Spaces:
Sleeping
Sleeping
Update utils/model_loader.py
Browse files- utils/model_loader.py +16 -11
utils/model_loader.py
CHANGED
@@ -1,24 +1,26 @@
|
|
1 |
-
from transformers import pipeline,
|
2 |
import torch
|
3 |
from typing import Optional
|
4 |
|
5 |
def load_llava_model():
|
6 |
"""Load LLaVA model with 4-bit quantization for HF Spaces"""
|
7 |
model_id = "llava-hf/llava-1.5-7b-hf"
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
return pipeline(
|
10 |
"image-to-text",
|
11 |
model=model_id,
|
|
|
12 |
device_map="auto",
|
13 |
model_kwargs={
|
14 |
"torch_dtype": torch.float16,
|
15 |
-
"
|
16 |
-
"quantization_config": {
|
17 |
-
"load_in_4bit": True,
|
18 |
-
"bnb_4bit_compute_dtype": torch.float16,
|
19 |
-
"bnb_4bit_use_double_quant": True,
|
20 |
-
"bnb_4bit_quant_type": "nf4"
|
21 |
-
}
|
22 |
}
|
23 |
)
|
24 |
|
@@ -34,16 +36,19 @@ def load_caption_model():
|
|
34 |
|
35 |
def load_retrieval_models():
|
36 |
"""Load encoders with shared weights"""
|
|
|
|
|
|
|
37 |
models = {}
|
38 |
models['text_encoder'] = SentenceTransformer(
|
39 |
'sentence-transformers/all-MiniLM-L6-v2',
|
40 |
device="cuda" if torch.cuda.is_available() else "cpu"
|
41 |
)
|
42 |
-
|
43 |
models['image_encoder'] = AutoModel.from_pretrained(
|
44 |
"openai/clip-vit-base-patch32",
|
45 |
device_map="auto",
|
46 |
torch_dtype=torch.float16
|
47 |
)
|
48 |
-
|
49 |
return models
|
|
|
1 |
+
from transformers import pipeline, AutoTokenizer, BitsAndBytesConfig
|
2 |
import torch
|
3 |
from typing import Optional
|
4 |
|
5 |
def load_llava_model():
|
6 |
"""Load LLaVA model with 4-bit quantization for HF Spaces"""
|
7 |
model_id = "llava-hf/llava-1.5-7b-hf"
|
8 |
+
|
9 |
+
quant_config = BitsAndBytesConfig(
|
10 |
+
load_in_4bit=True,
|
11 |
+
bnb_4bit_compute_dtype=torch.float16,
|
12 |
+
bnb_4bit_use_double_quant=True,
|
13 |
+
bnb_4bit_quant_type="nf4"
|
14 |
+
)
|
15 |
+
|
16 |
return pipeline(
|
17 |
"image-to-text",
|
18 |
model=model_id,
|
19 |
+
tokenizer=model_id,
|
20 |
device_map="auto",
|
21 |
model_kwargs={
|
22 |
"torch_dtype": torch.float16,
|
23 |
+
"quantization_config": quant_config
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
}
|
25 |
)
|
26 |
|
|
|
36 |
|
37 |
def load_retrieval_models():
|
38 |
"""Load encoders with shared weights"""
|
39 |
+
from sentence_transformers import SentenceTransformer
|
40 |
+
from transformers import AutoModel
|
41 |
+
|
42 |
models = {}
|
43 |
models['text_encoder'] = SentenceTransformer(
|
44 |
'sentence-transformers/all-MiniLM-L6-v2',
|
45 |
device="cuda" if torch.cuda.is_available() else "cpu"
|
46 |
)
|
47 |
+
|
48 |
models['image_encoder'] = AutoModel.from_pretrained(
|
49 |
"openai/clip-vit-base-patch32",
|
50 |
device_map="auto",
|
51 |
torch_dtype=torch.float16
|
52 |
)
|
53 |
+
|
54 |
return models
|