Spaces:
Runtime error
Runtime error
complied Conv
Browse files
unsloth_compiled_cache/Conv1d.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Unsloth Zoo - Utilities for Unsloth
|
3 |
+
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved.
|
4 |
+
#
|
5 |
+
# This program is free software: you can redistribute it and/or modify
|
6 |
+
# it under the terms of the GNU Lesser General Public License as published by
|
7 |
+
# the Free Software Foundation, either version 3 of the License, or
|
8 |
+
# (at your option) any later version.
|
9 |
+
#
|
10 |
+
# This program is distributed in the hope that it will be useful,
|
11 |
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
# GNU General Public License for more details.
|
14 |
+
#
|
15 |
+
# You should have received a copy of the GNU Lesser General Public License
|
16 |
+
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
torch_compile_options = {'epilogue_fusion': True, 'max_autotune': False, 'shape_padding': True, 'trace.enabled': False, 'triton.cudagraphs': False}
|
18 |
+
from torch import Tensor
|
19 |
+
import torch
|
20 |
+
from torch.nn import functional as F
|
21 |
+
|
22 |
+
|
23 |
+
def forward(self, input: Tensor) -> Tensor:
|
24 |
+
return self._conv_forward(input, self.weight, self.bias).to(input.dtype)
|
unsloth_compiled_cache/Conv2d.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Unsloth Zoo - Utilities for Unsloth
|
3 |
+
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved.
|
4 |
+
#
|
5 |
+
# This program is free software: you can redistribute it and/or modify
|
6 |
+
# it under the terms of the GNU Lesser General Public License as published by
|
7 |
+
# the Free Software Foundation, either version 3 of the License, or
|
8 |
+
# (at your option) any later version.
|
9 |
+
#
|
10 |
+
# This program is distributed in the hope that it will be useful,
|
11 |
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
# GNU General Public License for more details.
|
14 |
+
#
|
15 |
+
# You should have received a copy of the GNU Lesser General Public License
|
16 |
+
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
torch_compile_options = {'epilogue_fusion': True, 'max_autotune': False, 'shape_padding': True, 'trace.enabled': False, 'triton.cudagraphs': False}
|
18 |
+
from torch import Tensor
|
19 |
+
import torch
|
20 |
+
from torch.nn import functional as F
|
21 |
+
|
22 |
+
|
23 |
+
def forward(self, input: Tensor) -> Tensor:
|
24 |
+
return self._conv_forward(input, self.weight, self.bias).to(input.dtype)
|
unsloth_compiled_cache/Conv3d.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Unsloth Zoo - Utilities for Unsloth
|
3 |
+
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved.
|
4 |
+
#
|
5 |
+
# This program is free software: you can redistribute it and/or modify
|
6 |
+
# it under the terms of the GNU Lesser General Public License as published by
|
7 |
+
# the Free Software Foundation, either version 3 of the License, or
|
8 |
+
# (at your option) any later version.
|
9 |
+
#
|
10 |
+
# This program is distributed in the hope that it will be useful,
|
11 |
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
# GNU General Public License for more details.
|
14 |
+
#
|
15 |
+
# You should have received a copy of the GNU Lesser General Public License
|
16 |
+
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
torch_compile_options = {'epilogue_fusion': True, 'max_autotune': False, 'shape_padding': True, 'trace.enabled': False, 'triton.cudagraphs': False}
|
18 |
+
from torch import Tensor
|
19 |
+
import torch
|
20 |
+
from torch.nn import functional as F
|
21 |
+
|
22 |
+
|
23 |
+
def forward(self, input: Tensor) -> Tensor:
|
24 |
+
return self._conv_forward(input, self.weight, self.bias).to(input.dtype)
|
unsloth_compiled_cache/ConvTranspose1d.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Unsloth Zoo - Utilities for Unsloth
|
3 |
+
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved.
|
4 |
+
#
|
5 |
+
# This program is free software: you can redistribute it and/or modify
|
6 |
+
# it under the terms of the GNU Lesser General Public License as published by
|
7 |
+
# the Free Software Foundation, either version 3 of the License, or
|
8 |
+
# (at your option) any later version.
|
9 |
+
#
|
10 |
+
# This program is distributed in the hope that it will be useful,
|
11 |
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
# GNU General Public License for more details.
|
14 |
+
#
|
15 |
+
# You should have received a copy of the GNU Lesser General Public License
|
16 |
+
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
torch_compile_options = {'epilogue_fusion': True, 'max_autotune': False, 'shape_padding': True, 'trace.enabled': False, 'triton.cudagraphs': False}
|
18 |
+
from torch import Tensor
|
19 |
+
import torch
|
20 |
+
from torch.nn import functional as F
|
21 |
+
from transformers.models.mllama.modeling_mllama import (F, List, Optional, Tuple, nn)
|
22 |
+
|
23 |
+
def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor:
|
24 |
+
if self.padding_mode != 'zeros':
|
25 |
+
raise ValueError('Only `zeros` padding mode is supported for ConvTranspose1d')
|
26 |
+
|
27 |
+
assert isinstance(self.padding, tuple)
|
28 |
+
# One cannot replace List by Tuple or Sequence in "_output_padding" because
|
29 |
+
# TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.
|
30 |
+
num_spatial_dims = 1
|
31 |
+
output_padding = self._output_padding(
|
32 |
+
input, output_size, self.stride, self.padding, self.kernel_size, # type: ignore[arg-type]
|
33 |
+
num_spatial_dims, self.dilation) # type: ignore[arg-type]
|
34 |
+
return F.conv_transpose1d(
|
35 |
+
input, self.weight, self.bias, self.stride, self.padding,
|
36 |
+
output_padding, self.groups, self.dilation).to(input.dtype)
|
unsloth_compiled_cache/ConvTranspose2d.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Unsloth Zoo - Utilities for Unsloth
|
3 |
+
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved.
|
4 |
+
#
|
5 |
+
# This program is free software: you can redistribute it and/or modify
|
6 |
+
# it under the terms of the GNU Lesser General Public License as published by
|
7 |
+
# the Free Software Foundation, either version 3 of the License, or
|
8 |
+
# (at your option) any later version.
|
9 |
+
#
|
10 |
+
# This program is distributed in the hope that it will be useful,
|
11 |
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
# GNU General Public License for more details.
|
14 |
+
#
|
15 |
+
# You should have received a copy of the GNU Lesser General Public License
|
16 |
+
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
torch_compile_options = {'epilogue_fusion': True, 'max_autotune': False, 'shape_padding': True, 'trace.enabled': False, 'triton.cudagraphs': False}
|
18 |
+
from torch import Tensor
|
19 |
+
import torch
|
20 |
+
from torch.nn import functional as F
|
21 |
+
from transformers.models.mllama.modeling_mllama import (F, List, Optional, Tuple, nn)
|
22 |
+
|
23 |
+
def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor:
|
24 |
+
if self.padding_mode != 'zeros':
|
25 |
+
raise ValueError('Only `zeros` padding mode is supported for ConvTranspose2d')
|
26 |
+
|
27 |
+
assert isinstance(self.padding, tuple)
|
28 |
+
# One cannot replace List by Tuple or Sequence in "_output_padding" because
|
29 |
+
# TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.
|
30 |
+
num_spatial_dims = 2
|
31 |
+
output_padding = self._output_padding(
|
32 |
+
input, output_size, self.stride, self.padding, self.kernel_size, # type: ignore[arg-type]
|
33 |
+
num_spatial_dims, self.dilation) # type: ignore[arg-type]
|
34 |
+
|
35 |
+
return F.conv_transpose2d(
|
36 |
+
input, self.weight, self.bias, self.stride, self.padding,
|
37 |
+
output_padding, self.groups, self.dilation).to(input.dtype)
|
unsloth_compiled_cache/unsloth_compiled_module_mllama.py
ADDED
@@ -0,0 +1,782 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Unsloth Zoo - Utilities for Unsloth
|
3 |
+
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved.
|
4 |
+
#
|
5 |
+
# This program is free software: you can redistribute it and/or modify
|
6 |
+
# it under the terms of the GNU Lesser General Public License as published by
|
7 |
+
# the Free Software Foundation, either version 3 of the License, or
|
8 |
+
# (at your option) any later version.
|
9 |
+
#
|
10 |
+
# This program is distributed in the hope that it will be useful,
|
11 |
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
# GNU General Public License for more details.
|
14 |
+
#
|
15 |
+
# You should have received a copy of the GNU Lesser General Public License
|
16 |
+
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from unsloth_zoo.loss_utils import fused_linear_cross_entropy
|
20 |
+
|
21 |
+
scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
|
22 |
+
@torch.compiler.disable(recursive = False)
|
23 |
+
def disable_compile_scaled_dot_product_attention(*args, **kwargs):
|
24 |
+
return scaled_dot_product_attention(*args, **kwargs)
|
25 |
+
pass
|
26 |
+
|
27 |
+
|
28 |
+
torch_compile_options = {'epilogue_fusion': True, 'max_autotune': False, 'shape_padding': True, 'trace.enabled': False, 'triton.cudagraphs': False}
|
29 |
+
from torch import Tensor
|
30 |
+
import torch
|
31 |
+
from torch.nn import functional as F
|
32 |
+
from transformers.models.mllama.modeling_mllama import (F, math, Optional, Tuple, torch, nn, ACT2FN, Cache, ROPE_INIT_FUNCTIONS, MllamaTextConfig, MllamaVisionConfig)
|
33 |
+
|
34 |
+
@torch.compile(fullgraph = True, dynamic = True, options = torch_compile_options)
|
35 |
+
def _prepare_cross_attention_mask(cross_attention_mask: torch.Tensor,
|
36 |
+
num_vision_tokens: int,
|
37 |
+
dtype: str,) -> Tuple[torch.Tensor, torch.Tensor]:
|
38 |
+
# reshape so it can be used by attn module
|
39 |
+
batch_size, text_total_length, *_ = cross_attention_mask.shape
|
40 |
+
cross_attention_mask = cross_attention_mask.repeat_interleave(num_vision_tokens, dim=3)
|
41 |
+
cross_attention_mask = cross_attention_mask.view(batch_size, text_total_length, -1)
|
42 |
+
cross_attention_mask = cross_attention_mask.unsqueeze(1)
|
43 |
+
|
44 |
+
# invert the mask
|
45 |
+
inverted_cross_attn_mask = (1.0 - cross_attention_mask).to(dtype)
|
46 |
+
cross_attention_mask = inverted_cross_attn_mask.masked_fill(inverted_cross_attn_mask.to(torch.bool), torch.finfo(dtype).min)
|
47 |
+
|
48 |
+
# apply full-row bias, which return 4D tensor of shape [B, H, S1, 1] where value is 0 if the a full row in cross attn mask's
|
49 |
+
# last dimension contains negative infinity values, otherwise it's 1
|
50 |
+
negative_inf_value = torch.finfo(dtype).min
|
51 |
+
full_text_row_masked_out_mask = ((cross_attention_mask != negative_inf_value).any(dim=-1).type_as(cross_attention_mask)[..., None])
|
52 |
+
cross_attention_mask *= full_text_row_masked_out_mask
|
53 |
+
|
54 |
+
return cross_attention_mask!=torch.finfo(cross_attention_mask.dtype).min, full_text_row_masked_out_mask
|
55 |
+
|
56 |
+
@torch.compile(fullgraph = True, dynamic = True, options = torch_compile_options)
|
57 |
+
def _prepare_aspect_ratio_attention_mask(aspect_ratio_mask: torch.Tensor,
|
58 |
+
num_patches: int,
|
59 |
+
target_length: int,
|
60 |
+
dtype: torch.dtype,) -> torch.Tensor:
|
61 |
+
# Expand aspect ratio mask to target_length
|
62 |
+
batch_size, max_num_tiles = aspect_ratio_mask.shape
|
63 |
+
attention_mask = aspect_ratio_mask.view(batch_size, max_num_tiles, 1, 1).to(dtype)
|
64 |
+
attention_mask = attention_mask.repeat(1, 1, target_length, 1)
|
65 |
+
|
66 |
+
# Mask padding patches
|
67 |
+
pad_patches = target_length - num_patches
|
68 |
+
attention_mask[:, :, -pad_patches:] = 0
|
69 |
+
|
70 |
+
# Invert the mask (0 -> 1, 1 -> 0)
|
71 |
+
attention_mask = 1 - attention_mask
|
72 |
+
|
73 |
+
# Reshape to 2D and create 4D attention mask
|
74 |
+
# (batch_size, 1, max_num_tiles * target_length, max_num_tiles * target_length)
|
75 |
+
attention_mask = attention_mask.reshape(batch_size, max_num_tiles * target_length, 1)
|
76 |
+
attention_mask = attention_mask @ attention_mask.transpose(-1, -2) * torch.finfo(dtype).min
|
77 |
+
attention_mask = attention_mask.unsqueeze(1)
|
78 |
+
|
79 |
+
return attention_mask!=torch.finfo(attention_mask.dtype).min
|
80 |
+
|
81 |
+
@torch.compile(fullgraph = True, dynamic = True, options = torch_compile_options)
|
82 |
+
def MllamaPrecomputedAspectRatioEmbedding_forward(self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor) -> torch.Tensor:
|
83 |
+
embeddings = self.embedding(aspect_ratio_ids)
|
84 |
+
embeddings = embeddings.reshape(-1, self.max_num_tiles, 1, self.hidden_size)
|
85 |
+
|
86 |
+
if self.is_gated:
|
87 |
+
embeddings = embeddings * self.gate.tanh()
|
88 |
+
|
89 |
+
hidden_state = hidden_state + embeddings
|
90 |
+
return hidden_state
|
91 |
+
|
92 |
+
class MllamaPrecomputedAspectRatioEmbedding(nn.Module):
|
93 |
+
def __init__(self, config: MllamaVisionConfig, is_gated: bool = True):
|
94 |
+
super().__init__()
|
95 |
+
self.max_num_tiles = config.max_num_tiles
|
96 |
+
self.hidden_size = config.hidden_size
|
97 |
+
self.max_aspect_ratio_id = config.max_aspect_ratio_id
|
98 |
+
self.is_gated = is_gated
|
99 |
+
|
100 |
+
self.embedding = nn.Embedding(self.max_aspect_ratio_id + 1, self.max_num_tiles * self.hidden_size)
|
101 |
+
if is_gated:
|
102 |
+
self.gate = nn.Parameter(torch.zeros(1))
|
103 |
+
|
104 |
+
def forward(self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor) -> torch.Tensor:
|
105 |
+
return MllamaPrecomputedAspectRatioEmbedding_forward(self, hidden_state, aspect_ratio_ids)
|
106 |
+
|
107 |
+
|
108 |
+
@torch.compile(fullgraph = True, dynamic = True, options = torch_compile_options)
|
109 |
+
def MllamaPrecomputedPositionEmbedding_forward(self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor) -> torch.Tensor:
|
110 |
+
# position embeddings
|
111 |
+
gated_position_embedding = (1 - self.gate.tanh()) * self.embedding
|
112 |
+
hidden_state = hidden_state + gated_position_embedding.view(1, 1, self.num_patches, self.hidden_size)
|
113 |
+
|
114 |
+
# precomputed tile position embeddings
|
115 |
+
tile_position_embedding = self.tile_embedding(aspect_ratio_ids)
|
116 |
+
batch_size = hidden_state.shape[0]
|
117 |
+
tile_position_embedding = tile_position_embedding.reshape(
|
118 |
+
batch_size, self.max_num_tiles, self.num_patches, self.hidden_size
|
119 |
+
)
|
120 |
+
gated_tile_position_embedding = self.gate.tanh() * tile_position_embedding
|
121 |
+
hidden_state = hidden_state + gated_tile_position_embedding
|
122 |
+
|
123 |
+
return hidden_state
|
124 |
+
|
125 |
+
class MllamaPrecomputedPositionEmbedding(nn.Module):
|
126 |
+
def __init__(self, config: MllamaVisionConfig):
|
127 |
+
super().__init__()
|
128 |
+
self.max_num_tiles = config.max_num_tiles
|
129 |
+
self.max_aspect_ratio_id = config.max_aspect_ratio_id
|
130 |
+
self.num_patches = (config.image_size // config.patch_size) ** 2 + 1
|
131 |
+
self.hidden_size = config.hidden_size
|
132 |
+
self.scale = config.hidden_size**-0.5
|
133 |
+
|
134 |
+
self.gate = nn.Parameter(torch.zeros(1))
|
135 |
+
|
136 |
+
# position embedding
|
137 |
+
position_embedding = torch.randn(self.num_patches, self.hidden_size)
|
138 |
+
self.embedding = nn.Parameter(self.scale * position_embedding)
|
139 |
+
|
140 |
+
# tile position embedding
|
141 |
+
self.tile_embedding = nn.Embedding(
|
142 |
+
self.max_aspect_ratio_id + 1, self.max_num_tiles * self.num_patches * self.hidden_size
|
143 |
+
)
|
144 |
+
|
145 |
+
def forward(self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor) -> torch.Tensor:
|
146 |
+
return MllamaPrecomputedPositionEmbedding_forward(self, hidden_state, aspect_ratio_ids)
|
147 |
+
|
148 |
+
|
149 |
+
@torch.compile(fullgraph = False, dynamic = True, options = torch_compile_options)
|
150 |
+
def MllamaVisionMLP_forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
151 |
+
hidden_states = self.fc1(hidden_states)
|
152 |
+
hidden_states = self.activation_fn(hidden_states)
|
153 |
+
hidden_states = self.fc2(hidden_states)
|
154 |
+
return hidden_states
|
155 |
+
|
156 |
+
class MllamaVisionMLP(nn.Module):
|
157 |
+
def __init__(self, config):
|
158 |
+
super().__init__()
|
159 |
+
self.config = config
|
160 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
161 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
162 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
163 |
+
|
164 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
165 |
+
return MllamaVisionMLP_forward(self, hidden_states)
|
166 |
+
|
167 |
+
|
168 |
+
@torch.compiler.disable(recursive = False)
|
169 |
+
def MllamaVisionAttention_forward(
|
170 |
+
self,
|
171 |
+
hidden_state: torch.Tensor,
|
172 |
+
attention_mask: Optional[torch.Tensor] = None,
|
173 |
+
output_attentions: bool = None,
|
174 |
+
) -> torch.Tensor:
|
175 |
+
query = self.q_proj(hidden_state)
|
176 |
+
key = self.k_proj(hidden_state)
|
177 |
+
value = self.v_proj(hidden_state)
|
178 |
+
|
179 |
+
batch_size, q_seq_len, _ = query.shape
|
180 |
+
_, kv_seq_len, _ = key.shape
|
181 |
+
|
182 |
+
query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
183 |
+
key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
184 |
+
value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
185 |
+
|
186 |
+
attn_weights = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(self.head_dim)
|
187 |
+
|
188 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
189 |
+
causal_mask = attention_mask[:, :, :, : key.shape[-2]]
|
190 |
+
attn_weights = attn_weights + causal_mask
|
191 |
+
|
192 |
+
# upcast attention to fp32
|
193 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
194 |
+
attn_output = torch.matmul(attn_weights, value)
|
195 |
+
|
196 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
197 |
+
attn_output = attn_output.reshape(batch_size, q_seq_len, -1)
|
198 |
+
|
199 |
+
output = self.o_proj(attn_output)
|
200 |
+
|
201 |
+
if not output_attentions:
|
202 |
+
attn_weights = None
|
203 |
+
|
204 |
+
return output, attn_weights
|
205 |
+
|
206 |
+
class MllamaVisionAttention(nn.Module):
|
207 |
+
def __init__(self, config: MllamaVisionConfig):
|
208 |
+
super().__init__()
|
209 |
+
|
210 |
+
self.embed_dim = config.hidden_size
|
211 |
+
self.num_heads = config.attention_heads
|
212 |
+
self.head_dim = config.hidden_size // config.attention_heads
|
213 |
+
|
214 |
+
self.q_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False)
|
215 |
+
self.k_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False)
|
216 |
+
self.v_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False)
|
217 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.embed_dim, bias=False)
|
218 |
+
|
219 |
+
def forward(
|
220 |
+
self,
|
221 |
+
hidden_state: torch.Tensor,
|
222 |
+
attention_mask: Optional[torch.Tensor] = None,
|
223 |
+
output_attentions: bool = None,
|
224 |
+
) -> torch.Tensor:
|
225 |
+
return MllamaVisionAttention_forward(self, hidden_state, attention_mask, output_attentions)
|
226 |
+
|
227 |
+
|
228 |
+
@torch.compiler.disable(recursive = False)
|
229 |
+
def MllamaVisionSdpaAttention_forward(
|
230 |
+
self,
|
231 |
+
hidden_state: torch.Tensor,
|
232 |
+
attention_mask: Optional[torch.Tensor] = None,
|
233 |
+
output_attentions: bool = None,
|
234 |
+
) -> torch.Tensor:
|
235 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
236 |
+
if output_attentions: raise RuntimeError('Unsloth: Not supported')
|
237 |
+
|
238 |
+
query = self.q_proj(hidden_state)
|
239 |
+
key = self.k_proj(hidden_state)
|
240 |
+
value = self.v_proj(hidden_state)
|
241 |
+
|
242 |
+
batch_size, q_seq_len, _ = query.shape
|
243 |
+
_, kv_seq_len, _ = key.shape
|
244 |
+
|
245 |
+
query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim)
|
246 |
+
key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim)
|
247 |
+
value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim)
|
248 |
+
|
249 |
+
query = query.transpose(1, 2)
|
250 |
+
key = key.transpose(1, 2)
|
251 |
+
value = value.transpose(1, 2)
|
252 |
+
|
253 |
+
attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask)
|
254 |
+
|
255 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
256 |
+
attn_output = attn_output.reshape(batch_size, q_seq_len, -1)
|
257 |
+
|
258 |
+
output = self.o_proj(attn_output)
|
259 |
+
|
260 |
+
return output, None
|
261 |
+
|
262 |
+
class MllamaVisionSdpaAttention(MllamaVisionAttention):
|
263 |
+
# Adapted from MllamaVisionAttention
|
264 |
+
def forward(
|
265 |
+
self,
|
266 |
+
hidden_state: torch.Tensor,
|
267 |
+
attention_mask: Optional[torch.Tensor] = None,
|
268 |
+
output_attentions: bool = None,
|
269 |
+
) -> torch.Tensor:
|
270 |
+
return MllamaVisionSdpaAttention_forward(self, hidden_state, attention_mask, output_attentions)
|
271 |
+
|
272 |
+
|
273 |
+
@torch.compile(fullgraph = True, dynamic = True, options = torch_compile_options)
|
274 |
+
def MllamaTextRMSNorm_forward(self, hidden_states):
|
275 |
+
input_dtype = hidden_states.dtype
|
276 |
+
hidden_states = hidden_states.to(torch.float32)
|
277 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
278 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
279 |
+
return self.weight * hidden_states.to(input_dtype)
|
280 |
+
|
281 |
+
class MllamaTextRMSNorm(nn.Module):
|
282 |
+
def __init__(self, hidden_size, eps=1e-6):
|
283 |
+
"""
|
284 |
+
MllamaTextRMSNorm is equivalent to T5LayerNorm
|
285 |
+
"""
|
286 |
+
super().__init__()
|
287 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
288 |
+
self.variance_epsilon = eps
|
289 |
+
|
290 |
+
def forward(self, hidden_states):
|
291 |
+
return MllamaTextRMSNorm_forward(self, hidden_states)
|
292 |
+
|
293 |
+
def extra_repr(self):
|
294 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
295 |
+
|
296 |
+
|
297 |
+
@torch.compiler.disable(recursive = False)
|
298 |
+
def MllamaTextCrossAttention_forward(
|
299 |
+
self,
|
300 |
+
hidden_states: torch.Tensor,
|
301 |
+
cross_attention_states: Optional[torch.Tensor] = None,
|
302 |
+
past_key_value: Optional[Cache] = None,
|
303 |
+
attention_mask: Optional[torch.Tensor] = None,
|
304 |
+
output_attentions: bool = False,
|
305 |
+
use_cache: bool = None,
|
306 |
+
cache_position: Optional[torch.LongTensor] = None,
|
307 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
308 |
+
"""Input shape: Batch x Time x Channel"""
|
309 |
+
bsz, q_len, _ = hidden_states.size()
|
310 |
+
query_states = self.q_proj(hidden_states)
|
311 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
312 |
+
query_states = self.q_norm(query_states)
|
313 |
+
|
314 |
+
if cross_attention_states is not None:
|
315 |
+
key_states = self.k_proj(cross_attention_states)
|
316 |
+
value_states = self.v_proj(cross_attention_states)
|
317 |
+
key_states = key_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
318 |
+
value_states = value_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
319 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
320 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
321 |
+
|
322 |
+
key_states = self.k_norm(key_states)
|
323 |
+
if past_key_value is not None:
|
324 |
+
# if we have a new image + new tokens, we only computed key_states on that new image
|
325 |
+
# we still update the cross key states, past_image, new_image. And use it!
|
326 |
+
key_states, value_states = past_key_value.update(
|
327 |
+
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
|
328 |
+
)
|
329 |
+
elif cache_position[0] != 0:
|
330 |
+
key_states, value_states = (
|
331 |
+
past_key_value.key_cache[self.layer_idx],
|
332 |
+
past_key_value.value_cache[self.layer_idx],
|
333 |
+
)
|
334 |
+
else:
|
335 |
+
raise ValueError(
|
336 |
+
"Cross attention layer can't find neither `cross_attn_states` nor cached values for key/values!"
|
337 |
+
)
|
338 |
+
|
339 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
340 |
+
|
341 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
342 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
343 |
+
attn_weights = attn_weights + causal_mask
|
344 |
+
|
345 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
346 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
347 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
348 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
349 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
350 |
+
attn_output = self.o_proj(attn_output)
|
351 |
+
|
352 |
+
if not output_attentions:
|
353 |
+
attn_weights = None
|
354 |
+
|
355 |
+
return attn_output, attn_weights, past_key_value
|
356 |
+
|
357 |
+
class MllamaTextCrossAttention(nn.Module):
|
358 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
359 |
+
|
360 |
+
def __init__(
|
361 |
+
self,
|
362 |
+
config: Optional[MllamaTextConfig] = None,
|
363 |
+
layer_idx: Optional[int] = None,
|
364 |
+
):
|
365 |
+
super().__init__()
|
366 |
+
self.config = config
|
367 |
+
self.num_heads = self.config.num_attention_heads
|
368 |
+
self.num_key_value_heads = self.config.num_key_value_heads
|
369 |
+
self.dropout = config.dropout
|
370 |
+
self.hidden_size = config.hidden_size
|
371 |
+
self.head_dim = config.hidden_size // self.num_heads
|
372 |
+
self.layer_idx = layer_idx
|
373 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
374 |
+
|
375 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
376 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
377 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
378 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
379 |
+
|
380 |
+
self.q_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
381 |
+
self.k_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
382 |
+
|
383 |
+
def forward(
|
384 |
+
self,
|
385 |
+
hidden_states: torch.Tensor,
|
386 |
+
cross_attention_states: Optional[torch.Tensor] = None,
|
387 |
+
past_key_value: Optional[Cache] = None,
|
388 |
+
attention_mask: Optional[torch.Tensor] = None,
|
389 |
+
output_attentions: bool = False,
|
390 |
+
use_cache: bool = None,
|
391 |
+
cache_position: Optional[torch.LongTensor] = None,
|
392 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
393 |
+
return MllamaTextCrossAttention_forward(self, hidden_states, cross_attention_states, past_key_value, attention_mask, output_attentions, use_cache, cache_position)
|
394 |
+
|
395 |
+
|
396 |
+
@torch.compile(fullgraph = True, dynamic = True, options = torch_compile_options)
|
397 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
398 |
+
"""
|
399 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
400 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
401 |
+
"""
|
402 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
403 |
+
if n_rep == 1:
|
404 |
+
return hidden_states
|
405 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
406 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
407 |
+
|
408 |
+
|
409 |
+
@torch.compiler.disable(recursive = False)
|
410 |
+
def MllamaTextCrossSdpaAttention_forward(
|
411 |
+
self,
|
412 |
+
hidden_states: torch.Tensor,
|
413 |
+
cross_attention_states: Optional[torch.Tensor] = None,
|
414 |
+
past_key_value: Optional[Cache] = None,
|
415 |
+
attention_mask: Optional[torch.Tensor] = None,
|
416 |
+
output_attentions: bool = False,
|
417 |
+
use_cache: bool = None,
|
418 |
+
cache_position: Optional[torch.LongTensor] = None,
|
419 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
420 |
+
"""Input shape: Batch x Time x Channel"""
|
421 |
+
if output_attentions: raise RuntimeError('Unsloth: Not supported')
|
422 |
+
|
423 |
+
bsz, q_len, _ = hidden_states.size()
|
424 |
+
query_states = self.q_proj(hidden_states)
|
425 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
426 |
+
query_states = self.q_norm(query_states)
|
427 |
+
|
428 |
+
if cross_attention_states is not None:
|
429 |
+
key_states = self.k_proj(cross_attention_states)
|
430 |
+
value_states = self.v_proj(cross_attention_states)
|
431 |
+
key_states = key_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
432 |
+
value_states = value_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
433 |
+
|
434 |
+
if past_key_value is not None:
|
435 |
+
# if we have a new image + new tokens, we only computed key_states on that new image
|
436 |
+
# we still update the cross key states, past_image, new_image. And use it!
|
437 |
+
key_states, value_states = past_key_value.update(
|
438 |
+
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
|
439 |
+
)
|
440 |
+
elif cache_position[0] != 0:
|
441 |
+
key_states, value_states = (
|
442 |
+
past_key_value.key_cache[self.layer_idx],
|
443 |
+
past_key_value.value_cache[self.layer_idx],
|
444 |
+
)
|
445 |
+
else:
|
446 |
+
raise ValueError(
|
447 |
+
"Cross attention layer can't find neither `cross_attn_states` nor cached values for key/values!"
|
448 |
+
)
|
449 |
+
|
450 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
451 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
452 |
+
|
453 |
+
key_states = self.k_norm(key_states)
|
454 |
+
|
455 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
456 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
457 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
458 |
+
query_states = query_states.contiguous()
|
459 |
+
key_states = key_states.contiguous()
|
460 |
+
value_states = value_states.contiguous()
|
461 |
+
|
462 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
463 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
464 |
+
is_causal = True if attention_mask is None and q_len > 1 else False
|
465 |
+
|
466 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
467 |
+
query_states,
|
468 |
+
key_states,
|
469 |
+
value_states,
|
470 |
+
attn_mask=attention_mask,
|
471 |
+
dropout_p=self.dropout if self.training else 0.0,
|
472 |
+
is_causal=is_causal,
|
473 |
+
)
|
474 |
+
|
475 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
476 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
477 |
+
attn_output = self.o_proj(attn_output)
|
478 |
+
|
479 |
+
return attn_output, None, past_key_value
|
480 |
+
|
481 |
+
class MllamaTextCrossSdpaAttention(MllamaTextCrossAttention):
|
482 |
+
"""
|
483 |
+
Mllama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
484 |
+
`MllamaTextCrossAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
485 |
+
SDPA API.
|
486 |
+
"""
|
487 |
+
|
488 |
+
# Adapted from MllamaTextCrossAttention.forward
|
489 |
+
def forward(
|
490 |
+
self,
|
491 |
+
hidden_states: torch.Tensor,
|
492 |
+
cross_attention_states: Optional[torch.Tensor] = None,
|
493 |
+
past_key_value: Optional[Cache] = None,
|
494 |
+
attention_mask: Optional[torch.Tensor] = None,
|
495 |
+
output_attentions: bool = False,
|
496 |
+
use_cache: bool = None,
|
497 |
+
cache_position: Optional[torch.LongTensor] = None,
|
498 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
499 |
+
return MllamaTextCrossSdpaAttention_forward(self, hidden_states, cross_attention_states, past_key_value, attention_mask, output_attentions, use_cache, cache_position)
|
500 |
+
|
501 |
+
|
502 |
+
@torch.compile(fullgraph = True, dynamic = True, options = torch_compile_options)
|
503 |
+
def rotate_half(x):
|
504 |
+
"""Rotates half the hidden dims of the input."""
|
505 |
+
x1 = x[..., : x.shape[-1] // 2]
|
506 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
507 |
+
return torch.cat((-x2, x1), dim=-1)
|
508 |
+
|
509 |
+
|
510 |
+
@torch.compile(fullgraph = True, dynamic = True, options = torch_compile_options)
|
511 |
+
def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
|
512 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
513 |
+
|
514 |
+
Args:
|
515 |
+
q (`torch.Tensor`): The query tensor.
|
516 |
+
k (`torch.Tensor`): The key tensor.
|
517 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
518 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
519 |
+
position_ids (`torch.Tensor`, *optional*):
|
520 |
+
Deprecated and unused.
|
521 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
522 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
523 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
524 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
525 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
526 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
527 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
528 |
+
Returns:
|
529 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
530 |
+
"""
|
531 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
532 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
533 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
534 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
535 |
+
return q_embed, k_embed
|
536 |
+
|
537 |
+
|
538 |
+
@torch.compiler.disable(recursive = False)
|
539 |
+
def MllamaTextSelfAttention_forward(
|
540 |
+
self,
|
541 |
+
hidden_states: torch.Tensor,
|
542 |
+
attention_mask: torch.Tensor,
|
543 |
+
position_embeddings: torch.Tensor,
|
544 |
+
output_attentions: bool = False,
|
545 |
+
use_cache: bool = False,
|
546 |
+
past_key_value=None,
|
547 |
+
cache_position=None,
|
548 |
+
**kwargs,
|
549 |
+
):
|
550 |
+
bsz, q_len, _ = hidden_states.size()
|
551 |
+
|
552 |
+
query_states = self.q_proj(hidden_states)
|
553 |
+
key_states = self.k_proj(hidden_states)
|
554 |
+
value_states = self.v_proj(hidden_states)
|
555 |
+
|
556 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
557 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
558 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
559 |
+
|
560 |
+
cos, sin = position_embeddings
|
561 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
562 |
+
|
563 |
+
if past_key_value is not None:
|
564 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
565 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
566 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
567 |
+
|
568 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
569 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
570 |
+
|
571 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
572 |
+
|
573 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
574 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
575 |
+
attn_weights = attn_weights + causal_mask
|
576 |
+
|
577 |
+
# upcast attention to fp32
|
578 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
579 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
580 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
581 |
+
|
582 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
583 |
+
attn_output = attn_output.view(bsz, q_len, -1)
|
584 |
+
|
585 |
+
attn_output = self.o_proj(attn_output)
|
586 |
+
|
587 |
+
if not output_attentions:
|
588 |
+
attn_weights = None
|
589 |
+
|
590 |
+
return attn_output, attn_weights, past_key_value
|
591 |
+
|
592 |
+
class MllamaTextSelfAttention(nn.Module):
|
593 |
+
def __init__(self, config: MllamaTextConfig, layer_idx: int):
|
594 |
+
super().__init__()
|
595 |
+
self.config = config
|
596 |
+
self.num_heads = config.num_attention_heads
|
597 |
+
self.dropout = config.dropout
|
598 |
+
self.hidden_size = config.hidden_size
|
599 |
+
self.num_key_value_heads = config.num_key_value_heads
|
600 |
+
self.head_dim = config.hidden_size // self.num_heads
|
601 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
602 |
+
self.rope_theta = config.rope_theta
|
603 |
+
self.layer_idx = layer_idx
|
604 |
+
|
605 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
606 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
607 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
608 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
609 |
+
|
610 |
+
def forward(
|
611 |
+
self,
|
612 |
+
hidden_states: torch.Tensor,
|
613 |
+
attention_mask: torch.Tensor,
|
614 |
+
position_embeddings: torch.Tensor,
|
615 |
+
output_attentions: bool = False,
|
616 |
+
use_cache: bool = False,
|
617 |
+
past_key_value=None,
|
618 |
+
cache_position=None,
|
619 |
+
**kwargs,
|
620 |
+
):
|
621 |
+
return MllamaTextSelfAttention_forward(self, hidden_states, attention_mask, position_embeddings, output_attentions, use_cache, past_key_value, cache_position, **kwargs)
|
622 |
+
|
623 |
+
|
624 |
+
@torch.compiler.disable(recursive = False)
|
625 |
+
def MllamaTextSelfSdpaAttention_forward(
|
626 |
+
self,
|
627 |
+
hidden_states: torch.Tensor,
|
628 |
+
attention_mask: torch.Tensor,
|
629 |
+
position_embeddings: torch.Tensor,
|
630 |
+
output_attentions: bool = False,
|
631 |
+
use_cache: bool = False,
|
632 |
+
past_key_value=None,
|
633 |
+
cache_position=None,
|
634 |
+
**kwargs,
|
635 |
+
):
|
636 |
+
if output_attentions: raise RuntimeError('Unsloth: Not supported')
|
637 |
+
|
638 |
+
bsz, q_len, _ = hidden_states.size()
|
639 |
+
|
640 |
+
query_states = self.q_proj(hidden_states)
|
641 |
+
key_states = self.k_proj(hidden_states)
|
642 |
+
value_states = self.v_proj(hidden_states)
|
643 |
+
|
644 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
645 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
646 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
647 |
+
|
648 |
+
cos, sin = position_embeddings
|
649 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
650 |
+
|
651 |
+
if past_key_value is not None:
|
652 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
653 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
654 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
655 |
+
|
656 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
657 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
658 |
+
|
659 |
+
causal_mask = attention_mask
|
660 |
+
if attention_mask is not None:
|
661 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
662 |
+
|
663 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
664 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
665 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
666 |
+
query_states = query_states.contiguous()
|
667 |
+
key_states = key_states.contiguous()
|
668 |
+
value_states = value_states.contiguous()
|
669 |
+
|
670 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
671 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
672 |
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
673 |
+
|
674 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
675 |
+
query_states,
|
676 |
+
key_states,
|
677 |
+
value_states,
|
678 |
+
attn_mask=causal_mask,
|
679 |
+
dropout_p=self.dropout if self.training else 0.0,
|
680 |
+
is_causal=is_causal,
|
681 |
+
)
|
682 |
+
|
683 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
684 |
+
attn_output = attn_output.view(bsz, q_len, -1)
|
685 |
+
|
686 |
+
attn_output = self.o_proj(attn_output)
|
687 |
+
return attn_output, None, past_key_value
|
688 |
+
|
689 |
+
class MllamaTextSelfSdpaAttention(MllamaTextSelfAttention):
|
690 |
+
# Adapted from MllamaTextSelfAttention
|
691 |
+
def forward(
|
692 |
+
self,
|
693 |
+
hidden_states: torch.Tensor,
|
694 |
+
attention_mask: torch.Tensor,
|
695 |
+
position_embeddings: torch.Tensor,
|
696 |
+
output_attentions: bool = False,
|
697 |
+
use_cache: bool = False,
|
698 |
+
past_key_value=None,
|
699 |
+
cache_position=None,
|
700 |
+
**kwargs,
|
701 |
+
):
|
702 |
+
return MllamaTextSelfSdpaAttention_forward(self, hidden_states, attention_mask, position_embeddings, output_attentions, use_cache, past_key_value, cache_position, **kwargs)
|
703 |
+
|
704 |
+
|
705 |
+
@torch.compile(fullgraph = False, dynamic = True, options = torch_compile_options)
|
706 |
+
def MllamaTextMLP_forward(self, x):
|
707 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
708 |
+
|
709 |
+
class MllamaTextMLP(nn.Module):
|
710 |
+
def __init__(self, config):
|
711 |
+
super().__init__()
|
712 |
+
self.config = config
|
713 |
+
self.hidden_size = config.hidden_size
|
714 |
+
self.intermediate_size = config.intermediate_size
|
715 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
716 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
717 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
718 |
+
# Ignore copy
|
719 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
720 |
+
|
721 |
+
def forward(self, x):
|
722 |
+
return MllamaTextMLP_forward(self, x)
|
723 |
+
|
724 |
+
|
725 |
+
@torch.compile(fullgraph = True, dynamic = True, options = torch_compile_options)
|
726 |
+
@torch.no_grad()
|
727 |
+
def MllamaRotaryEmbedding_forward(self, x, position_ids):
|
728 |
+
if "dynamic" in self.rope_type:
|
729 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
730 |
+
|
731 |
+
# Core RoPE block
|
732 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
733 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
734 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
735 |
+
device_type = x.device.type
|
736 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
737 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
738 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
739 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
740 |
+
cos = emb.cos()
|
741 |
+
sin = emb.sin()
|
742 |
+
|
743 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
744 |
+
cos = cos * self.attention_scaling
|
745 |
+
sin = sin * self.attention_scaling
|
746 |
+
|
747 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
748 |
+
|
749 |
+
class MllamaRotaryEmbedding(nn.Module):
|
750 |
+
def __init__(self, config: MllamaTextConfig, device=None):
|
751 |
+
super().__init__()
|
752 |
+
self.rope_type = config.rope_scaling["rope_type"]
|
753 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
754 |
+
self.original_max_seq_len = config.max_position_embeddings
|
755 |
+
|
756 |
+
self.config = config
|
757 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
758 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
759 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
760 |
+
self.original_inv_freq = self.inv_freq
|
761 |
+
|
762 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
763 |
+
"""
|
764 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
765 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
766 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
767 |
+
"""
|
768 |
+
seq_len = torch.max(position_ids) + 1
|
769 |
+
if seq_len > self.max_seq_len_cached: # growth
|
770 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
771 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
772 |
+
)
|
773 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
774 |
+
self.max_seq_len_cached = seq_len
|
775 |
+
|
776 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
777 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
778 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
779 |
+
|
780 |
+
|
781 |
+
def forward(self, x, position_ids):
|
782 |
+
return MllamaRotaryEmbedding_forward(self, x, position_ids)
|