Spaces:
Sleeping
Sleeping
Upload 7 files
Browse files- .gitattributes +1 -0
- Bi-LSTM-Model-1.h5 +3 -0
- CNN-Model-1.h5 +3 -0
- Fake_News_Detection_2_0 (4).ipynb +0 -0
- Twitter_Analysis.csv +3 -0
- app.py +91 -0
- c2_new_models2_weights.pt +3 -0
- requirements.txt +32 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Twitter_Analysis.csv filter=lfs diff=lfs merge=lfs -text
|
Bi-LSTM-Model-1.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40d9ea929f9fd7c72e8c53eaabef8e0a53774336d85f716d0e704dadfca1588b
|
3 |
+
size 17581304
|
CNN-Model-1.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed6d529a612c98a14a56f52757fc54a8a8846e04d3120331b5d58ce8d80870f4
|
3 |
+
size 16450800
|
Fake_News_Detection_2_0 (4).ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Twitter_Analysis.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d15543efca55929f5f27cf89791ee94974e28f4b9f0b6c3b8bbd0d548c17e8e
|
3 |
+
size 82375676
|
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tweepy
|
3 |
+
import joblib
|
4 |
+
import torch
|
5 |
+
from transformers import BertTokenizer
|
6 |
+
|
7 |
+
# Load the tokenizer and the model
|
8 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
9 |
+
joblib.dump([model, bert], 'c2_new_models2_weights.pt')
|
10 |
+
|
11 |
+
def predict_fake_news(text):
|
12 |
+
# Tokenize and encode sequences
|
13 |
+
inputs = tokenizer.encode_plus(
|
14 |
+
text,
|
15 |
+
max_length=60,
|
16 |
+
pad_to_max_length=True,
|
17 |
+
truncation=True,
|
18 |
+
return_tensors="pt"
|
19 |
+
)
|
20 |
+
|
21 |
+
input_ids = inputs['input_ids']
|
22 |
+
attention_mask = inputs['attention_mask']
|
23 |
+
|
24 |
+
# Make prediction
|
25 |
+
model.eval() # Ensure the model is in evaluation mode
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs = model(input_ids, attention_mask)
|
28 |
+
|
29 |
+
# Access the logits directly from the outputs Tensor
|
30 |
+
logits = outputs[0] # Assuming logits are the first element in the output tuple
|
31 |
+
|
32 |
+
# Get the prediction using argmax
|
33 |
+
prediction = torch.argmax(logits).item()
|
34 |
+
|
35 |
+
# Map prediction to label
|
36 |
+
label_map = {0: 'Real', 1: 'Fake'}
|
37 |
+
return label_map[prediction]
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
# Define a function to update on Twitter
|
42 |
+
def update_on_Twitter(tweet_text, prediction):
|
43 |
+
CONSUMER_KEY = "q76xzfaSG7jL4unpvaNuPM5Ms"
|
44 |
+
CONSUMER_SECRET = "7h2JCH9fveW3srWarhCmwLbr8rTtVeJ04Qo3q65VItX2L4eFs1"
|
45 |
+
ACCESS_TOKEN = "1636314191198932992-VesD9DTEnagO7fQdCiu5Fh6vuFLbw1"
|
46 |
+
ACCESS_TOKEN_SECRET = "DcTCYDGba8UWlbMEpDvmTMZuVI2XAip7Tu8QgLTrC12AW"
|
47 |
+
BAERER_TOKEN = "AAAAAAAAAAAAAAAAAAAAAPJjnwEAAAAA3DnqW09w51Oufv8UCReOPQLPUtA%3Dz9vzO4DXVbXRU63RZB3TzbCrBc0saEnQZ49GMmGkDqKVu30qwC"
|
48 |
+
|
49 |
+
# Authenticate to Twitter
|
50 |
+
auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET)
|
51 |
+
auth.set_access_token(ACCESS_TOKEN, ACCESS_TOKEN_SECRET)
|
52 |
+
|
53 |
+
# Create an API object
|
54 |
+
api = tweepy.API(auth)
|
55 |
+
|
56 |
+
# Create a Client object
|
57 |
+
client = tweepy.Client(
|
58 |
+
BAERER_TOKEN,
|
59 |
+
CONSUMER_KEY,
|
60 |
+
CONSUMER_SECRET,
|
61 |
+
ACCESS_TOKEN,
|
62 |
+
ACCESS_TOKEN_SECRET,
|
63 |
+
wait_on_rate_limit=True
|
64 |
+
)
|
65 |
+
|
66 |
+
postText = f"The news: {tweet_text} is {prediction}"
|
67 |
+
|
68 |
+
try:
|
69 |
+
api.verify_credentials()
|
70 |
+
print("Authentication OK")
|
71 |
+
client.create_tweet(text=postText)
|
72 |
+
return f'<a href="https://twitter.com/CANNBot" target="_blank">Detect Fake News on Twitter Bot Account</a>'
|
73 |
+
except Exception as e:
|
74 |
+
print(e)
|
75 |
+
return f'Error: {e}'
|
76 |
+
|
77 |
+
# Use Gradio Blocks to create a more flexible interface
|
78 |
+
with gr.Blocks() as demo:
|
79 |
+
gr.Markdown("# Fake News Detection")
|
80 |
+
text_input = gr.Textbox(placeholder="Enter a news Tweet here...", label="News Tweet")
|
81 |
+
text_output = gr.Textbox(label="Prediction")
|
82 |
+
link_output = gr.HTML(label="Twitter Bot Account")
|
83 |
+
|
84 |
+
# Button to get prediction
|
85 |
+
gr.Button("Predict").click(predict_fake_news, inputs=text_input, outputs=text_output)
|
86 |
+
|
87 |
+
# Button to generate a Gradio link
|
88 |
+
gr.Button("Detect on Twitter").click(update_on_Twitter, inputs=[text_input, text_output], outputs=link_output)
|
89 |
+
|
90 |
+
# Launch the interface
|
91 |
+
demo.launch()
|
c2_new_models2_weights.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:927a11b303b096af3e7ec34225a7efbc52f70e3c01490698ffba101378983185
|
3 |
+
size 439590589
|
requirements.txt
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
pandas
|
3 |
+
matplotlib.pyplot
|
4 |
+
pycaret
|
5 |
+
transformers
|
6 |
+
sklearn
|
7 |
+
torch
|
8 |
+
tensorflow
|
9 |
+
joblib
|
10 |
+
BertTokenizer
|
11 |
+
sklearn.model_selection
|
12 |
+
train_test_split
|
13 |
+
tensorflow.keras.preprocessing.text
|
14 |
+
Tokenizer
|
15 |
+
tensorflow.keras.preprocessing.sequence
|
16 |
+
pad_sequences
|
17 |
+
sklearn.metrics
|
18 |
+
accuracy_score
|
19 |
+
f1_score
|
20 |
+
recall_score
|
21 |
+
precision_score
|
22 |
+
confusion_matrix
|
23 |
+
seaborn
|
24 |
+
Sequential
|
25 |
+
Embedding
|
26 |
+
Dense
|
27 |
+
Dropout
|
28 |
+
Conv1D
|
29 |
+
MaxPooling1D
|
30 |
+
Flatten
|
31 |
+
gradio
|
32 |
+
tweepy
|