multimodalart HF staff commited on
Commit
8ccf632
1 Parent(s): f51fcb8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +123 -0
app.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import random
4
+ import spaces
5
+ from diffusers import AuraFlowPipeline
6
+ import torch
7
+
8
+ device = "cuda" if torch.cuda.is_available() else "cpu"
9
+
10
+ pipe = AuraFlowPipeline.from_pretrained(
11
+ "fal/AuraFlow-v0.2",
12
+ torch_dtype=torch.float16
13
+ ).to("cuda")
14
+
15
+ MAX_SEED = np.iinfo(np.int32).max
16
+ MAX_IMAGE_SIZE = 1024
17
+
18
+ @spaces.GPU()
19
+ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
20
+ generator = torch.Generator().manual_seed(seed)
21
+ image = pipe(
22
+ prompt = prompt,
23
+ width = width,
24
+ height = height,
25
+ num_inference_steps = num_inference_steps,
26
+ generator = generator
27
+ ).images[0]
28
+ return image, seed
29
+
30
+ examples = [
31
+ "A photo of a lavender cat",
32
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
33
+ "An astronaut riding a green horse",
34
+ "A delicious ceviche cheesecake slice",
35
+ ]
36
+
37
+ css="""
38
+ #col-container {
39
+ margin: 0 auto;
40
+ max-width: 520px;
41
+ }
42
+ """
43
+
44
+ with gr.Blocks(css=css) as demo:
45
+
46
+ with gr.Column(elem_id="col-container"):
47
+ gr.Markdown(f"""
48
+ # FLUX.1 Schnell
49
+ Demo of the [FLUX.1 Schnell](https://huggingface.co/fal/AuraFlow) 12B parameters rectified flow transformer distilled from [FLUX.1 Pro](https://blackforestlabs.ai/) for fast generation in 4 steps
50
+ [[blog](https://blackforestlabs.ai/2024/07/31/announcing-black-forest-labs/)] [[model](https://black-forest-labs/FLUX.1-schnell)]]
51
+ """)
52
+
53
+ with gr.Row():
54
+
55
+ prompt = gr.Text(
56
+ label="Prompt",
57
+ show_label=False,
58
+ max_lines=1,
59
+ placeholder="Enter your prompt",
60
+ container=False,
61
+ )
62
+
63
+ run_button = gr.Button("Run", scale=0)
64
+
65
+ result = gr.Image(label="Result", show_label=False)
66
+
67
+ with gr.Accordion("Advanced Settings", open=False):
68
+
69
+ seed = gr.Slider(
70
+ label="Seed",
71
+ minimum=0,
72
+ maximum=MAX_SEED,
73
+ step=1,
74
+ value=0,
75
+ )
76
+
77
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
78
+
79
+ with gr.Row():
80
+
81
+ width = gr.Slider(
82
+ label="Width",
83
+ minimum=256,
84
+ maximum=MAX_IMAGE_SIZE,
85
+ step=32,
86
+ value=1024,
87
+ )
88
+
89
+ height = gr.Slider(
90
+ label="Height",
91
+ minimum=256,
92
+ maximum=MAX_IMAGE_SIZE,
93
+ step=32,
94
+ value=1024,
95
+ )
96
+
97
+ with gr.Row():
98
+
99
+
100
+ num_inference_steps = gr.Slider(
101
+ label="Number of inference steps",
102
+ minimum=1,
103
+ maximum=50,
104
+ step=1,
105
+ value=4,
106
+ )
107
+
108
+ gr.Examples(
109
+ examples = examples,
110
+ fn = infer_example,
111
+ inputs = [prompt],
112
+ outputs = [result, seed],
113
+ cache_examples="lazy"
114
+ )
115
+
116
+ gr.on(
117
+ triggers=[run_button.click, prompt.submit, negative_prompt.submit],
118
+ fn = infer,
119
+ inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
120
+ outputs = [result, seed]
121
+ )
122
+
123
+ demo.queue().launch()