Spaces:
Runtime error
Runtime error
Afrinetwork7
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -50,37 +50,57 @@ logger.debug(f"Compiled in {compile_time}s")
|
|
50 |
|
51 |
@app.post("/transcribe_audio")
|
52 |
async def transcribe_chunked_audio(audio_file: UploadFile, task: str = "transcribe", return_timestamps: bool = False):
|
53 |
-
logger.debug("
|
|
|
|
|
|
|
54 |
if not audio_file:
|
55 |
logger.warning("No audio file")
|
56 |
raise HTTPException(status_code=400, detail="No audio file submitted!")
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
if file_size_mb > FILE_LIMIT_MB:
|
59 |
-
logger.warning("Max file size exceeded")
|
60 |
raise HTTPException(status_code=400, detail=f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.")
|
61 |
|
62 |
try:
|
63 |
logger.debug(f"Opening audio file: {audio_file.filename}")
|
64 |
with open(audio_file.filename, "rb") as f:
|
65 |
inputs = f.read()
|
|
|
66 |
except Exception as e:
|
67 |
-
logger.error("Error reading audio file:", exc_info=True)
|
68 |
-
raise HTTPException(status_code=500, detail="Error reading audio file")
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
74 |
|
|
|
75 |
try:
|
76 |
-
logger.debug("Calling tqdm_generate to transcribe audio")
|
77 |
text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps)
|
|
|
78 |
except Exception as e:
|
79 |
-
logger.error("Error
|
80 |
-
raise HTTPException(status_code=500, detail="Error transcribing audio")
|
81 |
|
|
|
82 |
return {"text": text, "runtime": runtime}
|
83 |
|
|
|
84 |
@app.post("/transcribe_youtube")
|
85 |
async def transcribe_youtube(yt_url: str = Form(...), task: str = "transcribe", return_timestamps: bool = False):
|
86 |
logger.debug("Loading YouTube file...")
|
@@ -121,29 +141,49 @@ async def transcribe_youtube(yt_url: str = Form(...), task: str = "transcribe",
|
|
121 |
return {"html_embed": html_embed_str, "text": text, "runtime": runtime}
|
122 |
|
123 |
def tqdm_generate(inputs: dict, task: str, return_timestamps: bool):
|
|
|
|
|
124 |
inputs_len = inputs["array"].shape[0]
|
|
|
|
|
125 |
all_chunk_start_idx = np.arange(0, inputs_len, step)
|
126 |
num_samples = len(all_chunk_start_idx)
|
127 |
num_batches = math.ceil(num_samples / BATCH_SIZE)
|
|
|
128 |
|
129 |
logger.debug("Preprocessing audio for inference")
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
model_outputs = []
|
132 |
start_time = time.time()
|
133 |
-
logger.debug("
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
runtime = time.time() - start_time
|
139 |
-
logger.debug("
|
140 |
|
141 |
logger.debug("Post-processing transcription results")
|
142 |
try:
|
143 |
post_processed = pipeline.postprocess(model_outputs, return_timestamps=True)
|
|
|
144 |
except Exception as e:
|
145 |
-
logger.error("Error post-processing
|
146 |
-
raise
|
|
|
147 |
text = post_processed["text"]
|
148 |
if return_timestamps:
|
149 |
timestamps = post_processed.get("chunks")
|
@@ -152,7 +192,8 @@ def tqdm_generate(inputs: dict, task: str, return_timestamps: bool):
|
|
152 |
for chunk in timestamps
|
153 |
]
|
154 |
text = "\n".join(str(feature) for feature in timestamps)
|
155 |
-
|
|
|
156 |
return text, runtime
|
157 |
|
158 |
def _return_yt_html_embed(yt_url):
|
|
|
50 |
|
51 |
@app.post("/transcribe_audio")
|
52 |
async def transcribe_chunked_audio(audio_file: UploadFile, task: str = "transcribe", return_timestamps: bool = False):
|
53 |
+
logger.debug("Starting transcribe_chunked_audio function")
|
54 |
+
logger.debug(f"Received parameters - task: {task}, return_timestamps: {return_timestamps}")
|
55 |
+
|
56 |
+
logger.debug("Checking for audio file...")
|
57 |
if not audio_file:
|
58 |
logger.warning("No audio file")
|
59 |
raise HTTPException(status_code=400, detail="No audio file submitted!")
|
60 |
+
|
61 |
+
logger.debug(f"Audio file received: {audio_file.filename}")
|
62 |
+
|
63 |
+
try:
|
64 |
+
file_size_mb = os.stat(audio_file.filename).st_size / (1024 * 1024)
|
65 |
+
logger.debug(f"File size: {file_size_mb:.2f}MB")
|
66 |
+
except Exception as e:
|
67 |
+
logger.error(f"Error getting file size: {str(e)}", exc_info=True)
|
68 |
+
raise HTTPException(status_code=500, detail="Error checking file size")
|
69 |
+
|
70 |
if file_size_mb > FILE_LIMIT_MB:
|
71 |
+
logger.warning(f"Max file size exceeded: {file_size_mb:.2f}MB > {FILE_LIMIT_MB}MB")
|
72 |
raise HTTPException(status_code=400, detail=f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.")
|
73 |
|
74 |
try:
|
75 |
logger.debug(f"Opening audio file: {audio_file.filename}")
|
76 |
with open(audio_file.filename, "rb") as f:
|
77 |
inputs = f.read()
|
78 |
+
logger.debug("Audio file read successfully")
|
79 |
except Exception as e:
|
80 |
+
logger.error(f"Error reading audio file: {str(e)}", exc_info=True)
|
81 |
+
raise HTTPException(status_code=500, detail=f"Error reading audio file: {str(e)}")
|
82 |
|
83 |
+
try:
|
84 |
+
logger.debug("Performing ffmpeg read on audio file")
|
85 |
+
inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate)
|
86 |
+
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
|
87 |
+
logger.debug("ffmpeg read completed successfully")
|
88 |
+
except Exception as e:
|
89 |
+
logger.error(f"Error in ffmpeg read: {str(e)}", exc_info=True)
|
90 |
+
raise HTTPException(status_code=500, detail=f"Error processing audio file: {str(e)}")
|
91 |
|
92 |
+
logger.debug("Calling tqdm_generate to transcribe audio")
|
93 |
try:
|
|
|
94 |
text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps)
|
95 |
+
logger.debug(f"Transcription completed. Runtime: {runtime:.2f}s")
|
96 |
except Exception as e:
|
97 |
+
logger.error(f"Error in tqdm_generate: {str(e)}", exc_info=True)
|
98 |
+
raise HTTPException(status_code=500, detail=f"Error transcribing audio: {str(e)}")
|
99 |
|
100 |
+
logger.debug("Transcribe_chunked_audio function completed successfully")
|
101 |
return {"text": text, "runtime": runtime}
|
102 |
|
103 |
+
|
104 |
@app.post("/transcribe_youtube")
|
105 |
async def transcribe_youtube(yt_url: str = Form(...), task: str = "transcribe", return_timestamps: bool = False):
|
106 |
logger.debug("Loading YouTube file...")
|
|
|
141 |
return {"html_embed": html_embed_str, "text": text, "runtime": runtime}
|
142 |
|
143 |
def tqdm_generate(inputs: dict, task: str, return_timestamps: bool):
|
144 |
+
logger.debug(f"Starting tqdm_generate - task: {task}, return_timestamps: {return_timestamps}")
|
145 |
+
|
146 |
inputs_len = inputs["array"].shape[0]
|
147 |
+
logger.debug(f"Input array length: {inputs_len}")
|
148 |
+
|
149 |
all_chunk_start_idx = np.arange(0, inputs_len, step)
|
150 |
num_samples = len(all_chunk_start_idx)
|
151 |
num_batches = math.ceil(num_samples / BATCH_SIZE)
|
152 |
+
logger.debug(f"Number of samples: {num_samples}, Number of batches: {num_batches}")
|
153 |
|
154 |
logger.debug("Preprocessing audio for inference")
|
155 |
+
try:
|
156 |
+
dataloader = pipeline.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE)
|
157 |
+
logger.debug("Preprocessing completed successfully")
|
158 |
+
except Exception as e:
|
159 |
+
logger.error(f"Error in preprocessing: {str(e)}", exc_info=True)
|
160 |
+
raise
|
161 |
+
|
162 |
model_outputs = []
|
163 |
start_time = time.time()
|
164 |
+
logger.debug("Starting transcription...")
|
165 |
+
|
166 |
+
try:
|
167 |
+
for i, batch in enumerate(dataloader):
|
168 |
+
logger.debug(f"Processing batch {i+1}/{num_batches} with {len(batch)} samples")
|
169 |
+
batch_output = pipeline.forward(batch, batch_size=BATCH_SIZE, task=task, return_timestamps=True)
|
170 |
+
model_outputs.append(batch_output)
|
171 |
+
logger.debug(f"Batch {i+1} processed successfully")
|
172 |
+
except Exception as e:
|
173 |
+
logger.error(f"Error during batch processing: {str(e)}", exc_info=True)
|
174 |
+
raise
|
175 |
+
|
176 |
runtime = time.time() - start_time
|
177 |
+
logger.debug(f"Transcription completed in {runtime:.2f}s")
|
178 |
|
179 |
logger.debug("Post-processing transcription results")
|
180 |
try:
|
181 |
post_processed = pipeline.postprocess(model_outputs, return_timestamps=True)
|
182 |
+
logger.debug("Post-processing completed successfully")
|
183 |
except Exception as e:
|
184 |
+
logger.error(f"Error in post-processing: {str(e)}", exc_info=True)
|
185 |
+
raise
|
186 |
+
|
187 |
text = post_processed["text"]
|
188 |
if return_timestamps:
|
189 |
timestamps = post_processed.get("chunks")
|
|
|
192 |
for chunk in timestamps
|
193 |
]
|
194 |
text = "\n".join(str(feature) for feature in timestamps)
|
195 |
+
|
196 |
+
logger.debug("tqdm_generate function completed successfully")
|
197 |
return text, runtime
|
198 |
|
199 |
def _return_yt_html_embed(yt_url):
|