Kanji-Streaming / app.py
AgainstEntropy's picture
fix bug
5b166b1
raw
history blame
8.03 kB
import argparse
import os
from queue import SimpleQueue
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from gradio import Chatbot
from huggingface_hub import InferenceClient
from image_utils import ImageStitcher
from StreamDiffusionIO import LatentConsistencyModelStreamIO
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# Kanji-Streaming Chat
🌍 This Space is adapted from [Llama-2-7b-chat](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat) space, demonstrating how to "chat" with LLM with [Kanji-Streaming](https://github.com/AgainstEntropy/kanji).
πŸ”¨ The technique behind Kanji-Streaming is [StreamDiffusionIO](https://github.com/AgainstEntropy/StreamDiffusionIO), which is based on [StreamDiffusion](https://github.com/cumulo-autumn/StreamDiffusion), *but especially allows to render text streams into image streams*.
πŸ”Ž For more details about Kanji-Streaming, take a look at the [github repository](https://github.com/AgainstEntropy/kanji).
"""
LICENSE = """
<p/>
---
As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
"""
parser = argparse.ArgumentParser(description="Gradio launcher for Streaming-Kanji.")
parser.add_argument(
"--sd_model_id_or_path",
type=str,
default="runwayml/stable-diffusion-v1-5",
required=False,
help="Path to downloaded sd-1-5 model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--lora_path",
type=str,
default="AgainstEntropy/kanji-lora-sd-v1-5",
required=False,
help="Path to downloaded LoRA weight or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--lcm_lora_path",
type=str,
default="AgainstEntropy/kanji-lcm-lora-sd-v1-5",
required=False,
help="Path to downloaded LCM-LoRA weight or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--img_res",
type=int,
default=64,
required=False,
help="Image resolution for displaying Kanji characters in ChatBot.",
)
parser.add_argument(
"--img_per_line",
type=int,
default=16,
required=False,
help="Number of Kanji characters to display in a single line.",
)
parser.add_argument(
"--tmp_dir",
type=str,
default="./tmp",
required=False,
help="Path to save temporary images generated by StreamDiffusionIO.",
)
args = parser.parse_args()
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
DESCRIPTION += "\n<p>Running on CPU πŸ₯Ά This demo works best on GPU.</p>"
DESCRIPTION += "\n<p>This demo will get the best kanji streaming experience in localhost (or SSH forward), instead of shared link generated by Gradio.</p>"
client = InferenceClient(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
)
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
lcm_stream = LatentConsistencyModelStreamIO(
model_id_or_path=args.sd_model_id_or_path,
lcm_lora_path=args.lcm_lora_path,
lora_dict={args.lora_path: 1},
resolution=128,
device=device,
use_xformers=True,
verbose=True,
)
tmp_dir_template = f"{args.tmp_dir}/%d"
response_num = 0
response_cache = ""
stitcher = ImageStitcher(
tmp_dir=tmp_dir_template % response_num,
img_res=args.img_res,
img_per_line=args.img_per_line,
verbose=True,
)
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
seed: int,
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
if temperature < 1e-2:
temperature = 1e-2
global response_cache
generate_kwargs = dict(
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
)
formatted_prompt = format_prompt(f"{system_prompt}, {message}", chat_history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
global outputs
outputs = ""
prompt_queue = SimpleQueue()
lcm_stream.reset(seed)
stitcher.reset()
global response_num
response_num += 1
stitcher.update_tmp_dir(tmp_dir_template % response_num)
def append_to_queue():
for response in stream:
text = response.token.text
global outputs
outputs += text
text = text.strip()
if text and text not in ['</s>']:
if text.endswith("."): text = text[:-1]
prompt_queue.put(text)
prompt_queue.put(None)
append_thread = Thread(target=append_to_queue)
append_thread.start()
def show_image(prompt: str = None):
image, text = lcm_stream(prompt)
img_path = None
if image is not None:
img_path = stitcher.add(image, text)
return img_path
while True:
prompt = prompt_queue.get()
if prompt is None:
break
img_path = show_image(prompt)
if img_path is not None:
yield (img_path, )
# Continue to display the remaining images
while True:
img_path = show_image()
if img_path is not None:
yield (img_path, )
if lcm_stream.stop():
break
response_cache = outputs
print(outputs)
return outputs
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=Chatbot(height=400),
additional_inputs=[
gr.Number(
label="Seed",
info="Random Seed for Kanji Generation (maybe some kind of accent πŸ€”)",
step=1,
value=1026,
),
gr.Textbox(label="System prompt", lines=4),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
# demo.queue(max_size=20).launch(show_api=False)
demo.queue(max_size=20).launch(server_name="0.0.0.0", share=False)