637
- else:
638
- num_heads = ch // num_head_channels
639
- dim_head = num_head_channels
640
- if legacy:
641
- #num_heads = 1
642
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
643
- if exists(disable_self_attentions):
644
- disabled_sa = disable_self_attentions[level]
645
- else:
646
- disabled_sa = False
647
-
648
- if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
649
- layers.append(get_attention_layer(
650
- ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
651
- disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint)
652
- )
653
- self.input_blocks.append(TimestepEmbedSequential(*layers))
654
- self._feature_size += ch
655
- input_block_chans.append(ch)
656
- if level != len(channel_mult) - 1:
657
- out_ch = ch
658
- self.input_blocks.append(
659
- TimestepEmbedSequential(
660
- get_resblock(
661
- merge_factor=merge_factor,
662
- merge_strategy=merge_strategy,
663
- video_kernel_size=video_kernel_size,
664
- ch=ch,
665
- time_embed_dim=time_embed_dim,
666
- dropout=dropout,
667
- out_channels=out_ch,
668
- dims=dims,
669
- use_checkpoint=use_checkpoint,
670
- use_scale_shift_norm=use_scale_shift_norm,
671
- down=True,
672
- dtype=self.dtype,
673
- device=device,
674
- operations=operations
675
- )
676
- if resblock_updown
677
- else Downsample(
678
- ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
679
- )
680
- )
681
- )
682
- ch = out_ch
683
- input_block_chans.append(ch)
684
- ds *= 2
685
- self._feature_size += ch
686
-
687
- if num_head_channels == -1:
688
- dim_head = ch // num_heads
689
- else:
690
- num_heads = ch // num_head_channels
691
- dim_head = num_head_channels
692
- if legacy:
693
- #num_heads = 1
694
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
695
- mid_block = [
696
- get_resblock(
697
- merge_factor=merge_factor,
698
- merge_strategy=merge_strategy,
699
- video_kernel_size=video_kernel_size,
700
- ch=ch,
701
- time_embed_dim=time_embed_dim,
702
- dropout=dropout,
703
- out_channels=None,
704
- dims=dims,
705
- use_checkpoint=use_checkpoint,
706
- use_scale_shift_norm=use_scale_shift_norm,
707
- dtype=self.dtype,
708
- device=device,
709
- operations=operations
710
- )]
711
- if transformer_depth_middle >= 0:
712
- mid_block += [get_attention_layer( # always uses a self-attn
713
- ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
714
- disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint
715
- ),
716
- get_resblock(
717
- merge_factor=merge_factor,
718
- merge_strategy=merge_strategy,
719
- video_kernel_size=video_kernel_size,
720
- ch=ch,
721
- time_embed_dim=time_embed_dim,
722
- dropout=dropout,
723
- out_channels=None,
724
- dims=dims,
725
- use_checkpoint=use_checkpoint,
726
- use_scale_shift_norm=use_scale_shift_norm,
727
- dtype=self.dtype,
728
- device=device,
729
- operations=operations
730
- )]
731
- self.middle_block = TimestepEmbedSequential(*mid_block)
732
- self._feature_size += ch
733
-
734
- self.output_blocks = nn.ModuleList([])
735
- for level, mult in list(enumerate(channel_mult))[::-1]:
736
- for i in range(self.num_res_blocks[level] + 1):
737
- ich = input_block_chans.pop()
738
- layers = [
739
- get_resblock(
740
- merge_factor=merge_factor,
741
- merge_strategy=merge_strategy,
742
- video_kernel_size=video_kernel_size,
743
- ch=ch + ich,
744
- time_embed_dim=time_embed_dim,
745
- dropout=dropout,
746
- out_channels=model_channels * mult,
747
- dims=dims,
748
- use_checkpoint=use_checkpoint,
749
- use_scale_shift_norm=use_scale_shift_norm,
750
- dtype=self.dtype,
751
- device=device,
752
- operations=operations
753
- )
754
- ]
755
- ch = model_channels * mult
756
- num_transformers = transformer_depth_output.pop()
757
- if num_transformers > 0:
758
- if num_head_channels == -1:
759
- dim_head = ch // num_heads
760
- else:
761
- num_heads = ch // num_head_channels
762
- dim_head = num_head_channels
763
- if legacy:
764
- #num_heads = 1
765
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
766
- if exists(disable_self_attentions):
767
- disabled_sa = disable_self_attentions[level]
768
- else:
769
- disabled_sa = False
770
-
771
- if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
772
- layers.append(
773
- get_attention_layer(
774
- ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
775
- disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint
776
- )
777
- )
778
- if level and i == self.num_res_blocks[level]:
779
- out_ch = ch
780
- layers.append(
781
- get_resblock(
782
- merge_factor=merge_factor,
783
- merge_strategy=merge_strategy,
784
- video_kernel_size=video_kernel_size,
785
- ch=ch,
786
- time_embed_dim=time_embed_dim,
787
- dropout=dropout,
788
- out_channels=out_ch,
789
- dims=dims,
790
- use_checkpoint=use_checkpoint,
791
- use_scale_shift_norm=use_scale_shift_norm,
792
- up=True,
793
- dtype=self.dtype,
794
- device=device,
795
- operations=operations
796
- )
797
- if resblock_updown
798
- else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations)
799
- )
800
- ds //= 2
801
- self.output_blocks.append(TimestepEmbedSequential(*layers))
802
- self._feature_size += ch
803
-
804
- self.out = nn.Sequential(
805
- operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
806
- nn.SiLU(),
807
- zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)),
808
- )
809
- if self.predict_codebook_ids:
810
- self.id_predictor = nn.Sequential(
811
- operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
812
- operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
813
- #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
814
- )
815
-
816
- def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
817
- """
818
- Apply the model to an input batch.
819
- :param x: an [N x C x ...] Tensor of inputs.
820
- :param timesteps: a 1-D batch of timesteps.
821
- :param context: conditioning plugged in via crossattn
822
- :param y: an [N] Tensor of labels, if class-conditional.
823
- :return: an [N x C x ...] Tensor of outputs.
824
- """
825
- transformer_options["original_shape"] = list(x.shape)
826
- transformer_options["transformer_index"] = 0
827
- transformer_patches = transformer_options.get("patches", {})
828
-
829
- num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames)
830
- image_only_indicator = kwargs.get("image_only_indicator", self.default_image_only_indicator)
831
- time_context = kwargs.get("time_context", None)
832
-
833
- assert (y is not None) == (
834
- self.num_classes is not None
835
- ), "must specify y if and only if the model is class-conditional"
836
- hs = []
837
- t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
838
- emb = self.time_embed(t_emb)
839
-
840
- if self.num_classes is not None:
841
- assert y.shape[0] == x.shape[0]
842
- emb = emb + self.label_emb(y)
843
-
844
- h = x
845
- for id, module in enumerate(self.input_blocks):
846
- transformer_options["block"] = ("input", id)
847
- h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
848
- h = apply_control(h, control, 'input')
849
- if "input_block_patch" in transformer_patches:
850
- patch = transformer_patches["input_block_patch"]
851
- for p in patch:
852
- h = p(h, transformer_options)
853
-
854
- hs.append(h)
855
- if "input_block_patch_after_skip" in transformer_patches:
856
- patch = transformer_patches["input_block_patch_after_skip"]
857
- for p in patch:
858
- h = p(h, transformer_options)
859
-
860
- transformer_options["block"] = ("middle", 0)
861
- h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
862
- h = apply_control(h, control, 'middle')
863
-
864
-
865
- for id, module in enumerate(self.output_blocks):
866
- transformer_options["block"] = ("output", id)
867
- hsp = hs.pop()
868
- hsp = apply_control(hsp, control, 'output')
869
-
870
- if "output_block_patch" in transformer_patches:
871
- patch = transformer_patches["output_block_patch"]
872
- for p in patch:
873
- h, hsp = p(h, hsp, transformer_options)
874
-
875
- h = th.cat([h, hsp], dim=1)
876
- del hsp
877
- if len(hs) > 0:
878
- output_shape = hs[-1].shape
879
- else:
880
- output_shape = None
881
- h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
882
- h = h.type(x.dtype)
883
- if self.predict_codebook_ids:
884
- return self.id_predictor(h)
885
- else:
886
- return self.out(h)