|
import gradio as gr |
|
from PIL import Image |
|
import torch |
|
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer |
|
|
|
|
|
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
|
|
def generate_caption(image): |
|
|
|
if image is None: |
|
return "No image provided." |
|
|
|
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device) |
|
|
|
output_ids = model.generate(pixel_values, max_length=16, num_beams=4) |
|
caption = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip() |
|
return caption |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Image Captioning with Gradio") |
|
with gr.Row(): |
|
upload_input = gr.Image(sources=["upload", "webcam", "clipboard"], type="pil", label="Upload Image") |
|
output_text = gr.Textbox(label="Caption", interactive=False) |
|
generate_btn = gr.Button("Generate Caption") |
|
generate_btn.click( |
|
fn=generate_caption, |
|
inputs=upload_input, |
|
outputs=output_text |
|
) |
|
|
|
demo.launch() |
|
|