File size: 1,948 Bytes
01523b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from __future__ import annotations

from typing import TYPE_CHECKING, List, Tuple

from . import evaluator_registry
from .base import BaseEvaluator

if TYPE_CHECKING:
    from agentverse.agents import EvaluatorAgent
    from agentverse.message import EvaluatorMessage, SolverMessage, ExecutorMessage


@evaluator_registry.register("basic")
class BasicEvaluator(BaseEvaluator):
    cnt_agents: int = 0

    def step(
        self,
        agent: EvaluatorAgent,
        solution: List[SolverMessage],
        result: List[ExecutorMessage],
        task_description: str,
        all_role_description: List[str],
        *args,
        **kwargs,
    ) -> EvaluatorMessage:
        flatten_solution = "\n".join([s.content for s in solution])
        flatten_result = "\n".join([r.content for r in result])
        flatten_all_role_description = "\n".join(all_role_description)
        evaluation = agent.step(
            flatten_solution,
            flatten_result,
            task_description,
            flatten_all_role_description,
        )
        return evaluation


@evaluator_registry.register("basic-message")
class BasicEvaluator(BaseEvaluator):
    cnt_agents: int = 0

    def step(
        self,
        agent: EvaluatorAgent,
        solution: List[SolverMessage],
        result: List[ExecutorMessage],
        task_description: str,
        all_role_description: List[str],
        *args,
        **kwargs,
    ) -> EvaluatorMessage:
        flatten_solution = "\n".join([s.content for s in solution])
        flatten_result = "\n".join([r.content for r in result])
        flatten_all_role_description = "\n".join(all_role_description)
        agent.add_message_to_memory(result)
        evaluation = agent.step(
            flatten_solution,
            flatten_result,
            task_description,
            flatten_all_role_description,
        )
        agent.add_message_to_memory([evaluation])
        return evaluation