ig / app.py
Afrinetwork7's picture
Update app.py
3b76ae1 verified
raw
history blame
4.78 kB
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
import boto3
from io import BytesIO
import time
import os
# S3 Configuration
S3_BUCKET = "afri"
S3_REGION = "eu-west-3"
S3_ACCESS_KEY_ID = "AKIAQQABC7IQWFLKSE62"
S3_SECRET_ACCESS_KEY = "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"
# Set up S3 client
s3_client = boto3.client('s3',
region_name=S3_REGION,
aws_access_key_id=S3_ACCESS_KEY_ID,
aws_secret_access_key=S3_SECRET_ACCESS_KEY)
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
def save_image_to_s3(image):
img_byte_arr = BytesIO()
image.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
filename = f"generated_image_{int(time.time())}.png"
s3_client.put_object(Bucket=S3_BUCKET,
Key=filename,
Body=img_byte_arr,
ContentType='image/png')
url = f"https://{S3_BUCKET}.s3.{S3_REGION}.amazonaws.com/{filename}"
return url
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale
).images[0]
image_url = save_image_to_s3(image)
return image_url, seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Text(label="Image URL", show_label=True)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.launch(share=True)