File size: 5,722 Bytes
80fac1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import requests
import pandas as pd
from plotly.subplots import make_subplots
import plotly
import plotly.graph_objects as go
from tqdm import tqdm
from datetime import datetime
import pytz
import json
import base64

plotly.io.defaults.default_height = 720
plotly.io.defaults.default_width = 1440

GITHUB_TOKEN = os.getenv("GITHUB_TOKEN")
OWNER = os.getenv("OWNER")
REPO = os.getenv("REPO")

HEADERS = {
    "Authorization": f"token {GITHUB_TOKEN}",
}

FILEPATH = "data/data.json"
FILEURL = f"https://api.github.com/repos/{OWNER}/{REPO}/contents/{FILEPATH}"

def uf(filepath, content):
    fileurl = f"https://api.github.com/repos/{OWNER}/{REPO}/contents/{filepath}"

    response = requests.get(fileurl, headers=HEADERS)
    is_update = response.status_code == 200
    res = response.json()
    sha = res["sha"] if is_update else None

    if is_update and content == res: return

    data = {
        "message": "Update" if is_update else "Upload",
        "content": base64.b64encode(
            content.encode() if isinstance(content, str) else content
        ).decode()
    }
    if is_update: data["sha"] = sha

    resp = requests.put(fileurl, headers=HEADERS, json=data)
    print("βœ… Upload success" if resp.ok else f"❌ Error: {resp.text}")

rf = lambda: base64.b64decode(response.json()['content']).decode() if (response := requests.get(FILEURL, headers=HEADERS)).status_code == 200 else "{}"

ir = lambda: json.loads(rf()) != {}

lhs = [7, 15, 30, 60, 90, 120, 240, 365, 1000, 1440]

header_fill_color = [
    "#d9d9d9",  # No - abu netral
    "#add8e6",  # Tgl Beli - biru muda (tanggal = waktu)
    "#9be7a3",  # Harga Beli/g - hijau terang (uang masuk)
    "#fdd9a0",  # Berat - oranye terang (fisik)
    "#f4b6c2",  # Modal - merah muda (biaya awal)
    "#87cefa",  # Tgl Jual - biru langit (tanggal = waktu)
    "#b2fab4",  # Harga Jual/g - hijau pastel (uang keluar / potensi untung)
    "#fff5ba",  # Nilai Jual - kuning pastel (nilai total)
    "#ffadc1",  # Profit/Loss - merah muda (untung/rugi)
]

cells_fill_color = [
    "#eeeeee",  # No - abu netral lebih lembut
    "#e6f2ff",  # Tgl Beli
    "#d5fbe3",  # Harga Beli/g
    "#ffecd9",  # Berat
    "#ffe0e8",  # Modal
    "#e0f2ff",  # Tgl Jual
    "#dcfce7",  # Harga Jual/g
    "#fff9db",  # Nilai Jual
    "#ffe6ef",  # Profit/Loss
]

data = None
data_dir = "data"
data_path = os.path.join(data_dir, "data.json")
os.makedirs(data_dir, exist_ok=True)

makeslcy = lambda x: -0.575 - (7 - x) * (0.575 / 7) * 5

def ambil_data_emas():
    data_is_ready = ir() # os.path.exists(data_path)
    data_is_change = False
    later_day = False
    jam_sudah_cukup = False

    if data_is_ready:
        # with open(data_path, "r") as f: data = json.load(f)
        data = json.loads(rf())

        # Ambil tanggal terakhir dari lastUpdate
        last_updates = [pd.to_datetime(d["lastUpdate"]) for d in data["data"]["priceList"]]
        last_update_date = max(last_updates)

        # Waktu sekarang
        now = datetime.now()

        # Periksa apakah tanggal hari ini lebih baru dari tanggal terakhir
        later_day = now.date() > last_update_date.date()

        # Periksa apakah jam sudah lewat dari jam 11 pagi
        jam_sudah_cukup = now.hour >= 11

    data_is_change = (later_day and jam_sudah_cukup) or not data_is_ready
    print("data_is_change", data_is_change)

    # Jika belum ada data, atau sudah lewat tanggal dan cukup jam
    if data_is_change:
        url = f"https://sahabat.pegadaian.co.id/gold/prices/chart?interval={max(lhs)}&isRequest=true"
        response = requests.get(url)
        if response.status_code != 200:
            raise Exception("Gagal mengambil data harga dari Pegadaian.")

        data = response.json()
        
        uf(FILEPATH, json.dumps(data, indent=4))
        with open(data_path, "w") as f:
            json.dump(data, f, indent=4)

    return data

fred = {
    60: "D",
    90: "2D",
    180: "3D",
    360: "4D",
    480: "5D",
    1000: "3W",
    2500: "6W",
    "Default": "9W"
}

frek = list(fred.keys())
frev = list(fred.values())

default_hari = 90

def get_freq(lama_hari):
    if len(frek) !=len(frev):
        raise Exception("Len Frek !=Len Frev")
    
    freq = frev[-1]
    for i in range(len(frek)):
        if frek[i] !=frek[-1] and lama_hari <=int(frek[i]) and lama_hari >=int(frek[i-1] if frek[i-1] !=frek[-1] else 0):
            freq = frev[i]
            break

    return freq

# Data pembelian
tanggal_beli = [
    pd.Timestamp(d) for d in [
        # "2025-04-10",
        "2025-04-14",
        "2025-06-04",
        "2025-06-08",
        "2025-06-10"
    ]
]
berat_gram = [
    # 1,
    0.0101,
    1.0817,
    0.2182,
    0.0816,
]
uang_awal = [
    # 1_671_000,
    18_648,
    2_000_000,
    400_000,
    150_000,
]
harga_beli_dan_jual_pada_saat_membeli = [
    [1_863_000, 1_797_000], [1_834_000, 1_769_000], [1_840_000, 1_775_000]
]
harga_beli_dan_jual_saat_ini = [1_840_000, 1_775_000]

tglf = lambda tgl: pd.to_datetime(tgl, format='%Y-%m-%d %H:%M:%S')

cwta = [2.5, 6.6, 11.75, 7, 10, 6.6, 12.5, 16.6, 11]

misy = "-"

data = ambil_data_emas()

# Ambil timestamp string dari data
timestamp_utc = data["timestamp"]

# Parsing ISO format ke datetime object (timezone-aware UTC)
dt_utc = datetime.fromisoformat(timestamp_utc.replace("Z", "+00:00"))

# Konversi ke zona waktu WIB (UTC+7)
wib = pytz.timezone("Asia/Jakarta")
dt_wib = dt_utc.astimezone(wib)

# Format menjadi string lokal
timestamp_lokal = dt_wib.strftime("%d %B %Y, %H:%M WIB")