Spaces:
Running
Running
import gradio as gr | |
import os | |
from acrcloud.recognizer import ACRCloudRecognizer | |
import tempfile | |
import shutil | |
import json | |
# Retrieve ACRCloud credentials from environment variables | |
acr_access_key = os.environ.get('ACR_ACCESS_KEY') | |
acr_access_secret = os.environ.get('ACR_ACCESS_SECRET') | |
acr_host = 'identify-ap-southeast-1.acrcloud.com' # os.environ.get('ACR_HOST', 'eu-west-1.api.acrcloud.com') | |
# ACRCloud recognizer configuration | |
config = { | |
'host': acr_host, | |
'access_key': acr_access_key, | |
'access_secret': acr_access_secret, | |
'timeout': 10 # seconds | |
} | |
# Initialize ACRCloud recognizer | |
acr = ACRCloudRecognizer(config) | |
def identify_audio(file): | |
# Gradio provides a file object, and file.name contains the path | |
file_path = file.name # Gradio file object already provides a file path | |
# Get the duration of the audio file in milliseconds | |
duration_ms = int(acr.get_duration_ms_by_file(file_path)) | |
results = [] | |
# Process audio in 10-second chunks | |
for i in range(0, duration_ms // 1000, 10): | |
res = acr.recognize_by_file(file_path, i, 10) | |
results.append(f"**Time {i}s**: {res.strip()}") | |
# Full recognition result | |
full_result = acr.recognize_by_file(file_path, 0) | |
# Recognize using file buffer | |
with open(file_path, 'rb') as f: | |
buf = f.read() | |
buffer_result = acr.recognize_by_filebuffer(buf, 0) | |
# Convert JSON results to dictionary | |
full_result_dict = json.loads(full_result) | |
buffer_result_dict = json.loads(buffer_result) | |
# Format the results as markdown | |
result_md = f""" | |
### **Partial Results**: | |
{'\n'.join(results)} | |
### **Full Result**: | |
- **Track**: {full_result_dict['metadata']['music'][0]['title']} | |
- **Artist**: {full_result_dict['metadata']['music'][0]['artists'][0]['name']} | |
- **Album**: {full_result_dict['metadata']['music'][0]['album']['name']} | |
- **Release Date**: {full_result_dict['metadata']['music'][0]['release_date']} | |
- **Score**: {full_result_dict['metadata']['music'][0]['score']}% | |
### **Buffer Result**: | |
- **Track**: {buffer_result_dict['metadata']['music'][0]['title']} | |
- **Artist**: {buffer_result_dict['metadata']['music'][0]['artists'][0]['name']} | |
- **Album**: {buffer_result_dict['metadata']['music'][0]['album']['name']} | |
- **Release Date**: {buffer_result_dict['metadata']['music'][0]['release_date']} | |
- **Score**: {buffer_result_dict['metadata']['music'][0]['score']}% | |
""" | |
return gr.Markdown(result_md) | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=identify_audio, | |
inputs=gr.File(label="Upload Audio File"), | |
outputs=gr.Markdown(label="Audio Metadata"), | |
title="Audio Search by File", | |
description="Upload an audio file to identify it using ACRCloud." | |
) | |
# Launch the Gradio interface | |
iface.launch() | |