import argparse
import os
from queue import SimpleQueue
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from gradio import Chatbot
from huggingface_hub import InferenceClient
from image_utils import ImageStitcher
from StreamDiffusionIO import LatentConsistencyModelStreamIO
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# Kanji-Streaming Chat
🌍 This Space is adapted from [Llama-2-7b-chat](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat) space, demonstrating how to "chat" with LLM with [Kanji-Streaming](https://github.com/AgainstEntropy/kanji).
🔨 The technique behind Kanji-Streaming is [StreamDiffusionIO](https://github.com/AgainstEntropy/StreamDiffusionIO), which is based on [StreamDiffusion](https://github.com/cumulo-autumn/StreamDiffusion), *but especially allows to render text streams into image streams*.
🔎 For more details about Kanji-Streaming, take a look at the [github repository](https://github.com/AgainstEntropy/kanji).
"""
LICENSE = """
---
As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
"""
parser = argparse.ArgumentParser(description="Gradio launcher for Streaming-Kanji.")
parser.add_argument(
"--sd_model_id_or_path",
type=str,
default="runwayml/stable-diffusion-v1-5",
required=False,
help="Path to downloaded sd-1-5 model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--lora_path",
type=str,
default="AgainstEntropy/kanji-lora-sd-v1-5",
required=False,
help="Path to downloaded LoRA weight or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--lcm_lora_path",
type=str,
default="AgainstEntropy/kanji-lcm-lora-sd-v1-5",
required=False,
help="Path to downloaded LCM-LoRA weight or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--img_res",
type=int,
default=64,
required=False,
help="Image resolution for displaying Kanji characters in ChatBot.",
)
parser.add_argument(
"--img_per_line",
type=int,
default=16,
required=False,
help="Number of Kanji characters to display in a single line.",
)
parser.add_argument(
"--tmp_dir",
type=str,
default="./tmp",
required=False,
help="Path to save temporary images generated by StreamDiffusionIO.",
)
args = parser.parse_args()
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
DESCRIPTION += "\nRunning on CPU 🥶 This demo works best on GPU.
"
client = InferenceClient(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
)
def format_prompt(message, history, system_prompt=''):
prompt = f" {system_prompt}"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
if isinstance(bot_response, tuple):
bot_response = bot_response[1]
if not bot_response.endswith(""):
bot_response += ""
prompt += f" {bot_response} "
prompt += f"[INST] {message} [/INST]"
return prompt
lcm_stream = LatentConsistencyModelStreamIO(
model_id_or_path=args.sd_model_id_or_path,
lcm_lora_path=args.lcm_lora_path,
lora_dict={args.lora_path: 1},
resolution=128,
device=device,
use_xformers=True,
verbose=True,
)
tmp_dir_template = f"{args.tmp_dir}/%d"
response_num = 0
stitcher = ImageStitcher(
tmp_dir=tmp_dir_template % response_num,
img_res=args.img_res,
img_per_line=args.img_per_line,
verbose=True,
)
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
show_original_response: bool,
seed: int,
system_prompt: str = '',
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
if temperature < 1e-2:
temperature = 1e-2
generate_kwargs = dict(
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
)
formatted_prompt = format_prompt(message, chat_history, system_prompt)
print(formatted_prompt)
streamer = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
outputs = []
prompt_queue = SimpleQueue()
lcm_stream.reset(seed)
stitcher.reset()
global response_num
response_num += 1
stitcher.update_tmp_dir(tmp_dir_template % response_num)
def append_to_queue():
for response in streamer:
text = response.token.text
outputs.append(text)
prompt = text.strip()
if prompt and prompt not in ['']:
if prompt.endswith("."): prompt = prompt[:-1]
prompt_queue.put(prompt)
prompt_queue.put(None)
append_thread = Thread(target=append_to_queue)
append_thread.start()
def show_image(prompt: str = None):
image, text = lcm_stream(prompt)
img_path = None
if image is not None:
img_path = stitcher.add(image, text)
return img_path
while True:
prompt = prompt_queue.get()
if prompt is None:
break
img_path = show_image(prompt)
if img_path is not None:
yield (img_path, )
# Continue to display the remaining images
while True:
img_path = show_image()
if img_path is not None:
yield (img_path, ''.join(outputs))
if lcm_stream.stop():
break
print(outputs)
if show_original_response:
yield ''.join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=Chatbot(height=400),
additional_inputs=[
gr.Checkbox(
label="Show original response",
value=False,
),
gr.Number(
label="Seed",
info="Random Seed for Kanji Generation (maybe some kind of accent 🤔)",
step=1,
value=1026,
),
gr.Textbox(
label="System prompt",
value="",
lines=4),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch(server_name="0.0.0.0", share=False, show_api=False)