File size: 19,348 Bytes
842c593
 
 
 
 
 
 
 
 
004db5f
842c593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
004db5f
842c593
004db5f
842c593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
004db5f
842c593
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import xml.etree.ElementTree as ET
import pandas as pd
import json
import gradio as gr


def get_clients_from_xml(xml_file):
    """Extract all clients from XML file and return a list of tuples (id, name)"""
    try:
        tree = ET.parse(xml_file.name)  
        root = tree.getroot()

        clients = []
        for client in root.findall(".//client"):
            client_id = client.get("id")
            nom = client.get("nom") if client.get("nom") is not None else ""
            prenom = client.get("prenom") if client.get("prenom") is not None else ""
            clients.append((client_id, f"{prenom} {nom} (ID: {client_id})"))

        return clients
    except Exception as e:
        print(e)
        return []


def client_to_json(xml_file, client_id):
    tree = ET.parse(xml_file)
    root = tree.getroot()

    # Find the specific client
    client = root.find(f".//client[@id='{client_id}']")
    if client is None:
        return json.dumps({"error": f"Client ID {client_id} not found"})

    def element_to_dict(element):
        result = {}

        # Add attributes
        if element.attrib:
            result.update(element.attrib)

        # Add text content if it exists and isn't empty
        if element.text and element.text.strip():
            result["_text"] = element.text.strip()

        # Process child elements
        for child in element:
            child_data = element_to_dict(child)

            if child.tag in result:
                # If the key already exists, convert it to a list if it isn't already
                if not isinstance(result[child.tag], list):
                    result[child.tag] = [result[child.tag]]
                result[child.tag].append(child_data)
            else:
                result[child.tag] = child_data

        return result

    # Convert client data to dictionary
    client_data = element_to_dict(client)

    # Convert to JSON with pretty printing
    return json.dumps(client_data, indent=2, ensure_ascii=False)


def display_nested_json(json_data):
    # If input is a string, parse it to dict
    if isinstance(json_data, str):
        data = json.loads(json_data)
    else:
        data = json_data

    # 1. Basic Client Information
    basic_info = pd.DataFrame(
        [
            {
                "ID": data.get("id"),
                "Nom": data.get("nom"),
                "Prénom": data.get("prenom"),
                "Civilité": data.get("civilite"),
                "Date Creation": data.get("date_creation"),
            }
        ]
    )

    # 2. Accounts Table
    accounts_df = extract_accounts(data)

    # 3. Contact Information
    contacts_df = extract_contacts(data)

    # 4. Real Estate (Immobilier) Information
    immobilier_df = extract_immobilier(data)

    # 5. Patrimoine Information
    patrimoine_df = extract_patrimoine(data)

    # 6. Budget Information
    budget_df = extract_budget(data)

    return {
        "basic_info": basic_info,
        "accounts": accounts_df,
        "contacts": contacts_df,
        "immobilier": immobilier_df,
        "patrimoine": patrimoine_df,
        "budget": budget_df,
    }


def extract_accounts(data):
    if "comptes" in data and "compte" in data["comptes"]:
        accounts = data["comptes"]["compte"]
        if isinstance(accounts, dict):
            accounts = [accounts]

        accounts_data = []
        for account in accounts:
            situations = account.get("situations", {})
            situation_data = situations.get("situation", [])

            if isinstance(situation_data, dict):
                situation_data = [situation_data]

            for situation in situation_data:
                row = {
                    "Account ID": account.get("id"),
                    "Account Name": account.get("intitule"),
                    "Opening Date": account.get("date_ouverture"),
                    "Valuation Date": situations.get("date_valorisation"),
                    "Valuation Type": situations.get("type_valorisation"),
                    "Support ID": situation.get("support_id"),
                    "Quantity": situation.get("quantite"),
                    "Price": situation.get("cours"),
                    "Value (EUR)": situation.get("valeur_euro"),
                    "Weight (%)": situation.get("poids_ligne"),
                    "PMV (EUR)": situation.get("pmv_euro"),
                    "PMV (%)": situation.get("pmv_pourcentage"),
                }
                accounts_data.append(row)

        accounts_df = pd.DataFrame(accounts_data)

        numeric_columns = [
            "Quantity",
            "Price",
            "Value (EUR)",
            "Weight (%)",
            "PMV (EUR)",
            "PMV (%)",
        ]
        for col in numeric_columns:
            if col in accounts_df.columns:
                try:
                    accounts_df[col] = pd.to_numeric(accounts_df[col])
                except ValueError:
                    print(f"Warning: Could not convert column {col} to numeric.")

    else:
        accounts_df = pd.DataFrame()

    return accounts_df


def extract_contacts(data):
    if "modes_contacts" in data:
        contacts = data["modes_contacts"]
        contacts_df = pd.DataFrame(
            [
                {
                    "Email": contacts.get("email_personnel"),
                    "Mobile": contacts.get("telephone_mobile"),
                }
            ]
        )
    else:
        contacts_df = pd.DataFrame()

    return contacts_df


def extract_immobilier(data):
    if "immobiliers" in data and "immobilier" in data["immobiliers"]:
        immobilier = data["immobiliers"]["immobilier"]
        if isinstance(immobilier, dict):
            immobilier = [immobilier]

        immobilier_data = []
        for item in immobilier:
            row = {
                "ID": item.get("id"),
                "Designation": item.get("designation"),
                "Address": item.get("adresse", {}).get("adresse"),
                "City": item.get("adresse", {}).get("ville"),
                "Postal Code": item.get("adresse", {}).get("code_postal"),
                "Country": item.get("adresse", {}).get("pays"),
                "Value": item.get("valeur", {}).get("totale"),
                "Revenues": item.get("revenus", {}).get("montant"),
                "Charges": item.get("charges", {}).get("montant"),
            }
            immobilier_data.append(row)

        immobilier_df = pd.DataFrame(immobilier_data)
    else:
        immobilier_df = pd.DataFrame()

    return immobilier_df


def extract_patrimoine(data):
    patrimoine_data = {"actifs": pd.DataFrame(), "passifs": pd.DataFrame()}

    if "patrimoine" in data:
        # Extract Actifs
        if "actifs" in data["patrimoine"]:
            actifs_items = data["patrimoine"]["actifs"].get("actif", [])
            if isinstance(actifs_items, dict):
                actifs_items = [actifs_items]

            if actifs_items:
                actifs_data = []
                for item in actifs_items:
                    row = {
                        "UUID": item.get("uuid"),
                        "Libellé": item.get("libelle"),
                        "Patrimoine ID": item.get("patrimoine_id"),
                        "Montant (EUR)": item.get("montant_euro"),
                        "Système": item.get("system_origine"),
                        "Détenteur": item.get("detention", {}).get("detenteur"),
                        "Mode": item.get("detention", {}).get("mode"),
                    }

                    # Extract external references
                    ref_externes = item.get("ref_externes", {}).get("ref_externe", [])
                    if isinstance(ref_externes, dict):
                        ref_externes = [ref_externes]
                    if ref_externes:
                        systems = [ref.get("system") for ref in ref_externes]
                        row["Systèmes Externes"] = ", ".join(filter(None, systems))

                    actifs_data.append(row)

                actifs_df = pd.DataFrame(actifs_data)
                if "Montant (EUR)" in actifs_df.columns:
                    try:
                        actifs_df["Montant (EUR)"] = pd.to_numeric(
                            actifs_df["Montant (EUR)"]
                        )
                    except ValueError:
                        print(
                            "Warning: Could not convert some actifs montants to numeric"
                        )
                patrimoine_data["actifs"] = actifs_df

        # Extract Passifs
        if "passifs" in data["patrimoine"]:
            passifs_items = data["patrimoine"]["passifs"].get("passif", [])
            if isinstance(passifs_items, dict):
                passifs_items = [passifs_items]

            if passifs_items:
                passifs_data = []
                for item in passifs_items:
                    row = {
                        "UUID": item.get("uuid"),
                        "Libellé": item.get("libelle"),
                        "Patrimoine ID": item.get("patrimoine_id"),
                        "Système": item.get("system_origine"),
                        "Souscripteur": item.get("souscripteur"),
                        "Périodicité": item.get("periodicite"),
                        "Taux HA": item.get("caracteristiques", {}).get("taux_HA"),
                        "Assurance Taux": item.get("assurance", {}).get("taux"),
                        "Capital Restant Dû (EUR)": item.get(
                            "capital_restant_du", {}
                        ).get("montant_euro"),
                        "Date Capital Restant Dû": item.get(
                            "capital_restant_du", {}
                        ).get("date"),
                    }

                    # Extract external references
                    ref_externes = item.get("ref_externes", {}).get("ref_externe", [])
                    if isinstance(ref_externes, dict):
                        ref_externes = [ref_externes]
                    if ref_externes:
                        systems = [ref.get("system") for ref in ref_externes]
                        row["Systèmes Externes"] = ", ".join(filter(None, systems))

                    passifs_data.append(row)

                passifs_df = pd.DataFrame(passifs_data)
                if "Capital Restant Dû (EUR)" in passifs_df.columns:
                    try:
                        passifs_df["Capital Restant Dû (EUR)"] = pd.to_numeric(
                            passifs_df["Capital Restant Dû (EUR)"]
                        )
                    except ValueError:
                        print(
                            "Warning: Could not convert some passifs capital restant dû to numeric"
                        )
                patrimoine_data["passifs"] = passifs_df

    return patrimoine_data


def extract_budget(data):
    budget_data = {"revenus": pd.DataFrame(), "charges": pd.DataFrame()}

    if "budget" in data:
        # Extract Revenus
        if "revenus" in data["budget"]:
            revenus_items = data["budget"]["revenus"].get("revenu", [])
            if isinstance(revenus_items, dict):
                revenus_items = [revenus_items]

            if revenus_items:
                revenus_data = []
                for item in revenus_items:
                    row = {
                        "ID": item.get("id"),
                        "Budget ID": item.get("budget_id"),
                        "Libellé": item.get("libelle"),
                        "Montant (EUR)": item.get("montant_euro"),
                        "Périodicité": item.get("periodicite"),
                        "Bénéficiaire": item.get("beneficiaire"),
                        "UUID": item.get("uuid"),
                        "Système": item.get("system_origine"),
                        "Date Terme": item.get("date_terme", ""),
                    }

                    # Extract external references if needed
                    ref_externes = item.get("ref_externes", {}).get("ref_externe", [])
                    if isinstance(ref_externes, dict):
                        ref_externes = [ref_externes]
                    if ref_externes:
                        systems = [ref.get("system") for ref in ref_externes]
                        row["Systèmes Externes"] = ", ".join(filter(None, systems))

                    revenus_data.append(row)

                revenus_df = pd.DataFrame(revenus_data)
                if "Montant (EUR)" in revenus_df.columns:
                    try:
                        revenus_df["Montant (EUR)"] = pd.to_numeric(
                            revenus_df["Montant (EUR)"]
                        )
                    except ValueError:
                        print(
                            "Warning: Could not convert some revenus montants to numeric"
                        )
                budget_data["revenus"] = revenus_df

        # Extract Charges
        if "charges" in data["budget"]:
            charges_items = data["budget"]["charges"].get("charge", [])
            if isinstance(charges_items, dict):
                charges_items = [charges_items]

            if charges_items:
                charges_data = []
                for item in charges_items:
                    row = {
                        "ID": item.get("id"),
                        "Budget ID": item.get("budget_id"),
                        "Libellé": item.get("libelle"),
                        "Montant (EUR)": item.get("montant_euro"),
                        "Périodicité": item.get("periodicite"),
                        "Débiteur": item.get("debiteur"),
                        "UUID": item.get("uuid"),
                        "Système": item.get("system_origine"),
                    }

                    # Extract external references if needed
                    ref_externes = item.get("ref_externes", {}).get("ref_externe", [])
                    if isinstance(ref_externes, dict):
                        ref_externes = [ref_externes]
                    if ref_externes:
                        systems = [ref.get("system") for ref in ref_externes]
                        row["Systèmes Externes"] = ", ".join(filter(None, systems))

                    charges_data.append(row)

                charges_df = pd.DataFrame(charges_data)
                if "Montant (EUR)" in charges_df.columns:
                    try:
                        charges_df["Montant (EUR)"] = pd.to_numeric(
                            charges_df["Montant (EUR)"]
                        )
                    except ValueError:
                        print(
                            "Warning: Could not convert some charges montants to numeric"
                        )
                budget_data["charges"] = charges_df

    return budget_data


def format_client_info(xml_file, client_id):
    # Get JSON data using your previous function
    json_data = client_to_json(xml_file, client_id)
    tables = display_nested_json(json_data)

    pd.set_option("display.max_columns", None)
    pd.set_option("display.width", None)
    pd.set_option(
        "display.float_format",
        lambda x: "{:.2f}".format(x) if isinstance(x, (float, int)) else x,
    )

    # Return DataFrames directly instead of string representations
    outputs = []

    # Basic Info
    outputs.append(gr.Markdown("## Client Basic Information"))
    outputs.append(tables["basic_info"])

    # Contacts
    outputs.append(gr.Markdown("## Contacts Client"))
    outputs.append(tables["contacts"])

    # Accounts
    outputs.append(gr.Markdown("## Accounts and Positions"))
    outputs.append(
        tables["accounts"]
        if not tables["accounts"].empty
        else pd.DataFrame({"Message": ["No accounts found"]})
    )

    # Patrimoine - Actifs
    outputs.append(gr.Markdown("## Patrimoine"))
    outputs.append(gr.Markdown("### Actifs"))
    outputs.append(
        tables["patrimoine"]["actifs"]
        if not tables["patrimoine"]["actifs"].empty
        else pd.DataFrame({"Message": ["No actifs found"]})
    )

    # Patrimoine - Passifs
    outputs.append(gr.Markdown("### Passifs"))
    outputs.append(
        tables["patrimoine"]["passifs"]
        if not tables["patrimoine"]["passifs"].empty
        else pd.DataFrame({"Message": ["No passifs found"]})
    )

    # Budget - Revenus
    outputs.append(gr.Markdown("## Budget"))
    outputs.append(gr.Markdown("### Revenus"))
    outputs.append(
        tables["budget"]["revenus"]
        if not tables["budget"]["revenus"].empty
        else pd.DataFrame({"Message": ["No revenus found"]})
    )

    # Budget - Charges
    outputs.append(gr.Markdown("### Charges"))
    outputs.append(
        tables["budget"]["charges"]
        if not tables["budget"]["charges"].empty
        else pd.DataFrame({"Message": ["No charges found"]})
    )

    return outputs


# Create Gradio interface
with gr.Blocks(title="Client Information Viewer") as demo:
    gr.Markdown("# Client Information Viewer")
    gr.Markdown(
        "Upload an XML file and select a client to view their detailed information"
    )

    xml_file = gr.File(label="Upload XML File", file_types=[".xml"])
    client_dropdown = gr.Dropdown(label="Select Client", choices=[], interactive=True)
    view_btn = gr.Button("View Client Info", interactive=False)

    # Create output containers for each section
    basic_info_header = gr.Markdown()
    basic_info_df = gr.DataFrame()

    contacts_header = gr.Markdown()
    contacts_df = gr.DataFrame()

    accounts_header = gr.Markdown()
    accounts_df = gr.DataFrame()

    actifs_header = gr.Markdown()
    actifs_subheader = gr.Markdown()
    actifs_df = gr.DataFrame()

    passifs_subheader = gr.Markdown()
    passifs_df = gr.DataFrame()

    revenus_header = gr.Markdown()
    revenus_subheader = gr.Markdown()
    revenus_df = gr.DataFrame()

    charges_subheader = gr.Markdown()
    charges_df = gr.DataFrame()

    # Combine all outputs in order
    output_dfs = [
        basic_info_header,
        basic_info_df,
        contacts_header,
        contacts_df,
        accounts_header,
        accounts_df,
        actifs_header,
        actifs_subheader,
        actifs_df,
        passifs_subheader,
        passifs_df,
        revenus_header,
        revenus_subheader,
        revenus_df,
        charges_subheader,
        charges_df,
    ]

    # Update dropdown when file is uploaded
    def update_dropdown(file):
        if file is None:
            return gr.Dropdown(choices=[], value=None, interactive=False), gr.Button(
                interactive=False
            )
        clients = get_clients_from_xml(file)
        choices = [(name, id) for id, name in clients]
        return gr.Dropdown(choices=choices, interactive=True), gr.Button(
            interactive=True
        )

    xml_file.change(
        fn=update_dropdown, inputs=[xml_file], outputs=[client_dropdown, view_btn]
    )

    # View client info when button is clicked
    view_btn.click(
        fn=format_client_info,
        inputs=[xml_file, client_dropdown],
        outputs=output_dfs,
    )

if __name__ == "__main__":
    demo.launch(server_port=7860, share=True)