File size: 21,723 Bytes
a3290d1
 
 
 
 
ad6e633
a3290d1
ad6e633
 
 
a3290d1
ad6e633
 
 
 
 
 
 
a3290d1
ad6e633
a3290d1
ad6e633
a3290d1
ad6e633
 
 
 
 
 
 
 
 
a3290d1
ad6e633
 
 
 
 
 
 
 
 
 
a3290d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad6e633
a3290d1
 
ad6e633
a3290d1
 
 
 
 
ad6e633
a3290d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad6e633
a3290d1
 
 
 
ad6e633
 
a3290d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad6e633
a3290d1
 
 
 
 
 
 
 
 
 
ad6e633
a3290d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad6e633
a3290d1
 
 
 
 
 
ad6e633
a3290d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad6e633
a3290d1
 
 
 
 
 
 
 
 
 
 
 
 
ad6e633
 
 
 
 
a3290d1
 
 
 
 
 
 
 
 
 
 
ad6e633
 
 
a3290d1
ad6e633
a3290d1
 
 
 
 
 
 
ad6e633
a3290d1
ad6e633
 
a3290d1
 
 
 
 
 
 
 
 
 
 
 
ad6e633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3290d1
ad6e633
a3290d1
 
ad6e633
a3290d1
ad6e633
 
a3290d1
ad6e633
 
 
a3290d1
ad6e633
a3290d1
ad6e633
 
 
 
 
 
a3290d1
ad6e633
a3290d1
ad6e633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3290d1
ad6e633
 
a3290d1
ad6e633
 
 
 
 
 
 
a3290d1
 
ad6e633
 
 
 
 
 
a3290d1
 
ad6e633
 
 
 
a3290d1
 
ad6e633
 
 
 
a3290d1
 
ad6e633
 
 
 
 
 
 
 
a3290d1
 
ad6e633
 
 
 
a3290d1
ad6e633
a3290d1
ad6e633
 
 
 
a3290d1
ad6e633
a3290d1
 
ad6e633
 
 
a3290d1
 
ad6e633
 
 
 
 
a3290d1
ad6e633
 
a3290d1
ad6e633
 
a3290d1
ad6e633
 
a3290d1
ad6e633
 
 
a3290d1
ad6e633
 
a3290d1
ad6e633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3290d1
ad6e633
 
a3290d1
 
ad6e633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3290d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad6e633
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
import os
import zipfile
from pathlib import Path
from time import time
from typing import Union
import matplotlib.pyplot as plt

import dosma
import numpy as np
import wget
import cv2
import scipy.misc
from PIL import Image

import dicom2nifti
import math
import pydicom
import operator
import moviepy.video.io.ImageSequenceClip
from tkinter import Tcl
import pandas as pd
import warnings

import numpy as np
from skimage.morphology import skeletonize_3d
from scipy.spatial.distance import pdist, squareform
from scipy.interpolate import splprep, splev
import nibabel as nib
from nibabel.processing import resample_to_output

import matplotlib.pyplot as plt
from scipy.interpolate import interp1d

from totalsegmentator.libs import (
    download_pretrained_weights,
    nostdout,
    setup_nnunet,
)

from comp2comp.inference_class_base import InferenceClass
from comp2comp.models.models import Models
from comp2comp.spine import spine_utils
import nibabel as nib

class AortaSegmentation(InferenceClass):
    """Spine segmentation."""

    def __init__(self, save=True):
        super().__init__()
        self.model_name = "totalsegmentator"
        self.save_segmentations = save

    def __call__(self, inference_pipeline):
        # inference_pipeline.dicom_series_path = self.input_path
        self.output_dir = inference_pipeline.output_dir
        self.output_dir_segmentations = os.path.join(self.output_dir, "segmentations/")
        if not os.path.exists(self.output_dir_segmentations):
            os.makedirs(self.output_dir_segmentations)

        self.model_dir = inference_pipeline.model_dir

        seg, mv = self.spine_seg(
            os.path.join(self.output_dir_segmentations, "converted_dcm.nii.gz"),
            self.output_dir_segmentations + "spine.nii.gz",
            inference_pipeline.model_dir,
        )
       
        seg = seg.get_fdata()
        medical_volume = mv.get_fdata()
      
        axial_masks = []
        ct_image = []

        for i in range(seg.shape[2]):
            axial_masks.append(seg[:, :, i])
        
        for i in range(medical_volume.shape[2]):
            ct_image.append(medical_volume[:, :, i])

        # Save input axial slices to pipeline
        inference_pipeline.ct_image = ct_image

        # Save aorta masks to pipeline
        inference_pipeline.axial_masks = axial_masks

        return {}

    def setup_nnunet_c2c(self, model_dir: Union[str, Path]):
        """Adapted from TotalSegmentator."""

        model_dir = Path(model_dir)
        config_dir = model_dir / Path("." + self.model_name)
        (config_dir / "nnunet/results/nnUNet/3d_fullres").mkdir(exist_ok=True, parents=True)
        (config_dir / "nnunet/results/nnUNet/2d").mkdir(exist_ok=True, parents=True)
        weights_dir = config_dir / "nnunet/results"
        self.weights_dir = weights_dir



        os.environ["nnUNet_raw_data_base"] = str(
            weights_dir
        )  # not needed, just needs to be an existing directory
        os.environ["nnUNet_preprocessed"] = str(
            weights_dir
        )  # not needed, just needs to be an existing directory
        os.environ["RESULTS_FOLDER"] = str(weights_dir)

    def download_spine_model(self, model_dir: Union[str, Path]):
        download_dir = Path(
            os.path.join(
                self.weights_dir,
                "nnUNet/3d_fullres/Task253_Aorta/nnUNetTrainerV2_ep4000_nomirror__nnUNetPlansv2.1",
            )
        )
        print(download_dir)
        fold_0_path = download_dir / "fold_0"
        if not os.path.exists(fold_0_path):
            download_dir.mkdir(parents=True, exist_ok=True)
            wget.download(
                "https://huggingface.co/AdritRao/aaa_test/resolve/main/fold_0.zip",
                out=os.path.join(download_dir, "fold_0.zip"),
            )
            with zipfile.ZipFile(os.path.join(download_dir, "fold_0.zip"), "r") as zip_ref:
                zip_ref.extractall(download_dir)
            os.remove(os.path.join(download_dir, "fold_0.zip"))
            wget.download(
                "https://huggingface.co/AdritRao/aaa_test/resolve/main/plans.pkl",
                out=os.path.join(download_dir, "plans.pkl"),
            )
            print("Spine model downloaded.")
        else:
            print("Spine model already downloaded.")

    def spine_seg(self, input_path: Union[str, Path], output_path: Union[str, Path], model_dir):
        """Run spine segmentation.

        Args:
            input_path (Union[str, Path]): Input path.
            output_path (Union[str, Path]): Output path.
        """

        print("Segmenting spine...")
        st = time()
        os.environ["SCRATCH"] = self.model_dir

        print(self.model_dir)

        # Setup nnunet
        model = "3d_fullres"
        folds = [0]
        trainer = "nnUNetTrainerV2_ep4000_nomirror"
        crop_path = None
        task_id = [253]
        
        self.setup_nnunet_c2c(model_dir)
        self.download_spine_model(model_dir)

        from totalsegmentator.nnunet import nnUNet_predict_image

        with nostdout():

            img, seg = nnUNet_predict_image(
                input_path,
                output_path,
                task_id,
                model=model,
                folds=folds,
                trainer=trainer,
                tta=False,
                multilabel_image=True,
                resample=1.5,
                crop=None,
                crop_path=crop_path,
                task_name="total",
                nora_tag="None",
                preview=False,
                nr_threads_resampling=1,
                nr_threads_saving=6,
                quiet=False,
                verbose=False,
                test=0,
            )
        end = time()

        # Log total time for spine segmentation
        print(f"Total time for spine segmentation: {end-st:.2f}s.")

        seg_data = seg.get_fdata()
        seg = nib.Nifti1Image(seg_data, seg.affine, seg.header)

        return seg, img

class AortaDiameter(InferenceClass):

    def __init__(self):
        super().__init__()

    def normalize_img(self, img: np.ndarray) -> np.ndarray:
        """Normalize the image.
        Args:
            img (np.ndarray): Input image.
        Returns:
            np.ndarray: Normalized image.
        """
        return (img - img.min()) / (img.max() - img.min())

    def __call__(self, inference_pipeline):

        axial_masks = inference_pipeline.axial_masks # list of 2D numpy arrays of shape (512, 512)
        ct_img = inference_pipeline.ct_image # 3D numpy array of shape (512, 512, num_axial_slices)

        # image output directory 
        output_dir = inference_pipeline.output_dir
        output_dir_slices = os.path.join(output_dir, "images/slices/")
        if not os.path.exists(output_dir_slices):
            os.makedirs(output_dir_slices)

        output_dir = inference_pipeline.output_dir
        output_dir_summary = os.path.join(output_dir, "images/summary/")
        if not os.path.exists(output_dir_summary):
            os.makedirs(output_dir_summary)

        DICOM_PATH = inference_pipeline.dicom_series_path
        dicom = pydicom.dcmread(DICOM_PATH+"/"+os.listdir(DICOM_PATH)[0])
        
        dicom.PhotometricInterpretation = 'YBR_FULL'
        pixel_conversion = dicom.PixelSpacing
        print("Pixel conversion: "+str(pixel_conversion))
        RATIO_PIXEL_TO_MM = pixel_conversion[0]

        SLICE_COUNT = dicom["InstanceNumber"].value
        print(SLICE_COUNT)

        SLICE_COUNT = len(ct_img)
        diameterDict = {}
        
        for i in range(len(ct_img)):

            mask = axial_masks[i].astype('uint8')

            img = ct_img[i]

            img = np.clip(img, -300, 1800)
            img = self.normalize_img(img) * 255.0
            img = img.reshape((img.shape[0], img.shape[1], 1))
            img = np.tile(img, (1, 1, 3))

            contours, _ = cv2.findContours(mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)

            if len(contours) != 0:

                    areas = [cv2.contourArea(c) for c in contours]
                    sorted_areas = np.sort(areas)

                    contours = contours[areas.index(sorted_areas[-1])]

                    overlay = img.copy()

                    back = img.copy()
                    cv2.drawContours(back, [contours], 0, (0,255,0), -1)

                    alpha = 0.25
                    img = cv2.addWeighted(img, 1-alpha, back, alpha, 0)

                    ellipse = cv2.fitEllipse(contours)
                    (xc,yc),(d1,d2),angle = ellipse
            
                    cv2.ellipse(img, ellipse, (0, 255, 0), 1)
            
                    xc, yc = ellipse[0]
                    cv2.circle(img, (int(xc),int(yc)), 5, (0, 0, 255), -1)

                    rmajor = max(d1,d2)/2
                    rminor = min(d1,d2)/2

                    ### Draw major axes

                    if angle > 90:
                        angle = angle - 90
                    else:
                        angle = angle + 90
                    print(angle)
                    xtop = xc + math.cos(math.radians(angle))*rmajor
                    ytop = yc + math.sin(math.radians(angle))*rmajor
                    xbot = xc + math.cos(math.radians(angle+180))*rmajor
                    ybot = yc + math.sin(math.radians(angle+180))*rmajor
                    cv2.line(img, (int(xtop),int(ytop)), (int(xbot),int(ybot)), (0, 0, 255), 3)

                    ### Draw minor axes

                    if angle > 90:
                        angle = angle - 90
                    else:
                        angle = angle + 90
                    print(angle)
                    x1 = xc + math.cos(math.radians(angle))*rminor
                    y1 = yc + math.sin(math.radians(angle))*rminor
                    x2 = xc + math.cos(math.radians(angle+180))*rminor
                    y2 = yc + math.sin(math.radians(angle+180))*rminor
                    cv2.line(img, (int(x1),int(y1)), (int(x2),int(y2)), (255, 0, 0), 3)

                    # pixel_length = math.sqrt( (x1-x2)**2 + (y1-y2)**2 )
                    pixel_length = rminor*2
      
                    print("Pixel_length_minor: "+str(pixel_length))

                    area_px = cv2.contourArea(contours)
                    area_mm = round(area_px*RATIO_PIXEL_TO_MM)
                    area_cm = area_mm/10

                    diameter_mm = round((pixel_length)*RATIO_PIXEL_TO_MM)
                    diameter_cm = diameter_mm/10

                    diameterDict[(SLICE_COUNT-(i))] = diameter_cm

                    img = cv2.rotate(img, cv2.ROTATE_90_COUNTERCLOCKWISE)

                    h,w,c = img.shape
                    lbls = ["Area (mm): "+str(area_mm)+"mm", "Area (cm): "+str(area_cm)+"cm", "Diameter (mm): "+str(diameter_mm)+"mm", "Diameter (cm): "+str(diameter_cm)+"cm", "Slice: "+str(SLICE_COUNT-(i))]
                    offset = 0
                    font = cv2.FONT_HERSHEY_SIMPLEX
                    
                    scale = 0.03
                    fontScale = min(w,h)/(25/scale)
                    
                    cv2.putText(img, lbls[0], (10, 40), font, fontScale, (0, 255, 0), 2)
                    
                    cv2.putText(img, lbls[1], (10, 70), font, fontScale, (0, 255, 0), 2)
                    
                    cv2.putText(img, lbls[2], (10, 100), font, fontScale, (0, 255, 0), 2)
                    
                    cv2.putText(img, lbls[3], (10, 130), font, fontScale, (0, 255, 0), 2)

                    cv2.putText(img, lbls[4], (10, 160), font, fontScale, (0, 255, 0), 2)

                    cv2.imwrite(output_dir_slices+"slice"+str(SLICE_COUNT-(i))+".png", img)

        plt.bar(list(diameterDict.keys()), diameterDict.values(), color='b')

        plt.title(r"$\bf{Diameter}$" + " " + r"$\bf{Progression}$")


        plt.xlabel('Slice Number')

        plt.ylabel('Diameter Measurement (cm)')
        plt.savefig(output_dir_summary+"diameter_graph.png", dpi=500)

        print(diameterDict)
        print(max(diameterDict.items(), key=operator.itemgetter(1))[0])
        print(diameterDict[max(diameterDict.items(), key=operator.itemgetter(1))[0]])

        inference_pipeline.max_diameter = diameterDict[max(diameterDict.items(), key=operator.itemgetter(1))[0]]

        img = ct_img[SLICE_COUNT-(max(diameterDict.items(), key=operator.itemgetter(1))[0])]
        img = np.clip(img, -300, 1800)
        img = self.normalize_img(img) * 255.0
        img = img.reshape((img.shape[0], img.shape[1], 1))
        img2 = np.tile(img, (1, 1, 3))
        img2 = cv2.rotate(img2, cv2.ROTATE_90_COUNTERCLOCKWISE)

        img1 = cv2.imread(output_dir_slices+'slice'+str(max(diameterDict.items(), key=operator.itemgetter(1))[0])+'.png')

        border_size = 3
        img1 = cv2.copyMakeBorder(
            img1,
            top=border_size,
            bottom=border_size,
            left=border_size,
            right=border_size,
            borderType=cv2.BORDER_CONSTANT,
            value=[0, 244, 0]
        )
        img2 = cv2.copyMakeBorder(
            img2,
            top=border_size,
            bottom=border_size,
            left=border_size,
            right=border_size,
            borderType=cv2.BORDER_CONSTANT,
            value=[244, 0, 0]
        )

        vis = np.concatenate((img2, img1), axis=1)
        cv2.imwrite(output_dir_summary+'out.png', vis)

        image_folder=output_dir_slices
        fps=20
        image_files = [os.path.join(image_folder,img)
                    for img in Tcl().call('lsort', '-dict', os.listdir(image_folder))
                    if img.endswith(".png")]
        clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(image_files, fps=fps)
        clip.write_videofile(output_dir_summary+'aaa.mp4')


        def compute_centerline_3d(aorta_segmentation):
            skeleton = skeletonize_3d(aorta_segmentation)
            z, y, x = np.where(skeleton)
            centerline_points = np.vstack((x, y, z)).T
            centerline_points = centerline_points[centerline_points[:, 0].argsort()]
            return centerline_points


        def fit_bspline(centerline_points, smoothness=1e8):
            x, y, z = centerline_points.T
            tck, _ = splprep([x, y, z], s=smoothness)
            return tck


        def evaluate_bspline(tck, num_points=1000):
            u = np.linspace(0, 1, num_points)
            x, y, z = splev(u, tck)
            return np.vstack((x, y, z)).T


        def interpolate_points(data, num_points=32):
            x = data[:, 0]
            y = data[:, 1:]
            f_y = interp1d(x, y, kind="nearest", fill_value="extrapolate", axis=0)
            new_x = np.arange(0, num_points)
            new_y = f_y(new_x)
            new_data = np.round(np.hstack((new_x.reshape(-1, 1), new_y)))
            return new_data


        def compute_orthogonal_planes(tck, num_points=100):
            u = np.linspace(0, 1, num_points)
            points = np.vstack(splev(u, tck)).T
            tangents = np.vstack(splev(u, tck, der=1)).T

            normals = tangents / np.linalg.norm(tangents, axis=1)[:, np.newaxis]

            planes = []
            for point, normal in zip(points, normals):
                d = -np.dot(point, normal)
                planes.append((normal, d))

            return planes


        def compute_maximum_diameter(aorta_segmentation, planes):
            z, y, x = np.where(aorta_segmentation)
            aorta_points = np.vstack((x, y, z)).T


            max_diameters = []
            intersecting_points_list = []
            for normal, d in planes:
                distances = np.dot(aorta_points, normal) + d
                intersecting_points = aorta_points[np.abs(distances) < 0.5]

                if len(intersecting_points) < 2:
                    continue

                dist_matrix = squareform(pdist(intersecting_points))
                intersecting_points_list.append(intersecting_points)

                max_diameter = np.max(dist_matrix)
                max_diameters.append(max_diameter)

            max_diameter_index = np.argmax(max_diameters)
            max_diameter_in_pixels = max_diameters[max_diameter_index]
            print(f'Maximum Diameter in Pixels: {max_diameter_in_pixels}')

            diameter_mm = round((max_diameter_in_pixels)*RATIO_PIXEL_TO_MM)
            print(f'Maximum Diameter in mm: {diameter_mm}')

            max_diameters = np.array(max_diameters) * 0.15
            max_diameter_index = np.argmax(max_diameters)
            max_diameter_normal, max_diameter_point = planes[max_diameter_index]
            max_intersecting_points = intersecting_points_list[max_diameter_index]
            print("max_diameter_normal type:", type(max_diameter_normal))
            print("max_diameter_normal shape:", np.shape(max_diameter_normal))
            print("max_diameter_point type:", type(max_diameter_point))
            print("max_diameter_point shape:", np.shape(max_diameter_point))

            print("max intersecting points type:", type(max_intersecting_points))
            print("max intersecting points shape:", np.shape(max_intersecting_points))
            print("max intersecting points:", max_intersecting_points)

            return (
                max_diameters,
                max_diameter_point,
                max_diameter_normal,
                max_intersecting_points,
            )


        def plot_2d_planar_reconstruction(
            image,
            segmentation,
            interpolated_points,
            max_diameter_point,
            max_diameter_normal,
            max_intersecting_points,
        ):
            fig, axs = plt.subplots(nrows=2, ncols=1, figsize=(15, 10))

            sagittal_index = interpolated_points[:, 2].astype(int)
            image_2d = image[sagittal_index, :, range(image.shape[2])]
            seg_2d = segmentation[sagittal_index, :, range(image.shape[2])]

            # axs[0].imshow(image_2d, cmap="gray")
            # axs[0].imshow(seg_2d, cmap="jet", alpha=0.3)
            axs[0].scatter(
                interpolated_points[:, 1].astype(int),
                interpolated_points[:, 0].astype(int),
                color="red",
                s=1,
            )
            axs[0].plot(
                max_intersecting_points[:, 1].astype(int),
                max_intersecting_points[:, 0].astype(int),
                color="blue",
            )

            coronal_index = interpolated_points[:, 1].astype(int)
            image_2d = image[:, coronal_index, range(image.shape[2])].T
            seg_2d = segmentation[:, coronal_index, range(image.shape[2])].T

            # axs[1].imshow(image_2d, cmap="gray")
            # axs[1].imshow(seg_2d, cmap="jet", alpha=0.3)
            axs[1].scatter(
                interpolated_points[:, 2].astype(int),
                interpolated_points[:, 0].astype(int),
                color="red",
                s=1,
            )
            axs[1].plot(
                max_intersecting_points[:, 2].astype(int),
                max_intersecting_points[:, 0].astype(int),
                color="blue",
            )

            plt.savefig(output_dir_summary+"planar_reconstruction.png")

        output_dir = inference_pipeline.output_dir_segmentations

        segmentation = nib.load(
             os.path.join(output_dir, "converted_dcm.nii.gz")
        )
        image = nib.load(
            os.path.join(output_dir, "spine.nii.gz")
        )

        image = resample_to_output(image, (1.5, 1.5, 1.5))
        segmentation = resample_to_output(segmentation, (1.5, 1.5, 1.5), order=0)
        image = image.get_fdata()
        segmentation = segmentation.get_fdata()

        segmentation[segmentation == 42] = 1

        print(segmentation.shape)
        print(np.unique(segmentation))
        centerline_points = compute_centerline_3d(segmentation)
        print(centerline_points)
        tck = fit_bspline(centerline_points)
        evaluated_points = evaluate_bspline(tck)
        print(evaluated_points)
        interpolated_points = interpolate_points(evaluated_points, image.shape[2])
        print(interpolated_points)
        planes = compute_orthogonal_planes(tck)
        (
            cmax_diameters,
            max_diameter_point,
            max_diameter_normal,
            max_intersecting_points,
        ) = compute_maximum_diameter(segmentation, planes)
        plot_2d_planar_reconstruction(
            image,
            segmentation,
            interpolated_points,
            max_diameter_point,
            max_diameter_normal,
            max_intersecting_points,
        )

        return {}


class AortaMetricsSaver(InferenceClass):
    """Save metrics to a CSV file."""

    def __init__(self):
        super().__init__()

    def __call__(self, inference_pipeline):
        """Save metrics to a CSV file."""
        self.max_diameter = inference_pipeline.max_diameter
        self.dicom_series_path = inference_pipeline.dicom_series_path
        self.output_dir = inference_pipeline.output_dir
        self.csv_output_dir = os.path.join(self.output_dir, "metrics")
        if not os.path.exists(self.csv_output_dir):
            os.makedirs(self.csv_output_dir, exist_ok=True)
        self.save_results()
        return {}

    def save_results(self):
        """Save results to a CSV file."""
        _, filename = os.path.split(self.dicom_series_path)
        data = [[filename, str(self.max_diameter)]]
        df = pd.DataFrame(data, columns=['Filename', 'Max Diameter'])
        df.to_csv(os.path.join(self.csv_output_dir, "aorta_metrics.csv"), index=False)