Spaces:
Sleeping
Sleeping
File size: 9,375 Bytes
42c459e bc747e6 09ab406 06e4c74 3cf82c2 0ec2266 1388ad6 5d16050 bc747e6 3cf82c2 09ab406 0eaed7a 00f260b 4d56027 09ab406 5d16050 09ab406 bc747e6 3cf82c2 0ec2266 3cf82c2 09ab406 0ec2266 1388ad6 0ec2266 09ab406 06e4c74 4d56027 0ec2266 3cf82c2 0ec2266 aa3c419 0ec2266 aa3c419 0ec2266 4d56027 5d16050 09ab406 be921fa 4d56027 1771b70 be921fa 1771b70 be921fa 5d16050 1771b70 0eaed7a 5d16050 0eaed7a be921fa 5d16050 0eaed7a 5d16050 0eaed7a 5d16050 be921fa 5d16050 0eaed7a 5d16050 0eaed7a 5d16050 0eaed7a 5d16050 4d56027 0eaed7a 4d56027 5d16050 0eaed7a bc747e6 5d16050 bc747e6 be921fa 4d56027 be921fa 5d16050 be921fa 5d16050 be921fa 5d16050 be921fa fc0645c 7bcf8d7 09ab406 06e4c74 4d56027 0ec2266 4d56027 5d16050 09ab406 4d56027 5d16050 09ab406 4d56027 5d16050 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import numpy as np
import io
import soundfile as sf
import base64
import logging
import torch
import librosa
from pathlib import Path
import magic # For MIME type detection
from pydub import AudioSegment
import traceback
from logging.handlers import RotatingFileHandler
import os
import boto3
from botocore.exceptions import NoCredentialsError
from urllib.parse import quote
import time
# Import functions from other modules
from asr import transcribe, ASR_LANGUAGES
from tts import synthesize, TTS_LANGUAGES
from lid import identify
from asr import ASR_SAMPLING_RATE
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Add a file handler
file_handler = RotatingFileHandler('app.log', maxBytes=10000000, backupCount=5)
file_handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
app = FastAPI(title="MMS: Scaling Speech Technology to 1000+ languages")
# S3 Configuration
S3_BUCKET = "afri"
S3_REGION = "eu-west-3"
S3_ACCESS_KEY_ID = os.environ.get("AWS_ACCESS_KEY_ID")
S3_SECRET_ACCESS_KEY = os.environ.get("AWS_SECRET_ACCESS_KEY")
# Initialize S3 client
s3_client = boto3.client(
's3',
aws_access_key_id=S3_ACCESS_KEY_ID,
aws_secret_access_key=S3_SECRET_ACCESS_KEY,
region_name=S3_REGION
)
# Define request models
class AudioRequest(BaseModel):
audio: str # Base64 encoded audio or video data
language: str
class TTSRequest(BaseModel):
text: str
language: str
speed: float
def detect_mime_type(input_bytes):
mime = magic.Magic(mime=True)
return mime.from_buffer(input_bytes)
def extract_audio(input_bytes):
mime_type = detect_mime_type(input_bytes)
if mime_type.startswith('audio/'):
return sf.read(io.BytesIO(input_bytes))
elif mime_type.startswith('video/webm'):
audio = AudioSegment.from_file(io.BytesIO(input_bytes), format="webm")
audio_array = np.array(audio.get_array_of_samples())
sample_rate = audio.frame_rate
return audio_array, sample_rate
else:
raise ValueError(f"Unsupported MIME type: {mime_type}")
@app.post("/transcribe")
async def transcribe_audio(request: AudioRequest):
try:
input_bytes = base64.b64decode(request.audio)
audio_array, sample_rate = extract_audio(input_bytes)
# Convert to mono if stereo
if len(audio_array.shape) > 1:
audio_array = audio_array.mean(axis=1)
# Ensure audio_array is float32
audio_array = audio_array.astype(np.float32)
# Resample if necessary
if sample_rate != ASR_SAMPLING_RATE:
audio_array = librosa.resample(audio_array, orig_sr=sample_rate, target_sr=ASR_SAMPLING_RATE)
result = transcribe(audio_array, request.language)
return JSONResponse(content={"transcription": result})
except Exception as e:
logger.error(f"Error in transcribe_audio: {str(e)}", exc_info=True)
error_details = {
"error": str(e),
"traceback": traceback.format_exc()
}
return JSONResponse(
status_code=500,
content={"message": "An error occurred during transcription", "details": error_details}
)
@app.post("/synthesize")
async def synthesize_speech(request: TTSRequest):
logger.info(f"Synthesize request received: text='{request.text}', language='{request.language}', speed={request.speed}")
try:
# Extract the ISO code from the full language name
lang_code = request.language.split()[0].strip()
# Input validation
if not request.text:
raise ValueError("Text cannot be empty")
if lang_code not in TTS_LANGUAGES:
raise ValueError(f"Unsupported language: {request.language}")
if not 0.5 <= request.speed <= 2.0:
raise ValueError(f"Speed must be between 0.5 and 2.0, got {request.speed}")
logger.info(f"Calling synthesize function with lang_code: {lang_code}")
result, filtered_text = synthesize(request.text, request.language, request.speed)
logger.info(f"Synthesize function completed. Filtered text: '{filtered_text}'")
if result is None:
logger.error("Synthesize function returned None")
raise ValueError("Synthesis failed to produce audio")
sample_rate, audio = result
logger.info(f"Synthesis result: sample_rate={sample_rate}, audio_shape={audio.shape if isinstance(audio, np.ndarray) else 'not numpy array'}, audio_dtype={audio.dtype if isinstance(audio, np.ndarray) else type(audio)}")
logger.info("Converting audio to numpy array")
audio = np.array(audio, dtype=np.float32)
logger.info(f"Converted audio shape: {audio.shape}, dtype: {audio.dtype}")
logger.info("Normalizing audio")
max_value = np.max(np.abs(audio))
if max_value == 0:
logger.warning("Audio array is all zeros")
raise ValueError("Generated audio is silent (all zeros)")
audio = audio / max_value
logger.info(f"Normalized audio range: [{audio.min()}, {audio.max()}]")
logger.info("Converting to int16")
audio = (audio * 32767).astype(np.int16)
logger.info(f"Int16 audio shape: {audio.shape}, dtype: {audio.dtype}")
logger.info("Writing audio to buffer")
buffer = io.BytesIO()
sf.write(buffer, audio, sample_rate, format='wav')
buffer.seek(0)
logger.info(f"Buffer size: {buffer.getbuffer().nbytes} bytes")
# Generate a unique filename
filename = f"synthesized_audio_{int(time.time())}.wav"
# Upload to S3
try:
s3_client.upload_fileobj(buffer, S3_BUCKET, filename)
logger.info(f"File uploaded successfully to S3: {filename}")
# Generate a presigned URL
url = s3_client.generate_presigned_url('get_object',
Params={'Bucket': S3_BUCKET,
'Key': filename},
ExpiresIn=3600) # URL expires in 1 hour
encoded_url = quote(url, safe=':/?&=')
logger.info(f"Presigned URL generated: {encoded_url}")
return JSONResponse(content={"audio_url": encoded_url})
except NoCredentialsError:
logger.error("AWS credentials not available")
raise HTTPException(status_code=500, detail="Could not upload file to S3")
except ValueError as ve:
logger.error(f"ValueError in synthesize_speech: {str(ve)}", exc_info=True)
return JSONResponse(
status_code=400,
content={"message": "Invalid input", "details": str(ve)}
)
except Exception as e:
logger.error(f"Unexpected error in synthesize_speech: {str(e)}", exc_info=True)
error_details = {
"error": str(e),
"type": type(e).__name__,
"traceback": traceback.format_exc()
}
return JSONResponse(
status_code=500,
content={"message": "An unexpected error occurred during speech synthesis", "details": error_details}
)
finally:
logger.info("Synthesize request completed")
@app.post("/identify")
async def identify_language(request: AudioRequest):
try:
input_bytes = base64.b64decode(request.audio)
audio_array, sample_rate = extract_audio(input_bytes)
result = identify(audio_array)
return JSONResponse(content={"language_identification": result})
except Exception as e:
logger.error(f"Error in identify_language: {str(e)}", exc_info=True)
error_details = {
"error": str(e),
"traceback": traceback.format_exc()
}
return JSONResponse(
status_code=500,
content={"message": "An error occurred during language identification", "details": error_details}
)
@app.get("/asr_languages")
async def get_asr_languages():
try:
return JSONResponse(content=ASR_LANGUAGES)
except Exception as e:
logger.error(f"Error in get_asr_languages: {str(e)}", exc_info=True)
error_details = {
"error": str(e),
"traceback": traceback.format_exc()
}
return JSONResponse(
status_code=500,
content={"message": "An error occurred while fetching ASR languages", "details": error_details}
)
@app.get("/tts_languages")
async def get_tts_languages():
try:
return JSONResponse(content=TTS_LANGUAGES)
except Exception as e:
logger.error(f"Error in get_tts_languages: {str(e)}", exc_info=True)
error_details = {
"error": str(e),
"traceback": traceback.format_exc()
}
return JSONResponse(
status_code=500,
content={"message": "An error occurred while fetching TTS languages", "details": error_details}
) |