Spaces:
Sleeping
Sleeping
Commit
·
35d30d1
1
Parent(s):
19625c8
- Dockerfile +18 -0
- app.py +132 -0
- requirements.txt +6 -0
Dockerfile
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
# Install system dependencies
|
6 |
+
RUN apt-get update && apt-get install -y \
|
7 |
+
build-essential \
|
8 |
+
&& rm -rf /var/lib/apt/lists/*
|
9 |
+
|
10 |
+
# Copy requirements and install Python packages
|
11 |
+
COPY requirements.txt .
|
12 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
13 |
+
|
14 |
+
# Copy application code
|
15 |
+
COPY app.py .
|
16 |
+
|
17 |
+
# Command to run the application
|
18 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from typing import Optional, Dict
|
5 |
+
from transformers import pipeline
|
6 |
+
import torch
|
7 |
+
import logging
|
8 |
+
from functools import lru_cache
|
9 |
+
|
10 |
+
# Configure logging
|
11 |
+
logging.basicConfig(
|
12 |
+
level=logging.INFO,
|
13 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
14 |
+
)
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
# Initialize FastAPI app
|
18 |
+
app = FastAPI()
|
19 |
+
|
20 |
+
# Configure CORS - adjust the origins based on your needs
|
21 |
+
app.add_middleware(
|
22 |
+
CORSMiddleware,
|
23 |
+
allow_origins=["*"], # Adjust this in production
|
24 |
+
allow_credentials=True,
|
25 |
+
allow_methods=["*"],
|
26 |
+
allow_headers=["*"],
|
27 |
+
)
|
28 |
+
|
29 |
+
# Model cache
|
30 |
+
MODEL_CACHE: Dict[str, any] = {}
|
31 |
+
|
32 |
+
@lru_cache()
|
33 |
+
def get_model(model_type: str):
|
34 |
+
"""Get or initialize model with caching."""
|
35 |
+
if model_type not in MODEL_CACHE:
|
36 |
+
logger.info(f"Initializing {model_type} model...")
|
37 |
+
try:
|
38 |
+
if model_type == "summarizer":
|
39 |
+
MODEL_CACHE[model_type] = pipeline(
|
40 |
+
"summarization",
|
41 |
+
model="facebook/bart-large-cnn",
|
42 |
+
device="cpu"
|
43 |
+
)
|
44 |
+
elif model_type == "detector":
|
45 |
+
MODEL_CACHE[model_type] = pipeline(
|
46 |
+
"text-classification",
|
47 |
+
model="roberta-base-openai-detector",
|
48 |
+
device="cpu"
|
49 |
+
)
|
50 |
+
logger.info(f"Successfully initialized {model_type} model")
|
51 |
+
except Exception as e:
|
52 |
+
logger.error(f"Error initializing {model_type} model: {str(e)}")
|
53 |
+
raise RuntimeError(f"Failed to initialize {model_type} model")
|
54 |
+
return MODEL_CACHE[model_type]
|
55 |
+
|
56 |
+
class TextRequest(BaseModel):
|
57 |
+
text: str
|
58 |
+
max_length: Optional[int] = 130
|
59 |
+
min_length: Optional[int] = 30
|
60 |
+
|
61 |
+
def validate_text(text: str, min_words: int = 10) -> bool:
|
62 |
+
"""Validate text input."""
|
63 |
+
return len(text.split()) >= min_words
|
64 |
+
|
65 |
+
@app.get("/")
|
66 |
+
async def root():
|
67 |
+
"""Health check endpoint."""
|
68 |
+
return {"status": "healthy", "message": "API is running"}
|
69 |
+
|
70 |
+
@app.post("/api/summarize")
|
71 |
+
async def summarize_text(request: TextRequest):
|
72 |
+
"""Endpoint to summarize text."""
|
73 |
+
try:
|
74 |
+
if not validate_text(request.text):
|
75 |
+
raise HTTPException(
|
76 |
+
status_code=400,
|
77 |
+
detail="Text is too short to summarize (minimum 10 words required)"
|
78 |
+
)
|
79 |
+
|
80 |
+
summarizer = get_model("summarizer")
|
81 |
+
summary = summarizer(
|
82 |
+
request.text,
|
83 |
+
max_length=request.max_length,
|
84 |
+
min_length=request.min_length,
|
85 |
+
do_sample=False
|
86 |
+
)
|
87 |
+
|
88 |
+
return {"summary": summary[0]["summary_text"]}
|
89 |
+
except HTTPException:
|
90 |
+
raise
|
91 |
+
except Exception as e:
|
92 |
+
logger.error(f"Error in summarization: {str(e)}")
|
93 |
+
raise HTTPException(
|
94 |
+
status_code=500,
|
95 |
+
detail="An error occurred during summarization"
|
96 |
+
)
|
97 |
+
|
98 |
+
@app.post("/api/detect")
|
99 |
+
async def detect_ai(request: TextRequest):
|
100 |
+
"""Endpoint to detect if text is AI-generated."""
|
101 |
+
try:
|
102 |
+
if not validate_text(request.text, min_words=5):
|
103 |
+
raise HTTPException(
|
104 |
+
status_code=400,
|
105 |
+
detail="Text is too short for AI detection (minimum 5 words required)"
|
106 |
+
)
|
107 |
+
|
108 |
+
detector = get_model("detector")
|
109 |
+
result = detector(request.text)[0]
|
110 |
+
|
111 |
+
prob_ai = torch.sigmoid(torch.tensor(result["score"])).item()
|
112 |
+
score = prob_ai * 100
|
113 |
+
|
114 |
+
confidence = (
|
115 |
+
"high" if abs(score - 50) > 25
|
116 |
+
else "medium" if abs(score - 50) > 10
|
117 |
+
else "low"
|
118 |
+
)
|
119 |
+
|
120 |
+
return {
|
121 |
+
"score": round(score, 2),
|
122 |
+
"likely_ai": score > 70,
|
123 |
+
"confidence": confidence
|
124 |
+
}
|
125 |
+
except HTTPException:
|
126 |
+
raise
|
127 |
+
except Exception as e:
|
128 |
+
logger.error(f"Error in AI detection: {str(e)}")
|
129 |
+
raise HTTPException(
|
130 |
+
status_code=500,
|
131 |
+
detail="An error occurred during AI detection"
|
132 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.110.0
|
2 |
+
uvicorn==0.27.1
|
3 |
+
pydantic==2.6.3
|
4 |
+
transformers==4.38.2
|
5 |
+
torch==2.2.1
|
6 |
+
python-multipart==0.0.9
|