Spaces:
Running
Running
File size: 3,338 Bytes
aabd712 da3e61e aabd712 1ca9b39 aabd712 da3e61e aabd712 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
# import gradio as gr
# import os
# from acrcloud.recognizer import ACRCloudRecognizer
# import tempfile
# import shutil
# import json
# # Retrieve ACRCloud credentials from environment variables
# acr_access_key = os.environ.get('ACR_ACCESS_KEY')
# acr_access_secret = os.environ.get('ACR_ACCESS_SECRET')
# acr_host = 'identify-ap-southeast-1.acrcloud.com' # os.environ.get('ACR_HOST', 'eu-west-1.api.acrcloud.com')
# # ACRCloud recognizer configuration
# config = {
# 'host': acr_host,
# 'access_key': acr_access_key,
# 'access_secret': acr_access_secret,
# 'timeout': 10 # seconds
# }
# # Initialize ACRCloud recognizer
# acr = ACRCloudRecognizer(config)
# def identify_audio(file):
# # Gradio provides a file object, and file.name contains the path
# file_path = file.name # Gradio file object already provides a file path
# # Get the duration of the audio file in milliseconds
# duration_ms = int(acr.get_duration_ms_by_file(file_path))
# results = []
# # Full recognition result
# full_result = acr.recognize_by_file(file_path, 0)
# full_result_dict = json.loads(full_result)
# music = full_result_dict['metadata']['music'][0]
# # Spotify link
# spotify_track_id = music['external_metadata']['spotify']['track']['id']
# spotify_link = f"https://open.spotify.com/track/{spotify_track_id}"
# # Deezer link
# deezer_track_id = music['external_metadata']['deezer']['track']['id']
# deezer_link = f"https://www.deezer.com/track/{deezer_track_id}"
# # Final markdown result
# result_md = f"""
# ### **Full Result**:
# - **Track**: {music['title']}
# - **Artist**: {music['artists'][0]['name']}
# - **Album**: {music['album']['name']}
# - **Release Date**: {music['release_date']}
# - **Score**: {music['score']}%
# - **Download Link**:
# - [Listen on Spotify]({spotify_link})
# - [Listen on Deezer]({deezer_link})
# """
# return gr.Markdown(result_md)
# # Create Gradio interface
# iface = gr.Interface(
# fn=identify_audio,
# inputs=gr.File(label="Upload Audio or Video File"),
# outputs=gr.Markdown(label="Audio Metadata"),
# title="Audio Search by File (Support Audio or Video File)",
# description="Upload an audio or video file to identify it using ACRCloud."
# )
# # Launch the Gradio interface
# iface.launch()
import requests
import gradio as gr
def recognize_audio(url, file):
api_url = os.environ.get('API_URL')
api_token = os.environ.get('API_TOKEN')
data = os.environ.get('DATA')
if url:
data['url'] = url
elif file:
files = {'file': (file.name, open(file.name, 'rb'))}
result = requests.post(api_url, data=data, files=files)
return result.text
else:
return "Silakan masukkan URL atau unggah file audio."
result = requests.post(api_url, data=data)
return result.text
interface = gr.Interface(
fn=recognize_audio,
inputs=[
gr.Textbox(label="Masukkan URL Audio", placeholder="https://example.com/audio.mp3"),
gr.File(label="Unggah File Audio")
],
outputs=gr.Textbox(label="Hasil Pengenalan"),
title="Audio Recognition",
description="Upload audio/video or enter a URL to identify."
)
if __name__ == "__main__":
interface.launch()
|