import gradio as gr from transformers import GPT2LMHeadModel, GPT2Tokenizer # Load pre-trained model and tokenizer model_name = "gpt2" # You can use other models like gpt-2-large or gpt-3 for better performance model = GPT2LMHeadModel.from_pretrained(model_name) tokenizer = GPT2Tokenizer.from_pretrained(model_name) # Function to generate keywords based on a prompt def generate_keywords(prompt): # Encode input prompt with a more direct instruction for only keywords prompt_with_instruction = prompt + " Only provide a list of keywords, no additional text." inputs = tokenizer.encode(prompt_with_instruction, return_tensors="pt") # Generate output from model outputs = model.generate(inputs, max_length=50, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95) # Decode generated tokens generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) # Clean up the text to remove unnecessary parts # Remove anything after 'Only provide a list of keywords' clean_text = generated_text.split("Only provide a list of keywords")[0].strip() # Return the keywords only return clean_text # Gradio interface iface = gr.Interface(fn=generate_keywords, inputs=gr.Textbox(label="Enter Ad Prompt", placeholder="E.g., Generate ad keywords for wireless headphones"), outputs=gr.Textbox(label="Generated Keywords"), live=True) # Launch interface iface.launch()