Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,342 Bytes
1a517f1 21cb9fc 592ad8f 21cb9fc 592ad8f b31bef1 21cb9fc a187193 21cb9fc 78744e1 21cb9fc b5217a9 21cb9fc b5217a9 21cb9fc b5217a9 21cb9fc b5217a9 21cb9fc b5217a9 21cb9fc b5217a9 21cb9fc 78744e1 21cb9fc b5217a9 592ad8f a187193 21cb9fc b5217a9 21cb9fc b5217a9 21cb9fc 069ee6d 21cb9fc 069ee6d 21cb9fc 592ad8f 21cb9fc b5217a9 21cb9fc b5217a9 21cb9fc 1a517f1 21cb9fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import os
import warnings
import torch
import gc
from transformers import AutoModelForVision2Seq, AutoProcessor, BitsAndBytesConfig
from PIL import Image
import gradio as gr
warnings.filterwarnings('ignore')
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# Global variables
model = None
processor = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
print("เคลียร์ CUDA cache เรียบร้อยแล้ว")
def load_model_and_processor():
"""โหลดโมเดลและ processor"""
global model, processor
print("กำลังโหลดโมเดลและ processor...")
try:
# กำหนด paths
base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct"
hub_model_path = "Aekanun/thai-handwriting-llm"
# ตั้งค่า BitsAndBytes
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
# โหลด processor จาก base model
print("Loading processor...")
processor = AutoProcessor.from_pretrained(base_model_path)
# โหลดโมเดลจาก Hub
print("Loading model...")
model = AutoModelForVision2Seq.from_pretrained(
hub_model_path,
device_map="auto",
torch_dtype=torch.bfloat16,
quantization_config=bnb_config,
trust_remote_code=True,
force_download=True # เพิ่มมาเพื่อให้โหลดใหม่
)
print("Model loaded successfully!")
return True
except Exception as e:
print(f"เกิดข้อผิดพลาดในการโหลดโมเดล: {str(e)}")
return False
def process_handwriting(image):
"""ฟังก์ชันสำหรับ Gradio interface"""
global model, processor
if image is None:
return "กรุณาอัพโหลดรูปภาพ"
try:
# Ensure image is in PIL format
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
# Convert to RGB if needed
if image.mode != "RGB":
image = image.convert("RGB")
prompt = """Transcribe the Thai handwritten text from the provided image.
Only return the transcription in Thai language."""
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image", "image": image}
],
}
]
text = processor.apply_chat_template(messages, tokenize=False)
inputs = processor(text=text, images=image, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=256,
do_sample=False,
pad_token_id=processor.tokenizer.pad_token_id
)
transcription = processor.decode(outputs[0], skip_special_tokens=True)
return transcription.strip()
except Exception as e:
return f"เกิดข้อผิดพลาด: {str(e)}"
# Initialize application
print("กำลังเริ่มต้นแอปพลิเคชัน...")
if load_model_and_processor():
# Create Gradio interface
demo = gr.Interface(
fn=process_handwriting,
inputs=gr.Image(type="pil", label="อัพโหลดรูปลายมือเขียนภาษาไทย"),
outputs=gr.Textbox(label="ข้อความที่แปลงได้"),
title="Thai Handwriting Recognition",
description="อัพโหลดรูปภาพลายมือเขียนภาษาไทยเพื่อแปลงเป็นข้อความ"
)
if __name__ == "__main__":
demo.launch()
else:
print("ไม่สามารถเริ่มต้นแอปพลิเคชันได้") |