Afrinetwork7 commited on
Commit
4559e89
·
verified ·
1 Parent(s): feda0ab

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -100
app.py CHANGED
@@ -1,9 +1,9 @@
1
- import gradio as gr
 
2
  import numpy as np
3
  import random
4
  import torch
5
  from diffusers import DiffusionPipeline
6
- from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
7
  import boto3
8
  from io import BytesIO
9
  import time
@@ -27,6 +27,17 @@ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_d
27
  MAX_SEED = np.iinfo(np.int32).max
28
  MAX_IMAGE_SIZE = 2048
29
 
 
 
 
 
 
 
 
 
 
 
 
30
  def save_image_to_s3(image):
31
  img_byte_arr = BytesIO()
32
  image.save(img_byte_arr, format='PNG')
@@ -42,107 +53,31 @@ def save_image_to_s3(image):
42
  url = f"https://{S3_BUCKET}.s3.{S3_REGION}.amazonaws.com/{filename}"
43
  return url
44
 
45
- def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
46
- if randomize_seed:
 
47
  seed = random.randint(0, MAX_SEED)
 
 
 
48
  generator = torch.Generator().manual_seed(seed)
49
- image = pipe(
50
- prompt=prompt,
51
- width=width,
52
- height=height,
53
- num_inference_steps=num_inference_steps,
54
- generator=generator,
55
- guidance_scale=guidance_scale
56
- ).images[0]
57
 
58
- image_url = save_image_to_s3(image)
59
-
60
- return image_url, seed
61
-
62
- examples = [
63
- "a tiny astronaut hatching from an egg on the moon",
64
- "a cat holding a sign that says hello world",
65
- "an anime illustration of a wiener schnitzel",
66
- ]
67
-
68
- css="""
69
- #col-container {
70
- margin: 0 auto;
71
- max-width: 520px;
72
- }
73
- """
74
-
75
- with gr.Blocks(css=css) as demo:
76
- with gr.Column(elem_id="col-container"):
77
- gr.Markdown(f"""# FLUX.1 [dev]
78
- 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
79
- [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
80
- """)
81
-
82
- with gr.Row():
83
- prompt = gr.Text(
84
- label="Prompt",
85
- show_label=False,
86
- max_lines=1,
87
- placeholder="Enter your prompt",
88
- container=False,
89
- )
90
- run_button = gr.Button("Run", scale=0)
91
-
92
- result = gr.Text(label="Image URL", show_label=True)
93
 
94
- with gr.Accordion("Advanced Settings", open=False):
95
- seed = gr.Slider(
96
- label="Seed",
97
- minimum=0,
98
- maximum=MAX_SEED,
99
- step=1,
100
- value=0,
101
- )
102
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
103
- with gr.Row():
104
- width = gr.Slider(
105
- label="Width",
106
- minimum=256,
107
- maximum=MAX_IMAGE_SIZE,
108
- step=32,
109
- value=1024,
110
- )
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024,
117
- )
118
- with gr.Row():
119
- guidance_scale = gr.Slider(
120
- label="Guidance Scale",
121
- minimum=1,
122
- maximum=15,
123
- step=0.1,
124
- value=3.5,
125
- )
126
- num_inference_steps = gr.Slider(
127
- label="Number of inference steps",
128
- minimum=1,
129
- maximum=50,
130
- step=1,
131
- value=28,
132
- )
133
 
134
- gr.Examples(
135
- examples=examples,
136
- fn=infer,
137
- inputs=[prompt],
138
- outputs=[result, seed],
139
- cache_examples="lazy"
140
- )
141
- gr.on(
142
- triggers=[run_button.click, prompt.submit],
143
- fn=infer,
144
- inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
145
- outputs=[result, seed]
146
- )
147
 
148
- demo.launch(share=True)
 
 
 
1
+ from fastapi import FastAPI, HTTPException
2
+ from pydantic import BaseModel
3
  import numpy as np
4
  import random
5
  import torch
6
  from diffusers import DiffusionPipeline
 
7
  import boto3
8
  from io import BytesIO
9
  import time
 
27
  MAX_SEED = np.iinfo(np.int32).max
28
  MAX_IMAGE_SIZE = 2048
29
 
30
+ app = FastAPI()
31
+
32
+ class InferenceRequest(BaseModel):
33
+ prompt: str
34
+ seed: int = 42
35
+ randomize_seed: bool = False
36
+ width: int = 1024
37
+ height: int = 1024
38
+ guidance_scale: float = 5.0
39
+ num_inference_steps: int = 28
40
+
41
  def save_image_to_s3(image):
42
  img_byte_arr = BytesIO()
43
  image.save(img_byte_arr, format='PNG')
 
53
  url = f"https://{S3_BUCKET}.s3.{S3_REGION}.amazonaws.com/{filename}"
54
  return url
55
 
56
+ @app.post("/infer")
57
+ async def infer(request: InferenceRequest):
58
+ if request.randomize_seed:
59
  seed = random.randint(0, MAX_SEED)
60
+ else:
61
+ seed = request.seed
62
+
63
  generator = torch.Generator().manual_seed(seed)
 
 
 
 
 
 
 
 
64
 
65
+ try:
66
+ image = pipe(
67
+ prompt=request.prompt,
68
+ width=request.width,
69
+ height=request.height,
70
+ num_inference_steps=request.num_inference_steps,
71
+ generator=generator,
72
+ guidance_scale=request.guidance_scale
73
+ ).images[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
+ image_url = save_image_to_s3(image)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
77
+ return {"image_url": image_url, "seed": seed}
78
+ except Exception as e:
79
+ raise HTTPException(status_code=500, detail=str(e))
 
 
 
 
 
 
 
 
 
 
80
 
81
+ @app.get("/")
82
+ async def root():
83
+ return {"message": "Welcome to the IG API"}