Afrinetwork7 commited on
Commit
42573d3
·
verified ·
1 Parent(s): b1ffeca

Update whisper_jax/layers.py

Browse files
Files changed (1) hide show
  1. whisper_jax/layers.py +0 -55
whisper_jax/layers.py CHANGED
@@ -56,61 +56,6 @@ NdInitializer = Callable[[PRNGKey, Shape, DType, InitializerAxis, InitializerAxi
56
  default_embed_init = nn.initializers.variance_scaling(1.0, "fan_in", "normal", out_axis=0)
57
 
58
 
59
- # ------------------------------------------------------------------------------
60
- # Temporary inlined JAX N-d initializer code
61
- # TODO(levskaya): remove once new JAX release is out.
62
- # ------------------------------------------------------------------------------
63
- def _compute_fans(shape: jax.core.NamedShape, in_axis=-2, out_axis=-1):
64
- """Inlined JAX `nn.initializer._compute_fans`."""
65
- if isinstance(in_axis, int):
66
- in_size = shape[in_axis]
67
- else:
68
- in_size = int(np.prod([shape[i] for i in in_axis]))
69
- if isinstance(out_axis, int):
70
- out_size = shape[out_axis]
71
- else:
72
- out_size = int(np.prod([shape[i] for i in out_axis]))
73
- receptive_field_size = shape.total / in_size / out_size
74
- fan_in = in_size * receptive_field_size
75
- fan_out = out_size * receptive_field_size
76
- return fan_in, fan_out
77
-
78
-
79
- def variance_scaling(scale, mode, distribution, in_axis=-2, out_axis=-1, dtype=jnp.float_):
80
- """Inlined JAX `nn.initializer.variance_scaling`."""
81
-
82
- def init(key, shape, dtype=dtype):
83
- return jnp.zeros(shape, dtype=dtype)
84
- dtype = jax.dtypes.canonicalize_dtype(dtype)
85
- shape = jax.core.as_named_shape(shape)
86
- fan_in, fan_out = _compute_fans(shape, in_axis, out_axis)
87
- if mode == "fan_in":
88
- denominator = fan_in
89
- elif mode == "fan_out":
90
- denominator = fan_out
91
- elif mode == "fan_avg":
92
- denominator = (fan_in + fan_out) / 2
93
- else:
94
- raise ValueError("invalid mode for variance scaling initializer: {}".format(mode))
95
- variance = jnp.array(scale / denominator, dtype=dtype)
96
-
97
- if distribution == "truncated_normal":
98
- # constant is stddev of standard normal truncated to (-2, 2)
99
- stddev = jnp.sqrt(variance) / jnp.array(0.87962566103423978, dtype)
100
- return random.truncated_normal(key, -2, 2, shape, dtype) * stddev
101
- elif distribution == "normal":
102
- return random.normal(key, shape, dtype) * jnp.sqrt(variance)
103
- elif distribution == "uniform":
104
- return random.uniform(key, shape, dtype, -1) * jnp.sqrt(3 * variance)
105
- else:
106
- raise ValueError("invalid distribution for variance scaling " "initializer: {}".format(distribution))
107
-
108
- return init
109
-
110
-
111
- # ------------------------------------------------------------------------------
112
-
113
-
114
  def nd_dense_init(scale, mode, distribution):
115
  """Initializer with in_axis, out_axis set at call time."""
116
 
 
56
  default_embed_init = nn.initializers.variance_scaling(1.0, "fan_in", "normal", out_axis=0)
57
 
58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  def nd_dense_init(scale, mode, distribution):
60
  """Initializer with in_axis, out_axis set at call time."""
61