File size: 6,671 Bytes
aabd712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da3e61e
a98d34a
30b04a4
3da3c9d
 
 
 
 
908cfbb
 
 
 
 
 
 
 
3da3c9d
 
 
 
3e5c391
 
 
b4f85fa
d2237c6
b1ca521
3da3c9d
d2237c6
3e5c391
3da3c9d
3e5c391
 
 
 
 
f9a0d06
3da3c9d
3e5c391
92f3382
 
3da3c9d
 
 
 
 
9cd4fcb
3da3c9d
 
 
 
 
 
 
 
 
3e5c391
f9a0d06
aabd712
3e5c391
 
03dc344
 
9cd4fcb
 
 
 
03dc344
 
9cd4fcb
 
 
 
7c06ed6
 
 
03dc344
 
 
7c06ed6
03dc344
7c06ed6
 
03dc344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aabd712
3e5c391
aabd712
 
 
3e5c391
a98d34a
3da3c9d
aabd712
03dc344
aabd712
3da3c9d
da3e61e
 
3e5c391
aabd712
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# import gradio as gr
# import os
# from acrcloud.recognizer import ACRCloudRecognizer
# import tempfile
# import shutil
# import json

# # Retrieve ACRCloud credentials from environment variables
# acr_access_key = os.environ.get('ACR_ACCESS_KEY')
# acr_access_secret = os.environ.get('ACR_ACCESS_SECRET')
# acr_host = 'identify-ap-southeast-1.acrcloud.com' # os.environ.get('ACR_HOST', 'eu-west-1.api.acrcloud.com')

# # ACRCloud recognizer configuration
# config = {
#     'host': acr_host,
#     'access_key': acr_access_key,
#     'access_secret': acr_access_secret,
#     'timeout': 10  # seconds
# }

# # Initialize ACRCloud recognizer
# acr = ACRCloudRecognizer(config)

# def identify_audio(file):
#     # Gradio provides a file object, and file.name contains the path
#     file_path = file.name  # Gradio file object already provides a file path

#     # Get the duration of the audio file in milliseconds
#     duration_ms = int(acr.get_duration_ms_by_file(file_path))

#     results = []

#     # Full recognition result
#     full_result = acr.recognize_by_file(file_path, 0)
#     full_result_dict = json.loads(full_result)
    
#     music = full_result_dict['metadata']['music'][0]

#     # Spotify link
#     spotify_track_id = music['external_metadata']['spotify']['track']['id']
#     spotify_link = f"https://open.spotify.com/track/{spotify_track_id}"

#     # Deezer link
#     deezer_track_id = music['external_metadata']['deezer']['track']['id']
#     deezer_link = f"https://www.deezer.com/track/{deezer_track_id}"

#     # Final markdown result
#     result_md = f"""
#     ### **Full Result**:
#     - **Track**: {music['title']}
#     - **Artist**: {music['artists'][0]['name']}
#     - **Album**: {music['album']['name']}
#     - **Release Date**: {music['release_date']}
#     - **Score**: {music['score']}%
#     - **Download Link**:
#     - [Listen on Spotify]({spotify_link})
#     - [Listen on Deezer]({deezer_link})
#     """

#     return gr.Markdown(result_md)

# # Create Gradio interface
# iface = gr.Interface(
#     fn=identify_audio,
#     inputs=gr.File(label="Upload Audio or Video File"),
#     outputs=gr.Markdown(label="Audio Metadata"),
#     title="Audio Search by File (Support Audio or Video File)",
#     description="Upload an audio or video file to identify it using ACRCloud."
# )

# # Launch the Gradio interface
# iface.launch()

import requests
import gradio as gr
import os
import json
import ffmpeg

# Function to convert video to audio using ffmpeg
def convert_video_to_audio(video_path):
    try:
        # Ensure the directory exists
        output_dir = "flowly_ai_audio_converter"
        os.makedirs(output_dir, exist_ok=True)
        
        # Correctly construct the output file path
        output_path = os.path.join(output_dir, os.path.splitext(os.path.basename(video_path))[0] + ".mp3")
        
        # Run ffmpeg conversion
        ffmpeg.input(video_path).output(output_path).run()
        return output_path
    except Exception as e:
        return f"Error converting video: {str(e)}"

# Function to recognize audio from URL or uploaded file
def recognize_audio(choice, url, file):
    api_url = os.getenv("API_URL", "https://api.audd.io/").strip('"')
    params = {
        "return": "apple_music,spotify",
        "api_token": os.getenv("API_TOKEN")
    }

    # Check if URL is provided
    if choice == "URL":
        if not url:
            return "Please enter a valid URL."
        params['url'] = url
        response = requests.post(api_url, data=params)

    # Check if file is uploaded
    elif choice == "Upload File":
        if not file:
            return "Please upload a valid audio file."

        # Check if the uploaded file is a video (e.g., mp4)
        file_extension = file.split('.')[-1].lower()
        audio_file_path = file

        video_formats = ['3gp', 'asf', 'avi', 'divx', 'flv', 'm2ts', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'mts', 'ts', 'vob', 'webm', 'wmv', 'xvid']

        if file_extension in video_formats:
            # Convert video to audio file (mp3 format)
            audio_file_path = convert_video_to_audio(file)
            if audio_file_path.startswith("Error"):
                return audio_file_path

        # If it's already an audio file, use it as is
        with open(audio_file_path, "rb") as f:
            response = requests.post(api_url, data=params, files={'file': f})

    else:
        return "Please select a method (URL or Upload File)."

    # Parse the response into a structured format
    try:
        if response.status_code != 200:
            return f"Error: Received unexpected status code {response.status_code}"

        # Try to parse the response as JSON
        data = response.json()

        # Check if the response is valid
        if not data:
            return "Error: No data received from the API."

        # Check if there's an error in the response
        if data.get("status") == "error":
            error_message = data.get("error", {}).get("error_message", "Unknown error.")
            return f"""
### Song recognition failed
{error_message}
            """
        
        result = data.get('result', {})

        artist = result.get('artist', 'Unknown Artist')
        title = result.get('title', 'Unknown Title')
        album = result.get('album', 'Unknown Album')
        release_date = result.get('release_date', 'Unknown Date')
        song_link = result.get('song_link', '')
        apple_music_link = result.get('apple_music', {}).get('url', '')
        spotify_link = result.get('spotify', {}).get('external_urls', {}).get('spotify', '')

        markdown_output = f"""
### Song Recognition Result
- **Title**: {title}
- **Artist**: {artist}
- **Album**: {album}
- **Release Date**: {release_date}

[Listen on Apple Music]({apple_music_link})
[Listen on Spotify]({spotify_link})

#### Song Link:
[Click here to listen]({song_link})
        """
        return markdown_output

    except Exception as e:
        return f"Error parsing response: {str(e)}"

# Gradio Interface
interface = gr.Interface(
    fn=recognize_audio,
    inputs=[
        gr.Radio(["URL", "Upload File"], label="Select Input Method"),
        gr.Textbox(label="Enter Audio URL", placeholder="https://example.com/audio.mp3"),
        gr.File(label="Upload Audio or Video File", type="filepath")  # Menggunakan filepath agar sesuai dengan Gradio
    ],
    outputs=gr.Markdown(label="Recognition Result"),
    title="Audio Recognition",
    description="Choose a method: Upload an audio/video file or enter a URL to identify the song."
)

# Run Gradio App
if __name__ == "__main__":
    interface.launch()