File size: 2,103 Bytes
0867e96
 
 
 
311ca85
a02f343
 
6054c89
0867e96
 
6054c89
a02f343
0867e96
a02f343
0867e96
 
 
 
 
 
 
a02f343
 
 
0867e96
 
 
 
a02f343
 
0867e96
 
 
 
a02f343
0867e96
 
 
 
 
a02f343
0867e96
 
 
a02f343
0867e96
 
 
 
a02f343
0867e96
 
 
 
 
 
 
 
 
 
 
 
a02f343
0867e96
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import base64
from io import BytesIO
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoProcessor
import torch
from PIL import Image
import subprocess

# Install flash-attn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

app = FastAPI()

models = {
    "microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained(
        "microsoft/Phi-3.5-vision-instruct", 
        trust_remote_code=True, 
        torch_dtype="auto", 
        attn_implementation="flash_attention_2"
    ).cuda().eval()
}

processors = {
    "microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained(
        "microsoft/Phi-3.5-vision-instruct", 
        trust_remote_code=True
    )
}

class InputData(BaseModel):
    image: str
    text_input: str
    model_id: str = "microsoft/Phi-3.5-vision-instruct"

@app.post("/run_example")
async def run_example(input_data: InputData):
    try:
        model = models[input_data.model_id]
        processor = processors[input_data.model_id]

        # Decode base64 image
        image_data = base64.b64decode(input_data.image)
        image = Image.open(BytesIO(image_data)).convert("RGB")

        user_prompt = '<|user|>\n'
        assistant_prompt = '<|assistant|>\n'
        prompt_suffix = "<|end|>\n"
        prompt = f"{user_prompt}<|image_1|>\n{input_data.text_input}{prompt_suffix}{assistant_prompt}"

        inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
        generate_ids = model.generate(
            **inputs, 
            max_new_tokens=1000, 
            eos_token_id=processor.tokenizer.eos_token_id,
        )
        generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
        response = processor.batch_decode(
            generate_ids, 
            skip_special_tokens=True, 
            clean_up_tokenization_spaces=False
        )[0]

        return {"response": response}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))