Spaces:
Build error
Build error
File size: 5,521 Bytes
01523b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import asyncio
from enum import Enum
from typing import Any, Dict, List, Tuple, Union
from colorama import Fore
from agentverse.environments import BaseEnvironment
from agentverse.agents.base import BaseAgent
from agentverse.logging import logger
from agentverse.message import Message, SolverMessage, ExecutorMessage
from .. import env_registry as EnvironmentRegistry
from agentverse.environments.tasksolving_env.rules import TasksolvingRule
@EnvironmentRegistry.register("task-basic")
class BasicEnvironment(BaseEnvironment):
rule: TasksolvingRule
agents: Dict[Enum, Union[BaseAgent, List[BaseAgent]]] = None
task_description: str
cnt_turn: int = 0
max_turn: int = 10
success: bool = False
def __init__(self, **kwargs):
rule_config = kwargs.pop("rule", {})
role_assigner_config = rule_config.pop(
"role_assigner", {"type": "role_description"}
)
decision_maker_config = rule_config.pop("decision_maker", {"type": "vertical"})
executor_config = rule_config.pop("executor", {"type": "none"})
evaluator_config = rule_config.pop("evaluator", {"type": "basic"})
rule = TasksolvingRule(
role_assigner_config=role_assigner_config,
decision_maker_config=decision_maker_config,
executor_config=executor_config,
evaluator_config=evaluator_config,
)
super().__init__(rule=rule, **kwargs)
async def step(
self, advice: str = "No advice yet.", previous_plan: str = "No solution yet."
) -> List[Message]:
result = ""
logs = []
logger.info(f"Loop Round {self.cnt_turn}")
# ================== EXPERT RECRUITMENT ==================
agents = self.rule.role_assign(
self.task_description, self.agents, self.cnt_turn, advice
)
description = "\n".join([agent.role_description for agent in agents])
logs.append({"module": "Role Assigner", "content": description})
logger.info("", f"Role Assignment:\n{description}", Fore.CYAN)
# ================== EXPERT RECRUITMENT ==================
# ================== DECISION MAKING ==================
plan: List[SolverMessage] = await self.rule.decision_making(
self.task_description, self.agents, previous_plan, advice
)
flatten_plan = "\n".join([p.content for p in plan])
logs.append({"module": "Decision Maker", "content": flatten_plan})
logger.info("", f"Decision Plan:\n{flatten_plan}", Fore.YELLOW)
# ================== DECISION MAKING ==================
# ================== EXECUTION ==================
result: List[ExecutorMessage] = await self.rule.execute(
self.task_description, self.agents, plan
)
flatten_result = "\n".join([r.content for r in result])
logs.append({"module": "Executor", "content": flatten_result})
logger.info("", f"Execution Result:", Fore.GREEN)
logger.info("", flatten_result, Fore.GREEN)
# ================== EXECUTION ==================
# ================== EVALUATION ==================
score, advice = self.rule.evaluate(
self.task_description, self.agents, plan, result
)
logs.append(
{
"agent": "evaluator",
"content": f"Evaluation result: Score: {score}\nAdvice: {advice}",
}
)
logger.info(
"", f"Evaluation result:\nScore: {score}\nAdvice: {advice}", Fore.YELLOW
)
if score is not None and (
(isinstance(score, bool) and score is True)
or (isinstance(score, (list, tuple)) and all([s >= 8 for s in score]))
):
# TODO: 8 is an arbitrary threshold
logs.append({"agent": "system", "content": "Good score! Accept!"})
logger.info(
"", f"Good score! Accept! Final Result:\n{flatten_plan}", Fore.GREEN
)
self.success = True
else:
logs.append({"agent": "system", "content": "Bad score! Reject!"})
logger.info("", "Bad score! Reject!", Fore.RED)
self.cnt_turn += 1
return flatten_result, advice, flatten_plan, logs, self.success
def iter_agents(self):
for role, agent_or_agents in self.agents.items():
if isinstance(agent_or_agents, list):
for agent in agent_or_agents:
yield role, agent
else:
yield role, agent_or_agents
def get_spend(self):
total_spent = sum([agent.get_spend() for (_, agent) in self.iter_agents()])
return total_spent
def report_metrics(self) -> None:
logger.info("", "Agent spend:", Fore.GREEN)
for role, agent in self.iter_agents():
name = agent.name.split(":")[0]
logger.info(
"",
f"Agent (Role: {role}) {name}: {agent.get_spend_formatted()}",
Fore.GREEN,
)
logger.info("", f"Total spent: ${self.get_spend():.6f}", Fore.GREEN)
def is_done(self):
"""Check if the environment is done"""
return self.cnt_turn >= self.max_turn or self.success
def set_task_description(self, task_description: str = ""):
self.task_description = task_description
def reset(self) -> None:
"""Reset the environment"""
self.cnt_turn = 0
self.rule.reset()
|