Spaces:
Sleeping
Sleeping
File size: 6,749 Bytes
44cecd8 dc2c61c b94487d 2a60823 7791806 2a60823 7791806 dc2c61c 2a60823 b82c4ac b94487d 2a60823 b94487d dc2c61c b94487d dc2c61c 2a60823 dc2c61c 2a60823 b82c4ac 2a60823 a111e87 2a60823 dc2c61c b94487d 2a60823 b94487d dc2c61c b94487d dc2c61c b94487d 2a60823 b94487d 2a60823 b94487d 2a60823 b94487d dc2c61c 2a60823 dc2c61c 2a60823 8ed9cb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import spaces
import os
import sys
import subprocess
def install_packages():
subprocess.check_call([sys.executable, "-m", "pip", "install", "unsloth-zoo"])
subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-deps", "git+https://github.com/unslothai/unsloth.git"])
try:
install_packages()
except Exception as e:
print(f"Failed to install packages: {e}")
###
# เพิ่มบรรทัดนี้ที่ต้นโค้ด ก่อน import torch
import os
os.environ['NVIDIA_VISIBLE_DEVICES'] = ''
###
import warnings
import torch
# เปลี่ยนแปลงที่ 1: เพิ่มการตั้งค่า dynamo ก่อน import unsloth
torch._dynamo.config.suppress_errors = True
torch._dynamo.config.verbose = False
from transformers import TextStreamer
import gradio as gr
from huggingface_hub import login
from PIL import Image
warnings.filterwarnings('ignore')
model = None
tokenizer = None
if 'HUGGING_FACE_HUB_TOKEN' in os.environ:
print("กำลังเข้าสู่ระบบ Hugging Face Hub...")
login(token=os.environ['HUGGING_FACE_HUB_TOKEN'])
else:
print("คำเตือน: ไม่พบ HUGGING_FACE_HUB_TOKEN")
# @spaces.GPU
# def load_model():
# global model, tokenizer
# print("กำลังโหลดโมเดล...")
# try:
# from unsloth import FastVisionModel
# # โหลด base model และ tokenizer แบบพื้นฐาน
# base_model, tokenizer = FastVisionModel.from_pretrained(
# "unsloth/Llama-3.2-11B-Vision-Instruct"
# )
# print("โหลด base model และ tokenizer สำเร็จ")
# # โหลดโมเดล fine-tuned แบบพื้นฐาน
# from transformers import AutoModelForVision2Seq
# model = AutoModelForVision2Seq.from_pretrained(
# "Aekanun/Llama-3.2-11B-Vision-Instruct-XRay"
# ).to('cuda')
# print("โหลดโมเดลสำเร็จ!")
# return True
# except Exception as e:
# print(f"เกิดข้อผิดพลาดในการโหลดโมเดล: {str(e)}")
# import traceback
# traceback.print_exc() # เพิ่มการแสดง stack trace
# return False
@spaces.GPU
def load_model():
global model, tokenizer
print("กำลังโหลดโมเดล...")
try:
# โหลด tokenizer จาก base model
from unsloth import FastVisionModel
from transformers import AutoTokenizer
print("กำลังโหลด tokenizer...")
base_model, _tokenizer = FastVisionModel.from_pretrained(
"unsloth/Llama-3.2-11B-Vision-Instruct",
use_gradient_checkpointing = "unsloth"
)
tokenizer = _tokenizer # กำหนดค่าให้ตัวแปร global โดยตรง
print(f"2. ประเภทของ tokenizer: {type(tokenizer)}")
print(f"3. เมธอดที่มีใน tokenizer: {dir(tokenizer)}")
print("4. Global tokenizer after assignment:", type(tokenizer)) # เช็คค่า
print("โหลด base model และ tokenizer สำเร็จ กำลังโหลดโมเดลที่ fine-tune...")
# โหลดโมเดล fine-tuned
from transformers import AutoModelForVision2Seq
print("กำลังโหลดโมเดล fine-tuned...")
model = AutoModelForVision2Seq.from_pretrained(
"Aekanun/Llama-3.2-11B-Vision-Instruct-XRay",
load_in_4bit=True,
torch_dtype=torch.float16
).to('cuda')
FastVisionModel.for_inference(model)
print("โหลดโมเดลสำเร็จ!")
return True
except Exception as e:
print(f"เกิดข้อผิดพลาดในการโหลดโมเดล: {str(e)}")
import traceback
traceback.print_exc()
return False
@spaces.GPU(duration=30)
def process_image(image):
global model, tokenizer
print("Type of model:", type(model))
print("\nใน process_image():")
print("A. Type of tokenizer:", type(tokenizer))
if tokenizer is not None:
print("B. Available methods:", dir(tokenizer))
if image is None:
return "กรุณาอัพโหลดรูปภาพ"
try:
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
print("0. Image info:", type(image), image.size) # เพิ่ม debug ข้อมูลรูปภาพ
instruction = "You are an expert radiographer. Describe accurately what you see in this image."
messages = [
{"role": "user", "content": [
{"type": "image"},
{"type": "text", "text": instruction}
]}
]
# input_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
# inputs = tokenizer(
# image,
# input_text,
# add_special_tokens=False,
# return_tensors="pt",
# ).to("cuda")
print("1. Messages:", messages)
print("2. Tokenizer type:", type(tokenizer))
input_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
print("3. Chat template success:", input_text[:100])
inputs = tokenizer(
image,
input_text,
add_special_tokens=False,
return_tensors="pt",
).to("cuda")
print("3. Tokenizer inputs:", inputs.keys()) # Debug 3
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
outputs = model.generate(
**inputs,
streamer=text_streamer,
max_new_tokens=128,
use_cache=True,
temperature=1.5,
min_p=0.1
)
return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
except Exception as e:
return f"เกิดข้อผิดพลาด: {str(e)}"
print("กำลังเริ่มต้นแอปพลิเคชัน...")
if load_model():
demo = gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil"),
outputs=gr.Textbox(),
title="Medical Vision Analysis"
)
if __name__ == "__main__":
demo.launch()
else:
print("ไม่สามารถเริ่มต้นแอปพลิเคชันได้") |