Sebastien De Greef
commited on
Commit
·
909b9b6
1
Parent(s):
6baccb3
handle push_to_hub_gguf and inference
Browse files
app.py
CHANGED
@@ -92,7 +92,20 @@ def load_data(dataset_name, data_template_style, data_template):
|
|
92 |
dataset = dataset.map(lambda examples: formatting_prompts_func(examples, data_template), batched=True)
|
93 |
return f"Data loaded {len(dataset)} records loaded.", gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=True)
|
94 |
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
|
98 |
async def train_model(model_name: str, lora_r: int, lora_alpha: int, lora_dropout: float, per_device_train_batch_size: int, warmup_steps: int, max_steps: int,
|
@@ -143,9 +156,35 @@ async def train_model(model_name: str, lora_r: int, lora_alpha: int, lora_dropou
|
|
143 |
trainer.train()
|
144 |
return "Model training",gr.update(visible=True, interactive=False), gr.update(visible=True, interactive=True), gr.update(interactive=True)
|
145 |
|
146 |
-
def save_model():
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
# Create the Gradio interface
|
151 |
with gr.Blocks() as demo:
|
@@ -171,7 +210,7 @@ with gr.Blocks() as demo:
|
|
171 |
dataset_name = gr.Textbox(label="Dataset Name", value="yahma/alpaca-cleaned")
|
172 |
data_template_style = gr.Dropdown(label="Template", choices=["alpaca","custom"], value="alpaca", allow_custom_value=True)
|
173 |
with gr.Row():
|
174 |
-
|
175 |
|
176 |
### Instruction:
|
177 |
{}
|
@@ -184,7 +223,7 @@ with gr.Blocks() as demo:
|
|
184 |
gr.Markdown("---")
|
185 |
output_load_data = gr.Textbox(label="Data Load Status", value="Data not loaded", interactive=False)
|
186 |
load_data_btn = gr.Button("Load Dataset", interactive=True)
|
187 |
-
load_data_btn.click(load_data, inputs=[dataset_name, data_template_style,
|
188 |
|
189 |
with gr.Tab("Fine-Tuning"):
|
190 |
gr.Markdown("""### Fine-Tuned Model Parameters""")
|
@@ -238,18 +277,18 @@ with gr.Blocks() as demo:
|
|
238 |
with gr.Column():
|
239 |
merge_16bit = gr.Checkbox(label="Merge to 16bit", value=False, interactive=True)
|
240 |
merge_4bit = gr.Checkbox(label="Merge to 4bit", value=False, interactive=True)
|
241 |
-
|
242 |
gr.Markdown("---")
|
243 |
|
244 |
with gr.Row():
|
245 |
gr.Markdown("### GGUF Options")
|
246 |
with gr.Column():
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
with gr.Column():
|
251 |
-
|
252 |
-
|
253 |
gr.Markdown("---")
|
254 |
|
255 |
with gr.Row():
|
@@ -258,7 +297,6 @@ with gr.Blocks() as demo:
|
|
258 |
with gr.Column():
|
259 |
hub_model_name = gr.Textbox(label="Hub Model Name", value=f"username/model_name", interactive=True)
|
260 |
hub_token = gr.Textbox(label="Hub Token", interactive=True, type="password")
|
261 |
-
ollama_pub_key = gr.Button("HuggingFace Access Token")
|
262 |
gr.Markdown("---")
|
263 |
|
264 |
with gr.Row():
|
@@ -270,23 +308,21 @@ with gr.Blocks() as demo:
|
|
270 |
ollama_model_name = gr.Textbox(label="Ollama Model Name", value="user/model_name")
|
271 |
ollama_pub_key = gr.Button("Ollama Pub Key")
|
272 |
gr.Markdown("---")
|
273 |
-
|
|
|
274 |
|
275 |
with gr.Tab("Inference"):
|
276 |
with gr.Row():
|
277 |
-
gr.Textbox(label="Input Text", lines=4, value="""\
|
278 |
Continue the fibonnaci sequence.
|
279 |
# instruction
|
280 |
1, 1, 2, 3, 5, 8
|
281 |
# input
|
282 |
""", interactive=True)
|
283 |
-
gr.Textbox(label="Output Text", lines=4, value=""
|
284 |
-
""", interactive=False)
|
285 |
-
|
286 |
-
inference_button = gr.Button("Inference", visible=False, interactive=False)
|
287 |
-
# Output
|
288 |
|
289 |
-
|
|
|
290 |
load_btn.click(load_model, inputs=[initial_model_name, load_in_4bit, max_sequence_length], outputs=[output, load_btn, train_btn, initial_model_name, load_in_4bit, max_sequence_length])
|
291 |
|
292 |
demo.launch()
|
|
|
92 |
dataset = dataset.map(lambda examples: formatting_prompts_func(examples, data_template), batched=True)
|
93 |
return f"Data loaded {len(dataset)} records loaded.", gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=True)
|
94 |
|
95 |
+
def inference(prompt, input_text):
|
96 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
97 |
+
inputs = tokenizer(
|
98 |
+
[
|
99 |
+
prompt.format(
|
100 |
+
"Continue the fibonnaci sequence.", # instruction
|
101 |
+
"1, 1, 2, 3, 5, 8", # input
|
102 |
+
"", # output - leave this blank for generation!
|
103 |
+
)
|
104 |
+
], return_tensors = "pt").to("cuda")
|
105 |
+
|
106 |
+
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
|
107 |
+
result = tokenizer.batch_decode(outputs)
|
108 |
+
return result[0], gr.update(visible=True, interactive=True)
|
109 |
|
110 |
|
111 |
async def train_model(model_name: str, lora_r: int, lora_alpha: int, lora_dropout: float, per_device_train_batch_size: int, warmup_steps: int, max_steps: int,
|
|
|
156 |
trainer.train()
|
157 |
return "Model training",gr.update(visible=True, interactive=False), gr.update(visible=True, interactive=True), gr.update(interactive=True)
|
158 |
|
159 |
+
def save_model(model_name, hub_model_name, hub_token, gguf_16bit, gguf_8bit, gguf_4bit, gguf_custom, gguf_custom_value, merge_16bit, merge_4bit, just_lora, push_to_hub):
|
160 |
+
global model, tokenizer
|
161 |
+
if gguf_custom:
|
162 |
+
gguf_custom_value = gguf_custom_value
|
163 |
+
else:
|
164 |
+
gguf_custom_value = None
|
165 |
+
|
166 |
+
if gguf_16bit:
|
167 |
+
gguf = "f16"
|
168 |
+
elif gguf_8bit:
|
169 |
+
gguf = "Q8_0"
|
170 |
+
elif gguf_4bit:
|
171 |
+
gguf = "q4_k_m"
|
172 |
+
else:
|
173 |
+
gguf = None
|
174 |
+
|
175 |
+
if merge_16bit:
|
176 |
+
merge = "16bit"
|
177 |
+
elif merge_4bit:
|
178 |
+
merge = "4bit"
|
179 |
+
elif just_lora:
|
180 |
+
merge = "lora"
|
181 |
+
else:
|
182 |
+
merge = None
|
183 |
+
|
184 |
+
#model.push_to_hub_gguf("hf/model", tokenizer, quantization_method = "f16", token = "")
|
185 |
+
if push_to_hub:
|
186 |
+
model.push_to_hub_gguf(hub_model_name, tokenizer, quantization_method=gguf, token=hub_token)
|
187 |
+
return "Model saved", gr.update(visible=True, interactive=True)
|
188 |
|
189 |
# Create the Gradio interface
|
190 |
with gr.Blocks() as demo:
|
|
|
210 |
dataset_name = gr.Textbox(label="Dataset Name", value="yahma/alpaca-cleaned")
|
211 |
data_template_style = gr.Dropdown(label="Template", choices=["alpaca","custom"], value="alpaca", allow_custom_value=True)
|
212 |
with gr.Row():
|
213 |
+
data_template = gr.TextArea(label="Data Template", value="""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
214 |
|
215 |
### Instruction:
|
216 |
{}
|
|
|
223 |
gr.Markdown("---")
|
224 |
output_load_data = gr.Textbox(label="Data Load Status", value="Data not loaded", interactive=False)
|
225 |
load_data_btn = gr.Button("Load Dataset", interactive=True)
|
226 |
+
load_data_btn.click(load_data, inputs=[dataset_name, data_template_style, data_template], outputs=[output_load_data, load_data_btn])
|
227 |
|
228 |
with gr.Tab("Fine-Tuning"):
|
229 |
gr.Markdown("""### Fine-Tuned Model Parameters""")
|
|
|
277 |
with gr.Column():
|
278 |
merge_16bit = gr.Checkbox(label="Merge to 16bit", value=False, interactive=True)
|
279 |
merge_4bit = gr.Checkbox(label="Merge to 4bit", value=False, interactive=True)
|
280 |
+
just_lora = gr.Checkbox(label="Just LoRA Adapter", value=False, interactive=True)
|
281 |
gr.Markdown("---")
|
282 |
|
283 |
with gr.Row():
|
284 |
gr.Markdown("### GGUF Options")
|
285 |
with gr.Column():
|
286 |
+
gguf_16bit = gr.Checkbox(label="Quantize to f16", value=False, interactive=True)
|
287 |
+
gguf_8bit = gr.Checkbox(label="Quantize to 8bit (Q8_0)", value=False, interactive=True)
|
288 |
+
gguf_4bit = gr.Checkbox(label="Quantize to 4bit (q4_k_m)", value=False, interactive=True)
|
289 |
with gr.Column():
|
290 |
+
gguf_custom = gr.Checkbox(label="Custom", value=False, interactive=True)
|
291 |
+
gguf_custom_value = gr.Textbox(label="", value="Q5_K", interactive=True)
|
292 |
gr.Markdown("---")
|
293 |
|
294 |
with gr.Row():
|
|
|
297 |
with gr.Column():
|
298 |
hub_model_name = gr.Textbox(label="Hub Model Name", value=f"username/model_name", interactive=True)
|
299 |
hub_token = gr.Textbox(label="Hub Token", interactive=True, type="password")
|
|
|
300 |
gr.Markdown("---")
|
301 |
|
302 |
with gr.Row():
|
|
|
308 |
ollama_model_name = gr.Textbox(label="Ollama Model Name", value="user/model_name")
|
309 |
ollama_pub_key = gr.Button("Ollama Pub Key")
|
310 |
gr.Markdown("---")
|
311 |
+
save_button = gr.Button("Save Model", visible=True, interactive=True)
|
312 |
+
save_button.click(save_model, inputs=[model_name, hub_model_name, hub_token, gguf_16bit, gguf_8bit, gguf_4bit, gguf_custom, gguf_custom_value, merge_16bit, merge_4bit, just_lora, push_to_hub], outputs=[save_button])
|
313 |
|
314 |
with gr.Tab("Inference"):
|
315 |
with gr.Row():
|
316 |
+
input_text = gr.Textbox(label="Input Text", lines=4, value="""\
|
317 |
Continue the fibonnaci sequence.
|
318 |
# instruction
|
319 |
1, 1, 2, 3, 5, 8
|
320 |
# input
|
321 |
""", interactive=True)
|
322 |
+
output_text = gr.Textbox(label="Output Text", lines=4, value="", interactive=False)
|
|
|
|
|
|
|
|
|
323 |
|
324 |
+
inference_button = gr.Button("Inference", visible=True, interactive=True)
|
325 |
+
inference_button.click(inference, inputs=[data_template, input_text], outputs=[output_text, inference_button])
|
326 |
load_btn.click(load_model, inputs=[initial_model_name, load_in_4bit, max_sequence_length], outputs=[output, load_btn, train_btn, initial_model_name, load_in_4bit, max_sequence_length])
|
327 |
|
328 |
demo.launch()
|