Aeon-Avinash
commited on
Commit
•
b2c2b10
1
Parent(s):
8803f27
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import os
|
5 |
+
from PIL import Image
|
6 |
+
import pytesseract
|
7 |
+
import tempfile
|
8 |
+
import shutil
|
9 |
+
from pdf2image import convert_from_path
|
10 |
+
|
11 |
+
model_name = "deepset/roberta-base-squad2"
|
12 |
+
text_qna = pipeline("question-answering", model=model_name, tokenizer=model_name)
|
13 |
+
vision_qna = pipeline("document-question-answering", model="impira/layoutlm-document-qa")
|
14 |
+
|
15 |
+
# Vision QnA requires: PyTesseract for OCR. Tesseract executable needs to be installed separately.
|
16 |
+
# sudo apt install tesseract-ocr (https://tesseract-ocr.github.io/tessdoc/Installation.html)
|
17 |
+
|
18 |
+
def load_file(file_input, encoding = 'utf-8'):
|
19 |
+
if not os.path.exists(file_input):
|
20 |
+
raise FileNotFoundError(f"The file does not exist.")
|
21 |
+
|
22 |
+
with open(file_input, 'r', encoding=encoding) as file:
|
23 |
+
try:
|
24 |
+
content = file.read()
|
25 |
+
except UnicodeDecodeError:
|
26 |
+
# If a UnicodeDecodeError occurs, try reading with 'latin1' encoding
|
27 |
+
with open(file_input, 'r', encoding='latin1') as file:
|
28 |
+
content = file.read()
|
29 |
+
|
30 |
+
return content
|
31 |
+
|
32 |
+
def save_image(file):
|
33 |
+
try:
|
34 |
+
temp_dir = tempfile.mkdtemp()
|
35 |
+
file_path = os.path.join(temp_dir, os.path.basename(file.name))
|
36 |
+
# Copy the file from the temporary Gradio directory to our temporary directory
|
37 |
+
shutil.copyfile(file.name, file_path)
|
38 |
+
# when working with saving image files through Gradio,
|
39 |
+
# using `shutil.copyfile` to handle `NamedString` objects for file uploads is the correct approach
|
40 |
+
|
41 |
+
return file_path
|
42 |
+
except Exception as e:
|
43 |
+
print(e)
|
44 |
+
|
45 |
+
|
46 |
+
def save_pdf(file):
|
47 |
+
temp_dir = tempfile.mkdtemp()
|
48 |
+
pdf_path = os.path.join(temp_dir, os.path.basename(file.name))
|
49 |
+
|
50 |
+
# Copy the file from the temporary Gradio directory to our temporary directory
|
51 |
+
shutil.copyfile(file.name, pdf_path)
|
52 |
+
|
53 |
+
# Convert PDF to images
|
54 |
+
images = convert_from_path(pdf_path)
|
55 |
+
|
56 |
+
image_paths = []
|
57 |
+
for i, img in enumerate(images):
|
58 |
+
image_path = os.path.join(temp_dir, f'page_{i}.png')
|
59 |
+
img.save(image_path, 'PNG')
|
60 |
+
image_paths.append(image_path)
|
61 |
+
|
62 |
+
print(image_paths)
|
63 |
+
return image_paths
|
64 |
+
|
65 |
+
|
66 |
+
def qna_text_content(content, question):
|
67 |
+
result = text_qna(question=question, context=content)
|
68 |
+
return result
|
69 |
+
|
70 |
+
def qna_image_content(content, question):
|
71 |
+
# result = vision_qna(question=question, image=content)
|
72 |
+
result = vision_qna(content, question)
|
73 |
+
print(f"image question: {question}")
|
74 |
+
return result
|
75 |
+
|
76 |
+
def qna_pdf_content(image_paths, question):
|
77 |
+
answers = []
|
78 |
+
try:
|
79 |
+
for image_path in image_paths:
|
80 |
+
result = vision_qna(image=image_path, question=question)
|
81 |
+
print(result[0]['answer'], result[0]['score'])
|
82 |
+
answers.append(result[0]['answer'])
|
83 |
+
return " \n".join(answers)
|
84 |
+
except Exception as e:
|
85 |
+
return f"An error occurred during processing: {e}"
|
86 |
+
|
87 |
+
def answer_the_question_for_doc(text_input, file_input, question):
|
88 |
+
# Order of input parameters is Imp. for Gradio to accept respective Inputs
|
89 |
+
if file_input is not None:
|
90 |
+
print(f"File type: {type(file_input)}")
|
91 |
+
print(f"File name: {file_input.name}")
|
92 |
+
|
93 |
+
file_extension = file_input.name.split('.')[-1].lower()
|
94 |
+
if file_extension in ['txt']:
|
95 |
+
try:
|
96 |
+
content = load_file(file_input)
|
97 |
+
if not content or not question:
|
98 |
+
return "Please provide both content and a question."
|
99 |
+
result = qna_text_content(content, question)
|
100 |
+
return result["answer"]
|
101 |
+
|
102 |
+
except FileNotFoundError or Exception as e:
|
103 |
+
print(e)
|
104 |
+
exit(1)
|
105 |
+
|
106 |
+
elif file_extension in ['png', 'jpeg', 'jpg']:
|
107 |
+
try:
|
108 |
+
img_file_path = save_image(file_input)
|
109 |
+
|
110 |
+
if not question:
|
111 |
+
return "Please provide a question."
|
112 |
+
result = qna_image_content(img_file_path, question)
|
113 |
+
print(result)
|
114 |
+
return result[0]["answer"]
|
115 |
+
|
116 |
+
except Exception as e:
|
117 |
+
return f"An error occurred during vision processing: {e}"
|
118 |
+
|
119 |
+
elif file_extension in ['pdf']:
|
120 |
+
try:
|
121 |
+
image_paths = save_pdf(file_input)
|
122 |
+
|
123 |
+
if not question:
|
124 |
+
return "Please provide a question."
|
125 |
+
result = qna_pdf_content(image_paths, question)
|
126 |
+
print(result)
|
127 |
+
return result
|
128 |
+
|
129 |
+
except Exception as e:
|
130 |
+
return f"An error occurred during vision processing: {e}"
|
131 |
+
|
132 |
+
else:
|
133 |
+
return "Unsupported file type. Please upload a .txt, ,.pdf, .png, or .jpeg file."
|
134 |
+
else:
|
135 |
+
if not text_input or not question:
|
136 |
+
return "Please provide both content and a question."
|
137 |
+
content = text_input
|
138 |
+
result = qna_text_content(content, question)
|
139 |
+
return result["answer"]
|
140 |
+
|
141 |
+
gr.close_all()
|
142 |
+
|
143 |
+
with gr.Blocks() as demo:
|
144 |
+
gr.Markdown("# QnA System")
|
145 |
+
gr.Markdown("This App answers a question based on text content or uploaded file (txt, png, jpeg, pdf).")
|
146 |
+
|
147 |
+
with gr.Row():
|
148 |
+
text_input = gr.Textbox(label="Text Input", placeholder="Enter text content here...")
|
149 |
+
file_input = gr.File(label="File Upload", file_types=['txt', 'png', 'jpeg', 'pdf'])
|
150 |
+
|
151 |
+
question = gr.Textbox(label="Question", placeholder="Enter your question here...")
|
152 |
+
output = gr.Textbox(label="Answer", placeholder="The answer will appear here...")
|
153 |
+
|
154 |
+
text_input.change(lambda x: gr.update(visible=not x), inputs=text_input, outputs=file_input)
|
155 |
+
file_input.change(lambda x: gr.update(visible=not x), inputs=file_input, outputs=text_input)
|
156 |
+
|
157 |
+
button = gr.Button("Get Answer")
|
158 |
+
button.click(answer_the_question_for_doc, inputs=[text_input, file_input, question],
|
159 |
+
outputs=output)
|
160 |
+
demo.launch()
|
161 |
+
|
162 |
+
# print(qna_image_content("https://gradientflow.com/wp-content/uploads/2023/10/newsletter87-RAG-simple.png", "What is the step prior to embedding?"))
|