Spaces:
Sleeping
Sleeping
File size: 19,348 Bytes
842c593 004db5f 842c593 004db5f 842c593 004db5f 842c593 004db5f 842c593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
import xml.etree.ElementTree as ET
import pandas as pd
import json
import gradio as gr
def get_clients_from_xml(xml_file):
"""Extract all clients from XML file and return a list of tuples (id, name)"""
try:
tree = ET.parse(xml_file.name)
root = tree.getroot()
clients = []
for client in root.findall(".//client"):
client_id = client.get("id")
nom = client.get("nom") if client.get("nom") is not None else ""
prenom = client.get("prenom") if client.get("prenom") is not None else ""
clients.append((client_id, f"{prenom} {nom} (ID: {client_id})"))
return clients
except Exception as e:
print(e)
return []
def client_to_json(xml_file, client_id):
tree = ET.parse(xml_file)
root = tree.getroot()
# Find the specific client
client = root.find(f".//client[@id='{client_id}']")
if client is None:
return json.dumps({"error": f"Client ID {client_id} not found"})
def element_to_dict(element):
result = {}
# Add attributes
if element.attrib:
result.update(element.attrib)
# Add text content if it exists and isn't empty
if element.text and element.text.strip():
result["_text"] = element.text.strip()
# Process child elements
for child in element:
child_data = element_to_dict(child)
if child.tag in result:
# If the key already exists, convert it to a list if it isn't already
if not isinstance(result[child.tag], list):
result[child.tag] = [result[child.tag]]
result[child.tag].append(child_data)
else:
result[child.tag] = child_data
return result
# Convert client data to dictionary
client_data = element_to_dict(client)
# Convert to JSON with pretty printing
return json.dumps(client_data, indent=2, ensure_ascii=False)
def display_nested_json(json_data):
# If input is a string, parse it to dict
if isinstance(json_data, str):
data = json.loads(json_data)
else:
data = json_data
# 1. Basic Client Information
basic_info = pd.DataFrame(
[
{
"ID": data.get("id"),
"Nom": data.get("nom"),
"Prénom": data.get("prenom"),
"Civilité": data.get("civilite"),
"Date Creation": data.get("date_creation"),
}
]
)
# 2. Accounts Table
accounts_df = extract_accounts(data)
# 3. Contact Information
contacts_df = extract_contacts(data)
# 4. Real Estate (Immobilier) Information
immobilier_df = extract_immobilier(data)
# 5. Patrimoine Information
patrimoine_df = extract_patrimoine(data)
# 6. Budget Information
budget_df = extract_budget(data)
return {
"basic_info": basic_info,
"accounts": accounts_df,
"contacts": contacts_df,
"immobilier": immobilier_df,
"patrimoine": patrimoine_df,
"budget": budget_df,
}
def extract_accounts(data):
if "comptes" in data and "compte" in data["comptes"]:
accounts = data["comptes"]["compte"]
if isinstance(accounts, dict):
accounts = [accounts]
accounts_data = []
for account in accounts:
situations = account.get("situations", {})
situation_data = situations.get("situation", [])
if isinstance(situation_data, dict):
situation_data = [situation_data]
for situation in situation_data:
row = {
"Account ID": account.get("id"),
"Account Name": account.get("intitule"),
"Opening Date": account.get("date_ouverture"),
"Valuation Date": situations.get("date_valorisation"),
"Valuation Type": situations.get("type_valorisation"),
"Support ID": situation.get("support_id"),
"Quantity": situation.get("quantite"),
"Price": situation.get("cours"),
"Value (EUR)": situation.get("valeur_euro"),
"Weight (%)": situation.get("poids_ligne"),
"PMV (EUR)": situation.get("pmv_euro"),
"PMV (%)": situation.get("pmv_pourcentage"),
}
accounts_data.append(row)
accounts_df = pd.DataFrame(accounts_data)
numeric_columns = [
"Quantity",
"Price",
"Value (EUR)",
"Weight (%)",
"PMV (EUR)",
"PMV (%)",
]
for col in numeric_columns:
if col in accounts_df.columns:
try:
accounts_df[col] = pd.to_numeric(accounts_df[col])
except ValueError:
print(f"Warning: Could not convert column {col} to numeric.")
else:
accounts_df = pd.DataFrame()
return accounts_df
def extract_contacts(data):
if "modes_contacts" in data:
contacts = data["modes_contacts"]
contacts_df = pd.DataFrame(
[
{
"Email": contacts.get("email_personnel"),
"Mobile": contacts.get("telephone_mobile"),
}
]
)
else:
contacts_df = pd.DataFrame()
return contacts_df
def extract_immobilier(data):
if "immobiliers" in data and "immobilier" in data["immobiliers"]:
immobilier = data["immobiliers"]["immobilier"]
if isinstance(immobilier, dict):
immobilier = [immobilier]
immobilier_data = []
for item in immobilier:
row = {
"ID": item.get("id"),
"Designation": item.get("designation"),
"Address": item.get("adresse", {}).get("adresse"),
"City": item.get("adresse", {}).get("ville"),
"Postal Code": item.get("adresse", {}).get("code_postal"),
"Country": item.get("adresse", {}).get("pays"),
"Value": item.get("valeur", {}).get("totale"),
"Revenues": item.get("revenus", {}).get("montant"),
"Charges": item.get("charges", {}).get("montant"),
}
immobilier_data.append(row)
immobilier_df = pd.DataFrame(immobilier_data)
else:
immobilier_df = pd.DataFrame()
return immobilier_df
def extract_patrimoine(data):
patrimoine_data = {"actifs": pd.DataFrame(), "passifs": pd.DataFrame()}
if "patrimoine" in data:
# Extract Actifs
if "actifs" in data["patrimoine"]:
actifs_items = data["patrimoine"]["actifs"].get("actif", [])
if isinstance(actifs_items, dict):
actifs_items = [actifs_items]
if actifs_items:
actifs_data = []
for item in actifs_items:
row = {
"UUID": item.get("uuid"),
"Libellé": item.get("libelle"),
"Patrimoine ID": item.get("patrimoine_id"),
"Montant (EUR)": item.get("montant_euro"),
"Système": item.get("system_origine"),
"Détenteur": item.get("detention", {}).get("detenteur"),
"Mode": item.get("detention", {}).get("mode"),
}
# Extract external references
ref_externes = item.get("ref_externes", {}).get("ref_externe", [])
if isinstance(ref_externes, dict):
ref_externes = [ref_externes]
if ref_externes:
systems = [ref.get("system") for ref in ref_externes]
row["Systèmes Externes"] = ", ".join(filter(None, systems))
actifs_data.append(row)
actifs_df = pd.DataFrame(actifs_data)
if "Montant (EUR)" in actifs_df.columns:
try:
actifs_df["Montant (EUR)"] = pd.to_numeric(
actifs_df["Montant (EUR)"]
)
except ValueError:
print(
"Warning: Could not convert some actifs montants to numeric"
)
patrimoine_data["actifs"] = actifs_df
# Extract Passifs
if "passifs" in data["patrimoine"]:
passifs_items = data["patrimoine"]["passifs"].get("passif", [])
if isinstance(passifs_items, dict):
passifs_items = [passifs_items]
if passifs_items:
passifs_data = []
for item in passifs_items:
row = {
"UUID": item.get("uuid"),
"Libellé": item.get("libelle"),
"Patrimoine ID": item.get("patrimoine_id"),
"Système": item.get("system_origine"),
"Souscripteur": item.get("souscripteur"),
"Périodicité": item.get("periodicite"),
"Taux HA": item.get("caracteristiques", {}).get("taux_HA"),
"Assurance Taux": item.get("assurance", {}).get("taux"),
"Capital Restant Dû (EUR)": item.get(
"capital_restant_du", {}
).get("montant_euro"),
"Date Capital Restant Dû": item.get(
"capital_restant_du", {}
).get("date"),
}
# Extract external references
ref_externes = item.get("ref_externes", {}).get("ref_externe", [])
if isinstance(ref_externes, dict):
ref_externes = [ref_externes]
if ref_externes:
systems = [ref.get("system") for ref in ref_externes]
row["Systèmes Externes"] = ", ".join(filter(None, systems))
passifs_data.append(row)
passifs_df = pd.DataFrame(passifs_data)
if "Capital Restant Dû (EUR)" in passifs_df.columns:
try:
passifs_df["Capital Restant Dû (EUR)"] = pd.to_numeric(
passifs_df["Capital Restant Dû (EUR)"]
)
except ValueError:
print(
"Warning: Could not convert some passifs capital restant dû to numeric"
)
patrimoine_data["passifs"] = passifs_df
return patrimoine_data
def extract_budget(data):
budget_data = {"revenus": pd.DataFrame(), "charges": pd.DataFrame()}
if "budget" in data:
# Extract Revenus
if "revenus" in data["budget"]:
revenus_items = data["budget"]["revenus"].get("revenu", [])
if isinstance(revenus_items, dict):
revenus_items = [revenus_items]
if revenus_items:
revenus_data = []
for item in revenus_items:
row = {
"ID": item.get("id"),
"Budget ID": item.get("budget_id"),
"Libellé": item.get("libelle"),
"Montant (EUR)": item.get("montant_euro"),
"Périodicité": item.get("periodicite"),
"Bénéficiaire": item.get("beneficiaire"),
"UUID": item.get("uuid"),
"Système": item.get("system_origine"),
"Date Terme": item.get("date_terme", ""),
}
# Extract external references if needed
ref_externes = item.get("ref_externes", {}).get("ref_externe", [])
if isinstance(ref_externes, dict):
ref_externes = [ref_externes]
if ref_externes:
systems = [ref.get("system") for ref in ref_externes]
row["Systèmes Externes"] = ", ".join(filter(None, systems))
revenus_data.append(row)
revenus_df = pd.DataFrame(revenus_data)
if "Montant (EUR)" in revenus_df.columns:
try:
revenus_df["Montant (EUR)"] = pd.to_numeric(
revenus_df["Montant (EUR)"]
)
except ValueError:
print(
"Warning: Could not convert some revenus montants to numeric"
)
budget_data["revenus"] = revenus_df
# Extract Charges
if "charges" in data["budget"]:
charges_items = data["budget"]["charges"].get("charge", [])
if isinstance(charges_items, dict):
charges_items = [charges_items]
if charges_items:
charges_data = []
for item in charges_items:
row = {
"ID": item.get("id"),
"Budget ID": item.get("budget_id"),
"Libellé": item.get("libelle"),
"Montant (EUR)": item.get("montant_euro"),
"Périodicité": item.get("periodicite"),
"Débiteur": item.get("debiteur"),
"UUID": item.get("uuid"),
"Système": item.get("system_origine"),
}
# Extract external references if needed
ref_externes = item.get("ref_externes", {}).get("ref_externe", [])
if isinstance(ref_externes, dict):
ref_externes = [ref_externes]
if ref_externes:
systems = [ref.get("system") for ref in ref_externes]
row["Systèmes Externes"] = ", ".join(filter(None, systems))
charges_data.append(row)
charges_df = pd.DataFrame(charges_data)
if "Montant (EUR)" in charges_df.columns:
try:
charges_df["Montant (EUR)"] = pd.to_numeric(
charges_df["Montant (EUR)"]
)
except ValueError:
print(
"Warning: Could not convert some charges montants to numeric"
)
budget_data["charges"] = charges_df
return budget_data
def format_client_info(xml_file, client_id):
# Get JSON data using your previous function
json_data = client_to_json(xml_file, client_id)
tables = display_nested_json(json_data)
pd.set_option("display.max_columns", None)
pd.set_option("display.width", None)
pd.set_option(
"display.float_format",
lambda x: "{:.2f}".format(x) if isinstance(x, (float, int)) else x,
)
# Return DataFrames directly instead of string representations
outputs = []
# Basic Info
outputs.append(gr.Markdown("## Client Basic Information"))
outputs.append(tables["basic_info"])
# Contacts
outputs.append(gr.Markdown("## Contacts Client"))
outputs.append(tables["contacts"])
# Accounts
outputs.append(gr.Markdown("## Accounts and Positions"))
outputs.append(
tables["accounts"]
if not tables["accounts"].empty
else pd.DataFrame({"Message": ["No accounts found"]})
)
# Patrimoine - Actifs
outputs.append(gr.Markdown("## Patrimoine"))
outputs.append(gr.Markdown("### Actifs"))
outputs.append(
tables["patrimoine"]["actifs"]
if not tables["patrimoine"]["actifs"].empty
else pd.DataFrame({"Message": ["No actifs found"]})
)
# Patrimoine - Passifs
outputs.append(gr.Markdown("### Passifs"))
outputs.append(
tables["patrimoine"]["passifs"]
if not tables["patrimoine"]["passifs"].empty
else pd.DataFrame({"Message": ["No passifs found"]})
)
# Budget - Revenus
outputs.append(gr.Markdown("## Budget"))
outputs.append(gr.Markdown("### Revenus"))
outputs.append(
tables["budget"]["revenus"]
if not tables["budget"]["revenus"].empty
else pd.DataFrame({"Message": ["No revenus found"]})
)
# Budget - Charges
outputs.append(gr.Markdown("### Charges"))
outputs.append(
tables["budget"]["charges"]
if not tables["budget"]["charges"].empty
else pd.DataFrame({"Message": ["No charges found"]})
)
return outputs
# Create Gradio interface
with gr.Blocks(title="Client Information Viewer") as demo:
gr.Markdown("# Client Information Viewer")
gr.Markdown(
"Upload an XML file and select a client to view their detailed information"
)
xml_file = gr.File(label="Upload XML File", file_types=[".xml"])
client_dropdown = gr.Dropdown(label="Select Client", choices=[], interactive=True)
view_btn = gr.Button("View Client Info", interactive=False)
# Create output containers for each section
basic_info_header = gr.Markdown()
basic_info_df = gr.DataFrame()
contacts_header = gr.Markdown()
contacts_df = gr.DataFrame()
accounts_header = gr.Markdown()
accounts_df = gr.DataFrame()
actifs_header = gr.Markdown()
actifs_subheader = gr.Markdown()
actifs_df = gr.DataFrame()
passifs_subheader = gr.Markdown()
passifs_df = gr.DataFrame()
revenus_header = gr.Markdown()
revenus_subheader = gr.Markdown()
revenus_df = gr.DataFrame()
charges_subheader = gr.Markdown()
charges_df = gr.DataFrame()
# Combine all outputs in order
output_dfs = [
basic_info_header,
basic_info_df,
contacts_header,
contacts_df,
accounts_header,
accounts_df,
actifs_header,
actifs_subheader,
actifs_df,
passifs_subheader,
passifs_df,
revenus_header,
revenus_subheader,
revenus_df,
charges_subheader,
charges_df,
]
# Update dropdown when file is uploaded
def update_dropdown(file):
if file is None:
return gr.Dropdown(choices=[], value=None, interactive=False), gr.Button(
interactive=False
)
clients = get_clients_from_xml(file)
choices = [(name, id) for id, name in clients]
return gr.Dropdown(choices=choices, interactive=True), gr.Button(
interactive=True
)
xml_file.change(
fn=update_dropdown, inputs=[xml_file], outputs=[client_dropdown, view_btn]
)
# View client info when button is clicked
view_btn.click(
fn=format_client_info,
inputs=[xml_file, client_dropdown],
outputs=output_dfs,
)
if __name__ == "__main__":
demo.launch(server_port=7860, share=True)
|