Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import base64
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
from utils.retriever import FAISSRetriever
|
7 |
+
from utils.embedder import MultiModalEmbedder
|
8 |
+
from utils.memory import ChatMemory
|
9 |
+
from utils.model_loader import load_llava_model
|
10 |
+
from transformers import TextStreamer
|
11 |
+
|
12 |
+
# Initialize components with caching
|
13 |
+
@st.cache_resource
|
14 |
+
def load_components():
|
15 |
+
embedder = MultiModalEmbedder()
|
16 |
+
retriever = FAISSRetriever()
|
17 |
+
llava_pipe = load_llava_model()
|
18 |
+
return embedder, retriever, llava_pipe
|
19 |
+
|
20 |
+
def main():
|
21 |
+
st.title("MultiModal RAG Chatbot 🤖🖼️")
|
22 |
+
|
23 |
+
# Initialize session state
|
24 |
+
if "messages" not in st.session_state:
|
25 |
+
st.session_state.messages = []
|
26 |
+
if "memory" not in st.session_state:
|
27 |
+
st.session_state.memory = ChatMemory()
|
28 |
+
|
29 |
+
# Sidebar for document upload
|
30 |
+
with st.sidebar:
|
31 |
+
st.header("Knowledge Base")
|
32 |
+
uploaded_files = st.file_uploader(
|
33 |
+
"Upload documents/images",
|
34 |
+
type=["pdf", "jpg", "png", "jpeg"],
|
35 |
+
accept_multiple_files=True
|
36 |
+
)
|
37 |
+
|
38 |
+
# Chat input
|
39 |
+
user_input = st.chat_input("Ask something or upload an image...")
|
40 |
+
uploaded_image = st.file_uploader("Upload image", type=["jpg", "png", "jpeg"], key="img_upload")
|
41 |
+
|
42 |
+
# Display chat history
|
43 |
+
for msg in st.session_state.messages:
|
44 |
+
with st.chat_message(msg["role"]):
|
45 |
+
if msg["type"] == "text":
|
46 |
+
st.markdown(msg["content"])
|
47 |
+
elif msg["type"] == "image":
|
48 |
+
st.image(msg["content"])
|
49 |
+
|
50 |
+
# Process inputs
|
51 |
+
if user_input or uploaded_image:
|
52 |
+
embedder, retriever, llava_pipe = load_components()
|
53 |
+
|
54 |
+
# Handle image upload
|
55 |
+
image = None
|
56 |
+
if uploaded_image:
|
57 |
+
image = Image.open(uploaded_image).convert("RGB")
|
58 |
+
with st.chat_message("user"):
|
59 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
60 |
+
st.session_state.messages.append({
|
61 |
+
"role": "user",
|
62 |
+
"type": "image",
|
63 |
+
"content": image
|
64 |
+
})
|
65 |
+
|
66 |
+
# Generate response
|
67 |
+
with st.spinner("Thinking..."):
|
68 |
+
# Retrieve context
|
69 |
+
if image:
|
70 |
+
image_emb = embedder.embed_image(image)
|
71 |
+
text_emb = embedder.embed_text(user_input) if user_input else None
|
72 |
+
context = retriever.search(image_emb, text_emb)
|
73 |
+
else:
|
74 |
+
context = retriever.search(text_emb=embedder.embed_text(user_input))
|
75 |
+
|
76 |
+
# Generate LLM response
|
77 |
+
prompt = f"CONTEXT: {context}\n\nQUERY: {user_input or 'Explain this image'}"
|
78 |
+
response = llava_pipe(
|
79 |
+
prompt,
|
80 |
+
image=image,
|
81 |
+
max_new_tokens=512,
|
82 |
+
streamer=TextStreamer(),
|
83 |
+
return_full_text=False
|
84 |
+
)[0]['generated_text']
|
85 |
+
|
86 |
+
# Update memory and display
|
87 |
+
st.session_state.memory.update(user_input, response)
|
88 |
+
with st.chat_message("assistant"):
|
89 |
+
st.markdown(response)
|
90 |
+
st.session_state.messages.append({
|
91 |
+
"role": "assistant",
|
92 |
+
"type": "text",
|
93 |
+
"content": response
|
94 |
+
})
|
95 |
+
|
96 |
+
if __name__ == "__main__":
|
97 |
+
main()
|