Spaces:
Runtime error
Runtime error
Afrinetwork7
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,32 +3,68 @@ import numpy as np
|
|
3 |
import random
|
4 |
import spaces
|
5 |
import torch
|
6 |
-
from diffusers import
|
7 |
-
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
dtype = torch.bfloat16
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
-
|
12 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
|
13 |
-
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
MAX_IMAGE_SIZE = 2048
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
19 |
if randomize_seed:
|
20 |
seed = random.randint(0, MAX_SEED)
|
21 |
generator = torch.Generator().manual_seed(seed)
|
22 |
image = pipe(
|
23 |
-
prompt
|
24 |
-
width
|
25 |
-
height
|
26 |
-
num_inference_steps
|
27 |
-
generator
|
28 |
guidance_scale=guidance_scale
|
29 |
-
).images[0]
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
examples = [
|
33 |
"a tiny astronaut hatching from an egg on the moon",
|
34 |
"a cat holding a sign that says hello world",
|
@@ -43,7 +79,6 @@ css="""
|
|
43 |
"""
|
44 |
|
45 |
with gr.Blocks(css=css) as demo:
|
46 |
-
|
47 |
with gr.Column(elem_id="col-container"):
|
48 |
gr.Markdown(f"""# FLUX.1 [dev]
|
49 |
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
@@ -51,7 +86,6 @@ with gr.Blocks(css=css) as demo:
|
|
51 |
""")
|
52 |
|
53 |
with gr.Row():
|
54 |
-
|
55 |
prompt = gr.Text(
|
56 |
label="Prompt",
|
57 |
show_label=False,
|
@@ -59,13 +93,11 @@ with gr.Blocks(css=css) as demo:
|
|
59 |
placeholder="Enter your prompt",
|
60 |
container=False,
|
61 |
)
|
62 |
-
|
63 |
run_button = gr.Button("Run", scale=0)
|
64 |
|
65 |
-
result = gr.
|
66 |
|
67 |
with gr.Accordion("Advanced Settings", open=False):
|
68 |
-
|
69 |
seed = gr.Slider(
|
70 |
label="Seed",
|
71 |
minimum=0,
|
@@ -73,11 +105,8 @@ with gr.Blocks(css=css) as demo:
|
|
73 |
step=1,
|
74 |
value=0,
|
75 |
)
|
76 |
-
|
77 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
78 |
-
|
79 |
with gr.Row():
|
80 |
-
|
81 |
width = gr.Slider(
|
82 |
label="Width",
|
83 |
minimum=256,
|
@@ -85,7 +114,6 @@ with gr.Blocks(css=css) as demo:
|
|
85 |
step=32,
|
86 |
value=1024,
|
87 |
)
|
88 |
-
|
89 |
height = gr.Slider(
|
90 |
label="Height",
|
91 |
minimum=256,
|
@@ -93,9 +121,7 @@ with gr.Blocks(css=css) as demo:
|
|
93 |
step=32,
|
94 |
value=1024,
|
95 |
)
|
96 |
-
|
97 |
with gr.Row():
|
98 |
-
|
99 |
guidance_scale = gr.Slider(
|
100 |
label="Guidance Scale",
|
101 |
minimum=1,
|
@@ -103,7 +129,6 @@ with gr.Blocks(css=css) as demo:
|
|
103 |
step=0.1,
|
104 |
value=3.5,
|
105 |
)
|
106 |
-
|
107 |
num_inference_steps = gr.Slider(
|
108 |
label="Number of inference steps",
|
109 |
minimum=1,
|
@@ -113,18 +138,17 @@ with gr.Blocks(css=css) as demo:
|
|
113 |
)
|
114 |
|
115 |
gr.Examples(
|
116 |
-
examples
|
117 |
-
fn
|
118 |
-
inputs
|
119 |
-
outputs
|
120 |
cache_examples="lazy"
|
121 |
)
|
122 |
-
|
123 |
gr.on(
|
124 |
triggers=[run_button.click, prompt.submit],
|
125 |
-
fn
|
126 |
-
inputs
|
127 |
-
outputs
|
128 |
)
|
129 |
|
130 |
demo.launch()
|
|
|
3 |
import random
|
4 |
import spaces
|
5 |
import torch
|
6 |
+
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
|
7 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
8 |
+
import boto3
|
9 |
+
import os
|
10 |
+
from io import BytesIO
|
11 |
+
import time
|
12 |
+
|
13 |
+
# S3 Configuration
|
14 |
+
S3_BUCKET = "afri"
|
15 |
+
S3_REGION = "eu-west-3"
|
16 |
+
S3_ACCESS_KEY_ID = "AKIAQQABC7IQWFLKSE62"
|
17 |
+
S3_SECRET_ACCESS_KEY = "mYht0FYxIPXNC7U254+OK+uXJlO+uK+X2JMiDuf1"
|
18 |
+
|
19 |
+
# Set up S3 client
|
20 |
+
s3_client = boto3.client('s3',
|
21 |
+
region_name=S3_REGION,
|
22 |
+
aws_access_key_id=S3_ACCESS_KEY_ID,
|
23 |
+
aws_secret_access_key=S3_SECRET_ACCESS_KEY)
|
24 |
|
25 |
dtype = torch.bfloat16
|
26 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
27 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
|
|
|
28 |
MAX_SEED = np.iinfo(np.int32).max
|
29 |
MAX_IMAGE_SIZE = 2048
|
30 |
|
31 |
+
def save_image_to_s3(image):
|
32 |
+
# Convert PIL Image to bytes
|
33 |
+
img_byte_arr = BytesIO()
|
34 |
+
image.save(img_byte_arr, format='PNG')
|
35 |
+
img_byte_arr = img_byte_arr.getvalue()
|
36 |
+
|
37 |
+
# Generate a unique filename
|
38 |
+
filename = f"generated_image_{int(time.time())}.png"
|
39 |
+
|
40 |
+
# Upload to S3
|
41 |
+
s3_client.put_object(Bucket=S3_BUCKET, Key=filename, Body=img_byte_arr)
|
42 |
+
|
43 |
+
# Generate a pre-signed URL (valid for 1 hour)
|
44 |
+
url = s3_client.generate_presigned_url('get_object',
|
45 |
+
Params={'Bucket': S3_BUCKET,
|
46 |
+
'Key': filename},
|
47 |
+
ExpiresIn=3600)
|
48 |
+
return url
|
49 |
|
50 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
51 |
if randomize_seed:
|
52 |
seed = random.randint(0, MAX_SEED)
|
53 |
generator = torch.Generator().manual_seed(seed)
|
54 |
image = pipe(
|
55 |
+
prompt=prompt,
|
56 |
+
width=width,
|
57 |
+
height=height,
|
58 |
+
num_inference_steps=num_inference_steps,
|
59 |
+
generator=generator,
|
60 |
guidance_scale=guidance_scale
|
61 |
+
).images[0]
|
62 |
+
|
63 |
+
# Save image to S3 and get URL
|
64 |
+
image_url = save_image_to_s3(image)
|
65 |
+
|
66 |
+
return image_url, seed
|
67 |
+
|
68 |
examples = [
|
69 |
"a tiny astronaut hatching from an egg on the moon",
|
70 |
"a cat holding a sign that says hello world",
|
|
|
79 |
"""
|
80 |
|
81 |
with gr.Blocks(css=css) as demo:
|
|
|
82 |
with gr.Column(elem_id="col-container"):
|
83 |
gr.Markdown(f"""# FLUX.1 [dev]
|
84 |
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
|
|
86 |
""")
|
87 |
|
88 |
with gr.Row():
|
|
|
89 |
prompt = gr.Text(
|
90 |
label="Prompt",
|
91 |
show_label=False,
|
|
|
93 |
placeholder="Enter your prompt",
|
94 |
container=False,
|
95 |
)
|
|
|
96 |
run_button = gr.Button("Run", scale=0)
|
97 |
|
98 |
+
result = gr.Text(label="Image URL", show_label=True)
|
99 |
|
100 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
101 |
seed = gr.Slider(
|
102 |
label="Seed",
|
103 |
minimum=0,
|
|
|
105 |
step=1,
|
106 |
value=0,
|
107 |
)
|
|
|
108 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
109 |
with gr.Row():
|
|
|
110 |
width = gr.Slider(
|
111 |
label="Width",
|
112 |
minimum=256,
|
|
|
114 |
step=32,
|
115 |
value=1024,
|
116 |
)
|
|
|
117 |
height = gr.Slider(
|
118 |
label="Height",
|
119 |
minimum=256,
|
|
|
121 |
step=32,
|
122 |
value=1024,
|
123 |
)
|
|
|
124 |
with gr.Row():
|
|
|
125 |
guidance_scale = gr.Slider(
|
126 |
label="Guidance Scale",
|
127 |
minimum=1,
|
|
|
129 |
step=0.1,
|
130 |
value=3.5,
|
131 |
)
|
|
|
132 |
num_inference_steps = gr.Slider(
|
133 |
label="Number of inference steps",
|
134 |
minimum=1,
|
|
|
138 |
)
|
139 |
|
140 |
gr.Examples(
|
141 |
+
examples=examples,
|
142 |
+
fn=infer,
|
143 |
+
inputs=[prompt],
|
144 |
+
outputs=[result, seed],
|
145 |
cache_examples="lazy"
|
146 |
)
|
|
|
147 |
gr.on(
|
148 |
triggers=[run_button.click, prompt.submit],
|
149 |
+
fn=infer,
|
150 |
+
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
151 |
+
outputs=[result, seed]
|
152 |
)
|
153 |
|
154 |
demo.launch()
|