import streamlit as st import pandas as pd import torch from transformers import TapexTokenizer, BartForConditionalGeneration import xml.etree.ElementTree as ET from io import StringIO import logging from datetime import datetime import time # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) @st.cache_resource def load_model(): """ Load and cache the TAPEX model and tokenizer using Streamlit's caching """ try: tokenizer = TapexTokenizer.from_pretrained( "microsoft/tapex-large-finetuned-wtq", model_max_length=1024 ) model = BartForConditionalGeneration.from_pretrained( "microsoft/tapex-large-finetuned-wtq" ) device = 'cuda' if torch.cuda.is_available() else 'cpu' model = model.to(device) model.eval() return tokenizer, model except Exception as e: st.error(f"Error loading model: {str(e)}") return None, None def parse_xml_to_dataframe(xml_string: str): """ Parse XML string to DataFrame with error handling """ try: tree = ET.parse(StringIO(xml_string)) root = tree.getroot() data = [] columns = set() # First pass: collect all possible columns for record in root.findall('.//record'): columns.update(elem.tag for elem in record) # Second pass: create data rows for record in root.findall('.//record'): row_data = {col: None for col in columns} for elem in record: row_data[elem.tag] = elem.text data.append(row_data) df = pd.DataFrame(data) # Convert numeric columns (automatically detect) for col in df.columns: try: df[col] = pd.to_numeric(df[col]) except: continue return df, None except Exception as e: return None, f"Error parsing XML: {str(e)}" def process_query(tokenizer, model, df, query: str): """ Process a single query using the TAPEX model """ try: start_time = time.time() # Handle direct DataFrame operations for common queries query_lower = query.lower() if "highest" in query_lower or "maximum" in query_lower: for col in df.select_dtypes(include=['number']).columns: if col.lower() in query_lower: return df.loc[df[col].idxmax()].to_dict() elif "average" in query_lower or "mean" in query_lower: for col in df.select_dtypes(include=['number']).columns: if col.lower() in query_lower: return f"Average {col}: {df[col].mean():.2f}" elif "total" in query_lower or "sum" in query_lower: for col in df.select_dtypes(include=['number']).columns: if col.lower() in query_lower: return f"Total {col}: {df[col].sum():.2f}" # Use TAPEX for more complex queries with torch.no_grad(): encoding = tokenizer( table=df.astype(str), query=query, return_tensors="pt", padding=True, truncation=True ) outputs = model.generate(**encoding) answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] processing_time = time.time() - start_time return f"Answer: {answer} (Processing time: {processing_time:.2f}s)" except Exception as e: return f"Error processing query: {str(e)}" def main(): st.title("XML Data Query System") st.write("Upload your XML data and ask questions about it!") # Initialize session state for XML input and query if not exists if 'xml_input' not in st.session_state: st.session_state.xml_input = "" if 'current_query' not in st.session_state: st.session_state.current_query = "" # Load model with st.spinner("Loading TAPEX model... (this may take a few moments)"): tokenizer, model = load_model() if tokenizer is None or model is None: st.error("Failed to load the model. Please refresh the page.") return # XML Input xml_input = st.text_area( "Enter your XML data here:", value=st.session_state.xml_input, height=200, help="Paste your XML data here. Make sure it's properly formatted." ) # Sample XML button if st.button("Load Sample XML"): st.session_state.xml_input = """ Apple 365.7 147000 2021 Microsoft 168.1 181000 2021 Amazon 386.1 1608000 2021 """ st.rerun() if xml_input: df, error = parse_xml_to_dataframe(xml_input) if error: st.error(error) else: st.success("XML parsed successfully!") # Display DataFrame st.subheader("Parsed Data:") st.dataframe(df) # Query input query = st.text_input( "Enter your question about the data:", value=st.session_state.current_query, help="Example: 'Which company has the highest revenue?'" ) # Process query if query: with st.spinner("Processing query..."): result = process_query(tokenizer, model, df, query) st.write(result) # Sample queries st.subheader("Sample Questions (Click to use):") sample_queries = [ "Which company has the highest revenue?", "What is the average revenue of all companies?", "How many employees does Microsoft have?", "Which company has the most employees?", "What is the total revenue of all companies?" ] # Create columns for sample query buttons cols = st.columns(len(sample_queries)) for idx, (col, sample_query) in enumerate(zip(cols, sample_queries)): with col: if st.button(f"Query {idx + 1}", help=sample_query, key=f"query_btn_{idx}"): st.session_state.current_query = sample_query st.rerun() # Display the sample queries as text for reference with st.expander("View all sample questions"): for idx, query in enumerate(sample_queries, 1): st.write(f"{idx}. {query}") if __name__ == "__main__": main()