Spaces:
Build error
Build error
File size: 25,395 Bytes
01523b5 9eaee4d 01523b5 9eaee4d 01523b5 9eaee4d 01523b5 9eaee4d 01523b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
from __future__ import annotations
import re
from abc import abstractmethod
import json
from typing import Union, List, Tuple, NamedTuple, TYPE_CHECKING
from . import output_parser_registry
from agentverse.utils import AgentAction, AgentFinish, AgentCriticism
from agentverse.llms import LLMResult
from agentverse.logging import logger
from pydantic import BaseModel
if TYPE_CHECKING:
from agentverse.agents.base import BaseAgent
from agentverse.environments.base import BaseEnvironment
class OutputParserError(Exception):
"""Exception raised when parsing output from a command fails."""
def __init__(self, message):
self.message = message
def __str__(self):
return "Failed to parse output of the model:%s\n " % self.message
class OutputParser(BaseModel):
"""Base class for output parsers."""
@abstractmethod
def parse(self, output: LLMResult) -> NamedTuple:
pass
@output_parser_registry.register("alice_home")
class AliceHomeParser(OutputParser):
def parse(self, output: LLMResult) -> Union[AgentAction, AgentFinish]:
text = output.content
cleaned_output = text.strip()
cleaned_output = re.sub(r"\n+", "\n", cleaned_output)
cleaned_output = cleaned_output.split("\n")
if not (
len(cleaned_output) == 2
and cleaned_output[0].startswith("Thought:")
and cleaned_output[1].startswith("Action:")
):
raise OutputParserError(text)
action = cleaned_output[1][len("Action:") :].strip()
return AgentFinish({"output": action}, text)
@output_parser_registry.register("db_diag")
@output_parser_registry.register("nlp_classroom_3players_withtool")
class CommonParser1(OutputParser):
def parse(self, output: LLMResult) -> Union[AgentAction, AgentFinish]:
text = output.content
cleaned_output = text.strip()
cleaned_output = re.sub(r"\n+", "\n", cleaned_output)
cleaned_output = cleaned_output.split("\n")
if not (
len(cleaned_output) == 3
and cleaned_output[0].startswith("Thought:")
and cleaned_output[1].startswith("Action:")
and cleaned_output[2].startswith("Action Input:")
):
raise OutputParserError(text)
action = cleaned_output[1][len("Action:") :].strip()
action_input = cleaned_output[2][len("Action Input:") :].strip()
if action in ["Speak"]:
return AgentFinish({"output": action_input}, text)
elif action == "CallOn":
return AgentFinish({"output": "[CallOn] " + action_input}, text)
elif action == "RaiseHand":
return AgentFinish({"output": "[RaiseHand] " + action_input}, text)
elif action == "Listen":
return AgentFinish({"output": ""}, text)
else:
return AgentAction(action.lower(), action_input, text)
@output_parser_registry.register("math_problem_2players_tools")
class MathProblem2PlayersToolsParser(OutputParser):
def parse(self, output: LLMResult) -> Union[AgentAction, AgentFinish]:
text = output.content
cleaned_output = text.strip()
cleaned_output = re.sub(r"\n+", "\n", cleaned_output)
cleaned_output = cleaned_output.split("\n")
if not (
len(cleaned_output) == 2
and cleaned_output[0].startswith("Action:")
and cleaned_output[1].startswith("Action Input:")
):
raise OutputParserError(text)
action = cleaned_output[0][len("Action:") :].strip()
action_input = cleaned_output[1][len("Action Input:") :].strip()
if action == "Speak":
return AgentFinish({"output": action_input}, text)
else:
return AgentAction(action, action_input, text)
@output_parser_registry.register("nlp_classroom_3players")
class NlpClassroom3PlayersParser(OutputParser):
def parse(self, output: LLMResult) -> Union[AgentAction, AgentFinish]:
text = output.content
cleaned_output = text.strip()
cleaned_output = re.sub(r"\n+", "\n", cleaned_output)
cleaned_output = cleaned_output.split("\n")
if not (
len(cleaned_output) == 2
and cleaned_output[0].startswith("Action:")
and cleaned_output[1].startswith("Action Input:")
):
raise OutputParserError(text)
action = cleaned_output[0][len("Action:") :].strip()
action_input = cleaned_output[1][len("Action Input:") :].strip()
if action == "Speak":
return AgentFinish({"output": action_input}, text)
else:
raise OutputParserError(text)
@output_parser_registry.register("nlp_classroom_9players")
class NlpClassroom9PlayersParser(OutputParser):
def parse(self, output: LLMResult) -> Union[AgentAction, AgentFinish]:
text = output.content
cleaned_output = text.strip()
cleaned_output = re.sub(r"\n+", "\n", cleaned_output)
cleaned_output = cleaned_output.split("\n")
if not (
len(cleaned_output) >= 2
and cleaned_output[0].startswith("Action:")
and cleaned_output[1].startswith("Action Input:")
):
raise OutputParserError(text)
action = cleaned_output[0][len("Action:") :].strip()
# action_input = cleaned_output[1][len("Action Input:") :].strip()
action_input = "\n".join(cleaned_output[1:]).strip()[len("Action Input:") :].strip()
if action == "Speak":
return AgentFinish({"output": action_input}, text)
elif action == "CallOn":
return AgentFinish({"output": "[CallOn] " + action_input}, text)
elif action == "RaiseHand":
return AgentFinish({"output": "[RaiseHand] " + action_input}, text)
elif action == "Listen":
return AgentFinish({"output": ""}, text)
else:
return AgentAction(action, action_input, text)
@output_parser_registry.register("nlp_classroom_9players_group")
class NlpClassroom9PlayersGroupParser(OutputParser):
def parse(self, output: LLMResult) -> Union[AgentAction, AgentFinish]:
text = output.content
cleaned_output = text.strip()
cleaned_output = re.sub(r"\n+", "\n", cleaned_output)
cleaned_output = cleaned_output.split("\n")
if not (
len(cleaned_output) == 2
and cleaned_output[0].startswith("Action:")
and cleaned_output[1].startswith("Action Input:")
):
raise OutputParserError(text)
action = cleaned_output[0][len("Action:") :].strip()
action_input = cleaned_output[1][len("Action Input:") :].strip()
if action == "Speak":
return AgentFinish({"output": action_input}, text)
elif action in ["CallOn", "RaiseHand", "GroupDiscuss"]:
return AgentFinish({"output": f"[{action}] {action_input}"}, text)
elif action == "Listen":
return AgentFinish({"output": ""}, text)
else:
return AgentAction(action, action_input, text)
@output_parser_registry.register("pokemon")
class PokemonParser(OutputParser):
def parse(self, output: LLMResult) -> Union[AgentAction, AgentFinish]:
text = output.content
cleaned_output = text.strip()
cleaned_output = re.sub(r"\n+", "\n", cleaned_output)
cleaned_output = cleaned_output.split("\n")
if not (
len(cleaned_output) == 3
and cleaned_output[0].startswith("Thought:")
and cleaned_output[1].startswith("Action:")
and cleaned_output[2].startswith("Action Input:")
):
raise OutputParserError(text)
action = cleaned_output[1][len("Action:") :].strip()
action_input = cleaned_output[2][len("Action Input:") :].strip()
try:
action_input = json.loads(action_input)
except json.JSONDecodeError:
raise OutputParserError(text)
action_input["action"] = action
return AgentFinish({"output": json.dumps(action_input)}, text)
@output_parser_registry.register("prisoner_dilemma")
class PrisonerDilemmaParser(OutputParser):
# make sure 1 1 2 2 3 3
cur_round: int = 1
encounter_cur_round: bool = False
def parse(
self, agent: "BaseAgent", environment: "BaseEnvironment", output: LLMResult
) -> Union[AgentAction, AgentFinish]:
text = output.content
cleaned_output = text.strip()
cleaned_output = re.sub(r"\n+", "\n", cleaned_output)
cleaned_output = cleaned_output.split("\n")
if not (
len(cleaned_output) >= 2
and cleaned_output[0].startswith("Action:")
and cleaned_output[1].startswith("Action Input:")
):
raise OutputParserError(text)
action = cleaned_output[0][len("Action:") :].strip()
action_input = "\n".join(cleaned_output[1:]).strip()[len("Action Input:") :].strip()
if action == "Speak":
# make sure the police count the round right
# if agent.name == "Police":
# action_input = re.sub(r'Round (\d+)', f'Round {self.cur_round}', action_input)
# self.cur_round += 1
# if self.encounter_cur_round:
# self.encounter_cur_round = False
# self.cur_round += 1
# else:
# self.encounter_cur_round = True
# each time police speak is a new round
if agent.name == "Police":
if environment.cnt_turn == (environment.max_turns - 4):
action_input = (
"Attention! You are now required to made your final decision and I will made the "
"final judgement to both of you based on this time, Please Answer now !"
)
elif environment.cnt_turn == (environment.max_turns - 2):
action_input = "Attention! Suspect2, it's now your time to make your final decision, Please Answer now !"
# elif self.cur_round == 1:
# action_input = "Hey Listen! You are both arrested, and I am going to give you both a chance to walk out of here," \
# "But you should comply with the following rules:" \
# "- If one of you are willing to testifies against the other and the other one remains silent, then the one who testifies will be released IMMEDIATELY, while the silent one will be sentenced to TEN years in prison." \
# "- If both of you remain silent, you will each receive a sentence of ONE year in prison." \
# "- It seems that always testifying is a goog strategy, So! if you both choose to testify against each other, you will each receive a sentence of FIVE years in prison." \
# "Now, it's your time to consider testifying or remaining silent. Remember this is a best chance you might ever have to walk out of here without guilty." \
# "I will noticed both of you WHEN you have to make your final decision! Before that, try to make your best!" \
self.cur_round += 1
return AgentFinish({"output": action_input}, text)
else:
raise OutputParserError(text)
@output_parser_registry.register("sde_team/sde_team_2players")
@output_parser_registry.register("sde_team/sde_team_3players")
@output_parser_registry.register("commongen")
@output_parser_registry.register("humaneval-manager")
@output_parser_registry.register("mgsm")
@output_parser_registry.register("dummy")
@output_parser_registry.register("responsegen")
class CommonParser2(OutputParser):
# def parse(self, agent, env, output: LLMResult) -> Union[AgentAction, AgentFinish]:
def parse(self, output: LLMResult) -> Union[AgentAction, AgentFinish]:
return AgentFinish({"output": output.content}, output.content)
@output_parser_registry.register("role_assigner")
class RoleAssignerParser(OutputParser):
cnt_critic_agents: int = 0
def parse(self, output: LLMResult) -> List[str]:
text = output.content
pattern = re.compile(r"\d\.\s*(.+)")
roles = pattern.findall(text)
if len(roles) < self.cnt_critic_agents:
logger.error(
f"Role assigner failed to assign roles to {self.cnt_critic_agents} critics!"
)
raise OutputParserError(text)
return roles
@output_parser_registry.register("evaluator")
class EvaluatorParser(OutputParser):
dimensions: List[str] = None
def parse(self, output: LLMResult) -> Tuple[List[int], str]:
text = output.content
cleaned_output = re.sub(r"\n+", "\n", text.strip())
checks = cleaned_output.split("\n")
patterns = [
re.compile(r"(?:\d\.\s*)?" + dimension + r":\s*(\d)")
for dimension in self.dimensions
]
try:
# find score and advice
score = [
int(pattern.findall(checks[i])[0]) for i, pattern in enumerate(patterns)
]
advice_text = "".join(checks[len(self.dimensions) :])
advice = re.findall(r"(?:\d\.\s*)?Advice:\s*(.+)", advice_text)[0]
# logger.info("Evaluator give the following advice:\n" + advice)
except (IndexError, ValueError):
# logger.error("Bad response from evaluator!")
raise OutputParserError(text)
return score, advice
@output_parser_registry.register("humaneval-solver")
class HumanevalSolverParser(OutputParser):
def parse(self, output: LLMResult) -> Union[AgentAction, AgentFinish]:
text = output.content
# start_pos = text.find("```")
# end_pos = text.rfind("```")
# if end_pos == -1:
# raise OutputParserError(text)
# text = text[start_pos:end_pos]
# cleaned_output = text.strip().strip("```").strip()
# if cleaned_output.startswith("python"):
# cleaned_output = cleaned_output[6:].strip()
# elif cleaned_output.startswith("python3"):
# cleaned_output = cleaned_output[7:].strip()
code = re.findall(r"```.*?\n(.+?)```", text, re.DOTALL)[-1]
return AgentFinish({"output": code}, text)
@output_parser_registry.register("humaneval-executor")
class HumanevalSolverParser(OutputParser):
def parse(self, output: LLMResult) -> Union[AgentAction, AgentFinish]:
text = output.content
try:
parsed_result = re.findall(
r"Thought:(.+?)Reasoning:(.+?)Criticism:(.+?)File Path:(.+?)Code:(.+?)Command:(.+)",
text,
re.DOTALL,
)[0]
cleaned_output = {
"thought": parsed_result[0].strip(),
"reasoning": parsed_result[1].strip(),
"criticism": parsed_result[2].strip(),
"file_path": parsed_result[3].strip().strip("`"),
"code": parsed_result[4]
.strip()
.strip("```")
.strip("python")
.strip("python3"),
"command": parsed_result[5].strip().strip("`"),
}
except BaseException as e:
raise OutputParserError(text)
return AgentFinish({"output": cleaned_output}, text)
@output_parser_registry.register("humaneval-evaluator")
class HumanevalEvaluatorParser(OutputParser):
dimensions: List[str] = None
def parse(self, output: LLMResult) -> Tuple[List[int], str]:
text = output.content
cleaned_output = re.sub(r"\n+", "\n", text.strip())
checks = cleaned_output.split("\n")
patterns = [
re.compile(r"(?:\d.\s*)?" + dimension + r":\s*(\d)")
for dimension in self.dimensions
]
advice = ""
for check in reversed(checks):
advice = check + advice
if check.startswith("Advice:"):
break
checks[-1] = advice
try:
# find score and advice
score = []
for pattern in patterns:
for check in checks[:-1]:
if pattern.findall(check):
score.append(bool(int(pattern.findall(check)[0])))
break
advice = re.findall(r"(?:\d.\s*)?Advice:\s*(.+)", checks[-1])[0]
# logger.info("Evaluator give the following advice:\n" + advice)
except (IndexError, ValueError):
# logger.error("Bad response from evaluator!")
raise OutputParserError(text)
return score[0], advice
@output_parser_registry.register("humaneval-critic-agree")
class HumanevalyCriticParser(OutputParser):
def parse(self, output: LLMResult) -> AgentCriticism:
text = output.content
if "[Agree]" in text:
return AgentCriticism(True, "")
else:
return AgentCriticism(False, text)
@output_parser_registry.register("mgsm-evaluator")
class MGSMEvaluatorParser(OutputParser):
dimensions: List[str] = None
def parse(self, output: LLMResult) -> Tuple[List[int], str]:
text = output.content
cleaned_output = re.sub(r"\n+", "\n", text.strip())
# checks = cleaned_output.split("\n")
patterns = [
re.compile(r"(?:\d.\s*)?" + dimension + r":\s*(\d)")
for dimension in self.dimensions
]
try:
# find score and advice
score_num = [
int(pattern.findall(cleaned_output)[0])
for i, pattern in enumerate(patterns)
][0]
if score_num == 0:
score = False
elif score_num == 1:
score = True
else:
raise ValueError("Bad score!")
pat = re.compile(r"(?:\d.\s*)?Response:\s*(.+)", re.DOTALL)
advice = pat.findall(cleaned_output)[0]
# logger.info("Evaluator give the following advice:\n" + advice)
except (IndexError, ValueError):
# logger.error("Bad response from evaluator!")
raise OutputParserError(text)
return score, advice
@output_parser_registry.register("mgsm-critic-agree")
class MGSMCriticAgreeParser(OutputParser):
def parse(self, output: LLMResult) -> AgentCriticism:
text = output.content
text = re.sub(r"\n+", "\n", text.strip())
# checks = text.split("\n")
# if not text.startswith("Thought:"):
# raise OutputParserError(text)
# if not (checks[0].startswith("Action:")):
# raise OutputParserError(text)
# if checks[0].strip(". ") == "Action: Agree":
# return AgentCriticism(True, "")
if "[Agree]" in text:
return AgentCriticism(True, "")
else:
# pattern = re.compile(r"Action Input: ([\S\n ]+)")
# try:
# criticism = pattern.findall(text)[0].strip()
# criticism = (
# re.findall(r"Output:\S?(.+)", text)[0].replace("[Wrong]", "")
# ).strip()
criticism = text.replace("[Disagree]", "").strip()
# except IndexError:
# logger.error("Bad response from critic!")
# raise OutputParserError(text)
# criticism = "I think the solution is not correct. Please think carefully and correct it."
return AgentCriticism(False, criticism)
# else:
# raise OutputParserError(text)
@output_parser_registry.register("responsegen-evaluator")
class ResponseGenEvaluatorParser(OutputParser):
dimensions: List[str] = None
def parse(self, output: LLMResult) -> Tuple[List[int], str]:
text = output.content
cleaned_output = re.sub(r"\n+", "\n", text.strip())
checks = cleaned_output.split("\n")
patterns = [
re.compile(r"(?:\d.\s*)?" + dimension + r":\s*(\d+)")
for dimension in self.dimensions
]
advice = ""
for check in reversed(checks):
advice = check + advice
if check.startswith("Advice:"):
break
checks[-1] = advice
try:
# find score and advice
score = [
int(pattern.findall(checks[i])[0]) for i, pattern in enumerate(patterns)
]
advice = re.findall(r"(?:\d.\s*)?Advice:\s*(.+)", checks[-1])[0]
# logger.info("Evaluator give the following advice:\n" + advice)
except (IndexError, ValueError):
# logger.error("Bad response from evaluator!")
raise OutputParserError(text)
return score, advice
@output_parser_registry.register("responsegen-critic")
@output_parser_registry.register("critic")
class CommonParser3(OutputParser):
def parse(self, output: LLMResult) -> AgentCriticism:
text = output.content
text = re.sub(r"\n+", "\n", text.strip())
checks = text.split("\n")
if not (checks[0].startswith("Action:")):
raise OutputParserError(text)
if checks[0].strip(". ") == "Action: Agree":
return AgentCriticism(True, "")
elif checks[0].strip(". ") == "Action: Disagree":
pattern = re.compile(r"Action Input: ([\S\n ]+)")
try:
criticism = pattern.findall(text)[0].strip()
except IndexError:
criticism = (
"I think it is not correct. Please think carefully and improve it."
)
# raise OutputParserError(text)
return AgentCriticism(False, criticism)
else:
raise OutputParserError(text)
@output_parser_registry.register("responsegen-critic-2")
class ResponseGenCriticParser(OutputParser):
def parse(self, output: LLMResult) -> AgentCriticism:
text = output.content
# text = re.sub(r"\n+", "\n", text.strip())
# checks = text.split("\n")
# if not (checks[0].startswith("Action:")):
# raise OutputParserError(text)
# if checks[0].strip(". ") == "Action: Agree":
# return AgentCriticism(True, "")
# elif checks[0].strip(". ") == "Action: Disagree":
# pattern = re.compile(r"Action Input: ([\S\n ]+)")
# try:
# criticism = pattern.findall(text)[0].strip()
# except IndexError:
# # criticism = "I think the solution is not correct. Please think carefully and correct it."
# raise OutputParserError(text)
# return AgentCriticism(False, criticism)
# else:
# raise OutputParserError(text)
result = re.findall(r"Decision:(.+?)Response:(.+)", text, re.DOTALL)
if len(result) == 0:
result = ["Disagree", "I think the response can be further improved."]
else:
result = result[0]
if "Agree" in result[0]:
return AgentCriticism(True, "")
else:
return AgentCriticism(False, result[1].strip())
@output_parser_registry.register("role-description-name-assigner")
class RoleAssignerParser(OutputParser):
cnt_critic_agents: int = 0
def parse(self, output: LLMResult) -> List[str]:
text = output.content
pattern = re.compile(r"\d+?\.\s*(.+?) - (.+)")
roles = pattern.findall(text)
if len(roles) < self.cnt_critic_agents:
logger.error(
f"Role assigner failed to assign roles to {self.cnt_critic_agents} critics!"
)
raise OutputParserError(text)
res = []
for role in roles:
res.append({"name": role[0], "description": role[1]})
return res
@output_parser_registry.register("tool-using-solver")
class SolverParser(OutputParser):
def parse(self, output: LLMResult) -> Union[AgentAction, AgentFinish]:
text = output.content
pattern = re.compile(r"\d+?\.\s*(.+?) - (.+)")
tasks = pattern.findall(text)
if len(tasks) == 0:
raise OutputParserError(text)
return AgentFinish({"output": tasks}, text)
@output_parser_registry.register("tool-using-executor")
class ToolUsingSolverParser(OutputParser):
def parse(self, output: LLMResult) -> Union[AgentAction, AgentFinish]:
if output.function_name != "":
return AgentAction(
tool=output.function_name,
tool_input=output.function_arguments,
log=output.content,
)
else:
return AgentFinish({"output": output.content}, output.content)
@output_parser_registry.register("tool-using-evaluator")
class HumanevalEvaluatorParser(OutputParser):
def parse(self, output: LLMResult) -> Tuple[List[int], str]:
text = output.content
try:
result = re.findall(r"Status:(.+?)Speak:(.+)", text, re.DOTALL)[0]
score = bool(int(result[0]))
words = result[1].strip()
except (IndexError, ValueError):
# logger.error("Bad response from evaluator!")
raise OutputParserError(text)
return score, words
|