AgentVerse's picture
bump version to 0.1.8
01523b5
import asyncio
import logging
from typing import Any, Dict, List
import json
from agentverse.agents.simulation_agent.conversation import BaseAgent
# from agentverse.environments.simulation_env.rules.base import Rule
from agentverse.environments.simulation_env.rules.base import SimulationRule as Rule
from agentverse.message import Message
from .. import env_registry as EnvironmentRegistry
from ..base import BaseEnvironment
from agentverse.initialization import load_tools
@EnvironmentRegistry.register("sde_team_given_tests")
class SdeTeamGivenTestsEnvironment(BaseEnvironment):
"""
A basic environment implementing the logic of conversation to craft code.
Args:
agents: List of agents
rule: Rule for the environment
max_turns: Maximum number of turns
cnt_turn: Current turn number
last_messages: Messages from last turn
rule_params: Variables set by the rule
"""
agents: List[BaseAgent]
rule: Rule
max_turns: int = 10
cnt_turn: int = 0
last_messages: List[Message] = []
rule_params: Dict = {}
unit_tests: str = ""
# # variables for experiment
# task_name: str = "test"
# experiment_name: str = ""
def __init__(self, rule, **kwargs):
rule_config = rule
order_config = rule_config.get("order", {"type": "sde_team_given_tests"})
visibility_config = rule_config.get("visibility", {"type": "base"})
selector_config = rule_config.get("selector", {"type": "sde_team_given_tests"})
updater_config = rule_config.get("updater", {"type": "sde_team"})
describer_config = rule_config.get("describer", {"type": "base"})
rule = Rule(
order_config,
visibility_config,
selector_config,
updater_config,
describer_config,
)
super().__init__(rule=rule, **kwargs)
self.rule_params["first_round"] = True
self.rule_params["end_flag"] = False
# # Set up logging for experiment
# filename = self.task_name.replace("/", "_")
# import os
# import os.path
# if not os.path.exists(f"human_eval_experiments/{self.experiment_name}/log"):
# os.makedirs(f"human_eval_experiments/{self.experiment_name}/log")
# file_handler = logging.FileHandler(f"human_eval_experiments/{self.experiment_name}/log/{filename}.txt")
# logging.getLogger().addHandler(file_handler)
async def step(self) -> List[Message]:
"""Run one step of the environment"""
# Get the next agent index
agent_ids = self.rule.get_next_agent_idx(self) # order
# Generate current environment description
# env_descriptions = self.rule.get_env_description(self) # describer
# # Generate the next message
# messages = await asyncio.gather(
# *[self.agents[i].astep(env_descriptions[i]) for i in agent_ids]
# ) # call chatgpt api
messages = await asyncio.gather(*[self.agents[i].astep("") for i in agent_ids])
# Track the messages to get the role of the sender
self.last_messages = messages
# Some rules will select certain messages from all the messages
selected_messages = self.rule.select_message(self, messages) # selector
self.last_messages = selected_messages
self.print_messages(selected_messages)
# Update the memory of the agents
self.rule.update_memory(self) # updater: update memory
# Update the set of visible agents for each agent
self.rule.update_visible_agents(self) # change receiver
self.cnt_turn += 1
return selected_messages
def print_messages(self, messages: List[Message]) -> None:
for message in messages:
if message is not None:
logging.info(f"{message.sender}: {message.content}")
def reset(self) -> None:
"""Reset the environment"""
self.cnt_turn = 0
self.rule.reset()
for agent in self.agents:
agent.reset()
def is_done(self) -> bool:
"""Check if the environment is done"""
if self.cnt_turn >= self.max_turns or self.rule_params["end_flag"]:
# # Write to file for experiment
# with open(f"human_eval_experiments/{self.experiment_name}/record_human_eval_prediction.jsonl", "a") as f:
# wd = dict()
# wd['task_id'] = self.task_name
# wd['code'] = self.rule_params['code']
# # print(wd)
# f.write(json.dumps(wd) + "\n")
# logging.getLogger().handlers.pop()
return True
return False