AgentVerse's picture
bump version to 0.1.8
01523b5
import json
import ast
import openai
from string import Template
from colorama import Fore
from aiohttp import ClientSession
from copy import deepcopy
from typing import TYPE_CHECKING, Any, List, Tuple
from agentverse.agents import ExecutorAgent
from agentverse.message import Message, ExecutorMessage, SolverMessage
from agentverse.logging import logger
from . import BaseExecutor, executor_registry
import asyncio
url = "http://127.0.0.1:8080"
# url = "http://8.217.97.110:8080"
SUMMARIZE_PROMPT = """Here is the text gathered from a webpage, and a question you need to answer from the webpage.
-- Webpage --
${webpage}
-- Question --
${question}
Now summarize the webpage to answer the question. If the question cannot be answer from the webpage, return the summarization of the webpage."""
@executor_registry.register("tool-using")
class ToolUsingExecutor(BaseExecutor):
num_agents: int = 3
max_tool_call_times: int = 10
tools: List[dict] = []
tool_names: List[str] = []
tool_config: str = None
cookies: dict = {}
tool_retrieval: bool = False
real_execution_agents: dict = {}
agent_names: List[str] = []
# tool_description: str
def __init__(self, *args, **kwargs):
assert kwargs.get("tool_config", None) is not None
with open(kwargs.get("tool_config"), "r") as f:
tools_dict = json.load(f)
tools = tools_dict["tools_json"]
tool_names = [t["name"] for t in tools]
# For each tool, we manually add a "thought" argument to achieve
# chain-of-thought in OpenAI's function call.
for t in tools:
properties = t["parameters"]["properties"]
thought = {
"thought": {
"type": "string",
"description": "Your internal reasoning and thoughts on the task, and how you plan to solve it based on the current attempts.",
}
}
thought.update(properties)
t["parameters"]["properties"] = thought
t["parameters"]["required"].insert(0, "thought")
super().__init__(
tools=tools,
tool_names=tool_names,
# tool_description=tool_description,
*args,
**kwargs,
)
async def astep(
self,
agent: ExecutorAgent,
task_description: str,
plans: List[SolverMessage],
*args,
**kwargs,
):
plan_this_turn = {}
agent_name_this_turn = []
for i in range(len(plans)):
name = plans[i].content.split("-")[0].strip()
if name not in self.real_execution_agents:
self.real_execution_agents[name] = deepcopy(agent)
self.real_execution_agents[name].name = name
self.agent_names.append(name)
plan_this_turn[name] = plans[i].content.split("-")[1].strip()
agent_name_this_turn.append(name)
# agents = [deepcopy(agent) for _ in range(len(plans))]
if self.tool_retrieval:
# We retrieve 5 related tools for each agent
tools_and_cookies = await asyncio.gather(
*[
self.retrieve_tools(plan_this_turn[name], self.tools)
for name in agent_name_this_turn
]
)
tools = {
name: t[0] for name, t in zip(agent_name_this_turn, tools_and_cookies)
}
cookies = {
name: t[1] for name, t in zip(agent_name_this_turn, tools_and_cookies)
}
self.update_cookies(cookies)
else:
# We just use the tools that are provided in the config file
tools = {name: self.tools for name in agent_name_this_turn}
# Record the indices of agents that have finished their tasks
# so that they will not be called again
finished_agent_names = set()
# result = ["" for _ in range(len(plan_this_turn))]
result = {name: "" for name in agent_name_this_turn}
for current_turn in range(self.max_tool_call_times):
if len(finished_agent_names) == len(agent_name_this_turn):
# All agents have finished their tasks. Break the loop.
break
# Filter out agents that have finished and gather tool actions for the rest
tool_calls = []
active_agents_names = [
name
for name in agent_name_this_turn
if name not in finished_agent_names
]
for name in active_agents_names:
if current_turn == self.max_tool_call_times - 1:
tool = [t for t in tools[name] if t["name"] == "submit_task"]
else:
tool = tools[name]
tool_calls.append(
self.real_execution_agents[name].astep(
task_description,
plan_this_turn[name],
tool,
current_turn=current_turn + 1,
)
)
# Use asyncio.gather to run astep concurrently
tool_call_decisions = await asyncio.gather(*tool_calls)
for name, tool_call_result in zip(active_agents_names, tool_call_decisions):
self.real_execution_agents[name].add_message_to_memory(
[tool_call_result]
)
# Actually call the tool and get the observation
tool_responses = await asyncio.gather(
*[
ToolUsingExecutor.call_tool(
tool.tool_name,
tool.tool_input,
self.cookies.get(name, None),
)
for name, tool in zip(active_agents_names, tool_call_decisions)
]
)
# Update each agent's memory and check if they have finished
cookies = {}
for name, response in zip(active_agents_names, tool_responses):
observation = response["observation"]
is_finish = response["is_finish"]
cookies[name] = response["cookies"]
self.real_execution_agents[name].add_message_to_memory([observation])
logger.info(
f"\nTool: {observation.tool_name}\nTool Input: {observation.tool_input}\nObservation: {observation.content}",
name,
Fore.YELLOW,
)
if is_finish:
finished_agent_names.add(name)
result[name] = observation.content
self.update_cookies(cookies)
message_result = []
for name, conclusion in result.items():
if conclusion != "":
message_result.append(
ExecutorMessage(
content=f"[{name}]: My execution result:\n{conclusion}",
sender=name,
)
)
return message_result
def update_cookies(self, cookies: dict):
for name, cookie in cookies.items():
self.cookies[name] = cookie
@classmethod
async def retrieve_tools(
cls, plan: SolverMessage, curr_tools: List = [], cookies=None
):
async with ClientSession(cookies=cookies) as session:
if cookies is None:
async with session.post(f"{url}/get_cookie", timeout=30) as response:
cookies = response.cookies
session.cookie_jar.update_cookies(cookies)
await response.text()
# Sometimes the toolserver's docker container is not ready yet
# So we need to wait for a while
await asyncio.sleep(10)
async with session.post(
f"{url}/retrieving_tools", json={"question": plan.content, "top_k": 5}
) as response:
retrieved_tools = await response.json()
retrieved_tools = ast.literal_eval(retrieved_tools)
tools = deepcopy(curr_tools)
existed_tool_names = set([t["name"] for t in tools])
# Add the retrieved tools into the final tools
for tool in retrieved_tools["tools_json"]:
if tool["name"] not in existed_tool_names:
existed_tool_names.add(tool["name"])
tools.append(tool)
return tools, cookies
@classmethod
async def call_tool(cls, command: str, arguments: dict, cookies=None):
async def _summarize_webpage(webpage, question):
summarize_prompt = Template(SUMMARIZE_PROMPT).safe_substitute(
webpage=webpage, question=question
)
for _ in range(3):
try:
response = await openai.ChatCompletion.acreate(
messages=[{"role": "user", "content": summarize_prompt}],
model="gpt-3.5-turbo-16k",
)
except:
continue
return response["choices"][0]["message"]["content"]
if command == "submit_task":
return {
"observation": ExecutorMessage(
content=f"Task Status: {arguments['status']}\nConclusion: {arguments['conclusion']}",
sender="function",
tool_name=command,
tool_input=arguments,
),
"is_finish": True,
"cookies": cookies,
}
if command == "":
return {
"observation": ExecutorMessage(
content=f"The function calling format is incorrect.",
sender="function",
tool_name=command,
tool_input=arguments,
),
"is_finish": False,
"cookies": cookies,
}
for i in range(3):
try:
async with ClientSession(cookies=cookies) as session:
if cookies is None:
async with session.post(
f"{url}/get_cookie", timeout=30
) as response:
cookies = response.cookies
session.cookie_jar.update_cookies(cookies)
await response.text()
# Sometimes the toolserver's docker container is not ready yet
# So we need to wait for a while
await asyncio.sleep(10)
payload_arguments = deepcopy(arguments)
if "thought" in payload_arguments:
del payload_arguments["thought"]
payload = {
"tool_name": command,
"arguments": payload_arguments,
}
# async with ClientSession() as session:
async with session.post(
f"{url}/execute_tool",
json=payload,
headers={
"toolbench_key": "p5ZASSLBO0EknAQLE5ecNZ7kq5i1YfY9eoWUXNxL3TM6lXwdXs"
},
timeout=30,
) as response:
content = await response.text()
if command == "WebEnv_browse_website":
content = await _summarize_webpage(
content, arguments["question"]
)
message = ExecutorMessage(
content=content,
sender="function",
tool_name=command,
tool_input=arguments,
)
# async with session.post(
# f"{url}/release_session", timeout=30
# ) as response:
# await response.text()
break
except Exception as e:
message = ExecutorMessage(
content="Failed to call the tool. Exception: " + str(e),
sender="function",
tool_name=command,
tool_input=arguments,
)
continue
return {"observation": message, "is_finish": False, "cookies": cookies}
def broadcast_messages(self, agents, messages) -> None:
for agent in agents:
agent.add_message_to_memory(messages)