Spaces:
Sleeping
Sleeping
Muhammad Adnan
commited on
Commit
·
b7013d9
1
Parent(s):
6356586
Add application file
Browse files- app.py +170 -0
- requirements.txt +15 -0
app.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
import pdfplumber
|
4 |
+
import logging
|
5 |
+
import pandas as pd
|
6 |
+
import docx
|
7 |
+
import pickle
|
8 |
+
import os
|
9 |
+
from hashlib import sha256
|
10 |
+
|
11 |
+
# Set up logging
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
# Initialize QA pipeline with a pre-trained RoBERTa QA model
|
16 |
+
@st.cache_resource
|
17 |
+
def init_qa_model():
|
18 |
+
try:
|
19 |
+
logger.info("Initializing QA model...")
|
20 |
+
qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
21 |
+
logger.info("QA model loaded successfully.")
|
22 |
+
return qa_pipeline
|
23 |
+
except Exception as e:
|
24 |
+
logger.error(f"Error loading QA model: {e}")
|
25 |
+
st.error(f"Error loading the QA model: {e}")
|
26 |
+
return None
|
27 |
+
|
28 |
+
# Function to extract text from PDF
|
29 |
+
def extract_text_from_pdf(pdf_file):
|
30 |
+
try:
|
31 |
+
with pdfplumber.open(pdf_file) as pdf:
|
32 |
+
text = ''
|
33 |
+
for page in pdf.pages:
|
34 |
+
page_text = page.extract_text()
|
35 |
+
if page_text:
|
36 |
+
text += page_text
|
37 |
+
return text or "No text found in the PDF."
|
38 |
+
except Exception as e:
|
39 |
+
logger.error(f"Error extracting text from PDF: {e}")
|
40 |
+
return "Error extracting text from PDF."
|
41 |
+
|
42 |
+
# Function to extract text from TXT files
|
43 |
+
def extract_text_from_txt(txt_file):
|
44 |
+
try:
|
45 |
+
return txt_file.getvalue().decode("utf-8") or "No text found in the TXT file."
|
46 |
+
except Exception as e:
|
47 |
+
logger.error(f"Error extracting text from TXT file: {e}")
|
48 |
+
return "Error extracting text from TXT file."
|
49 |
+
|
50 |
+
# Function to extract text from CSV files
|
51 |
+
def extract_text_from_csv(csv_file):
|
52 |
+
try:
|
53 |
+
df = pd.read_csv(csv_file)
|
54 |
+
return df.to_string(index=False) or "No text found in the CSV file."
|
55 |
+
except Exception as e:
|
56 |
+
logger.error(f"Error extracting text from CSV file: {e}")
|
57 |
+
return "Error extracting text from CSV file."
|
58 |
+
|
59 |
+
# Function to extract text from DOCX files
|
60 |
+
def extract_text_from_docx(docx_file):
|
61 |
+
try:
|
62 |
+
doc = docx.Document(docx_file)
|
63 |
+
return "\n".join([para.text for para in doc.paragraphs]) or "No text found in the DOCX file."
|
64 |
+
except Exception as e:
|
65 |
+
logger.error(f"Error extracting text from DOCX file: {e}")
|
66 |
+
return "Error extracting text from DOCX file."
|
67 |
+
|
68 |
+
# Function to create a unique cache key for the document
|
69 |
+
def generate_cache_key(text):
|
70 |
+
return sha256(text.encode('utf-8')).hexdigest()
|
71 |
+
|
72 |
+
# Function to cache embeddings
|
73 |
+
def cache_embeddings(embeddings, cache_key):
|
74 |
+
try:
|
75 |
+
cache_path = f"embeddings_cache/{cache_key}.pkl"
|
76 |
+
if not os.path.exists('../embeddings_cache'):
|
77 |
+
os.makedirs('../embeddings_cache')
|
78 |
+
with open(cache_path, 'wb') as f:
|
79 |
+
pickle.dump(embeddings, f)
|
80 |
+
logger.info(f"Embeddings cached successfully with key {cache_key}")
|
81 |
+
except Exception as e:
|
82 |
+
logger.error(f"Error caching embeddings: {e}")
|
83 |
+
|
84 |
+
# Function to load cached embeddings
|
85 |
+
def load_cached_embeddings(cache_key):
|
86 |
+
try:
|
87 |
+
cache_path = f"embeddings_cache/{cache_key}.pkl"
|
88 |
+
if os.path.exists(cache_path):
|
89 |
+
with open(cache_path, 'rb') as f:
|
90 |
+
embeddings = pickle.load(f)
|
91 |
+
logger.info(f"Embeddings loaded from cache with key {cache_key}")
|
92 |
+
return embeddings
|
93 |
+
return None
|
94 |
+
except Exception as e:
|
95 |
+
logger.error(f"Error loading cached embeddings: {e}")
|
96 |
+
return None
|
97 |
+
|
98 |
+
# Main function for the app
|
99 |
+
def main():
|
100 |
+
st.title("Adnan AI Labs QA System")
|
101 |
+
st.markdown("Upload documents (PDF, TXT, CSV, or DOCX) or add context manually, and ask questions.")
|
102 |
+
|
103 |
+
uploaded_files = st.file_uploader("Upload Documents", type=["pdf", "txt", "csv", "docx"], accept_multiple_files=True)
|
104 |
+
extracted_text_box = st.text_area("Manually add extra context for answering questions", height=200)
|
105 |
+
|
106 |
+
# Initialize QA model
|
107 |
+
qa_pipeline = init_qa_model()
|
108 |
+
document_texts = []
|
109 |
+
|
110 |
+
# Extract text from each uploaded file
|
111 |
+
if uploaded_files:
|
112 |
+
for uploaded_file in uploaded_files:
|
113 |
+
if uploaded_file.type == "application/pdf":
|
114 |
+
document_texts.append(extract_text_from_pdf(uploaded_file))
|
115 |
+
elif uploaded_file.type == "text/plain":
|
116 |
+
document_texts.append(extract_text_from_txt(uploaded_file))
|
117 |
+
elif uploaded_file.type in ["application/vnd.ms-excel", "text/csv"]:
|
118 |
+
document_texts.append(extract_text_from_csv(uploaded_file))
|
119 |
+
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
|
120 |
+
document_texts.append(extract_text_from_docx(uploaded_file))
|
121 |
+
|
122 |
+
# Combine all extracted texts and manual context
|
123 |
+
combined_context = "\n".join(document_texts) + "\n" + extracted_text_box
|
124 |
+
|
125 |
+
# Check if any content is available to answer questions
|
126 |
+
user_question = st.text_input("Ask a question:")
|
127 |
+
if user_question and combined_context.strip():
|
128 |
+
if st.button("Get Answer"):
|
129 |
+
with st.spinner('Processing your question...'):
|
130 |
+
# Generate a unique cache key for the combined context
|
131 |
+
cache_key = generate_cache_key(combined_context)
|
132 |
+
|
133 |
+
# Check for cached embeddings
|
134 |
+
cached_embeddings = load_cached_embeddings(cache_key)
|
135 |
+
if cached_embeddings is None:
|
136 |
+
# Process document embeddings if not cached
|
137 |
+
logger.info("Generating new embeddings...")
|
138 |
+
# embeddings = model.encode(combined_context)
|
139 |
+
cache_embeddings(cached_embeddings, cache_key) # Cache the embeddings
|
140 |
+
|
141 |
+
# Use the QA pipeline to answer the question
|
142 |
+
answer = qa_pipeline(question=user_question, context=combined_context)
|
143 |
+
if answer['answer']:
|
144 |
+
st.write("Answer:", answer['answer'])
|
145 |
+
else:
|
146 |
+
st.warning("No suitable answer found. Please rephrase your question.")
|
147 |
+
else:
|
148 |
+
if not user_question:
|
149 |
+
st.info("Please enter a question to get an answer.")
|
150 |
+
elif not combined_context.strip():
|
151 |
+
st.info("Please upload a document or add context manually.")
|
152 |
+
|
153 |
+
# Display Buy Me a Coffee button
|
154 |
+
|
155 |
+
|
156 |
+
st.markdown("""
|
157 |
+
<div style="text-align: center;">
|
158 |
+
<p>If you find this project useful, consider buying me a coffee to support further development! ☕️</p>
|
159 |
+
<a href="https://buymeacoffee.com/adnanailabs">
|
160 |
+
<img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me a Coffee" style="height: 50px;">
|
161 |
+
</a>
|
162 |
+
</div>
|
163 |
+
""", unsafe_allow_html=True)
|
164 |
+
|
165 |
+
if __name__ == "__main__":
|
166 |
+
try:
|
167 |
+
main()
|
168 |
+
except Exception as e:
|
169 |
+
logger.critical(f"Critical error: {e}")
|
170 |
+
st.error(f"A critical error occurred: {e}")
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface-hub==0.26.2
|
2 |
+
sentence-transformers==3.2.1
|
3 |
+
torch==2.5.1
|
4 |
+
transformers==4.46.2
|
5 |
+
streamlit==1.40.0
|
6 |
+
scikit-learn==1.5.2
|
7 |
+
spacy==3.8.2
|
8 |
+
requests==2.32.3
|
9 |
+
numpy==2.0.2
|
10 |
+
pandas==2.2.3
|
11 |
+
pydantic==2.9.2
|
12 |
+
beautifulsoup4==4.12.3
|
13 |
+
|
14 |
+
# spaCy language model
|
15 |
+
https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.8.0/en_core_web_sm-3.8.0.tar.gz
|