File size: 19,601 Bytes
88d205f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
AI Review Service
This module provides functionality for AI-powered code review using Nebius Qwen2.5-72B-Instruct model.
"""
import os
import logging
import json
import re
import concurrent.futures
from openai import OpenAI
from dotenv import load_dotenv
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
class AIReviewService:
"""
Service for AI-powered code review using Nebius Qwen2.5-72B-Instruct model.
"""
def __init__(self):
"""
Initialize the AIReviewService.
"""
self.api_key = os.getenv('NEBIUS_API_KEY')
if not self.api_key:
logger.warning("NEBIUS_API_KEY not found in environment variables. AI review will not be available.")
else:
self.client = OpenAI(
base_url="https://api.studio.nebius.com/v1/",
api_key=self.api_key
)
logger.info("Initialized AIReviewService")
def is_available(self):
"""
Check if the AI review service is available.
Returns:
bool: True if the service is available, False otherwise.
"""
return self.api_key is not None
def review_code(self, file_path, file_content, language, context=None):
"""
Review code using Qwen.
Args:
file_path (str): The path to the file being reviewed.
file_content (str): The content of the file being reviewed.
language (str): The programming language of the file.
context (dict, optional): Additional context for the review.
Returns:
dict: The review results.
"""
if not self.is_available():
return {
'status': 'error',
'error': 'AI review service is not available. Please set NEBIUS_API_KEY in environment variables.',
'suggestions': [],
}
logger.info(f"Reviewing {language} code in {file_path}")
# Prepare the prompt for Qwen
prompt = self._prepare_prompt(file_path, file_content, language, context)
try:
# Call Nebius API with Qwen2.5-72B-Instruct model
response = self.client.chat.completions.create(
model="Qwen/Qwen2.5-72B-Instruct",
max_tokens=4000,
temperature=0,
messages=[
{"role": "system", "content": self._get_system_prompt(language)},
{"role": "user", "content": prompt}
]
)
# Parse the response
review_text = response.choices[0].message.content
suggestions = self._parse_review(review_text)
return {
'status': 'success',
'review_text': review_text,
'suggestions': suggestions,
}
except Exception as e:
logger.error(f"Error calling Qwen API: {e}")
return {
'status': 'error',
'error': str(e),
'suggestions': [],
}
def review_repository(self, repo_path, files, languages, analysis_results=None):
"""
Review a repository using Qwen with parallel processing.
Args:
repo_path (str): The path to the repository.
files (list): A list of files to review.
languages (list): A list of programming languages in the repository.
analysis_results (dict, optional): Results from other analysis tools.
Returns:
dict: The review results.
"""
if not self.is_available():
return {
'status': 'error',
'error': 'AI review service is not available. Please set NEBIUS_API_KEY in environment variables.',
'reviews': {},
'summary': '',
}
logger.info(f"Reviewing repository at {repo_path} with {len(files)} files")
# Limit the number of files to review to avoid excessive API usage
max_files = 20
if len(files) > max_files:
logger.warning(f"Too many files to review ({len(files)}). Limiting to {max_files} files.")
files = files[:max_files]
# Function to review a single file
def review_file(file_path):
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
file_content = f.read()
# Determine the language based on file extension
_, ext = os.path.splitext(file_path)
language = self._get_language_from_extension(ext)
if language:
# Provide context from analysis results if available
context = None
if analysis_results:
context = self._extract_context_for_file(file_path, analysis_results)
# Review the file
review_result = self.review_code(file_path, file_content, language, context)
return file_path, review_result
return file_path, {
'status': 'error',
'error': f'Unsupported language for file {file_path}',
'suggestions': [],
}
except Exception as e:
logger.error(f"Error reviewing file {file_path}: {e}")
return file_path, {
'status': 'error',
'error': str(e),
'suggestions': [],
}
# Review files in parallel using ThreadPoolExecutor
reviews = {}
with concurrent.futures.ThreadPoolExecutor(max_workers=min(5, len(files))) as executor:
# Submit all file review tasks
future_to_file = {executor.submit(review_file, file_path): file_path for file_path in files}
# Process results as they complete
for future in concurrent.futures.as_completed(future_to_file):
file_path = future_to_file[future]
try:
path, result = future.result()
reviews[path] = result
logger.info(f"Completed review for {path}")
except Exception as e:
logger.error(f"Exception occurred during review of {file_path}: {e}")
reviews[file_path] = {
'status': 'error',
'error': str(e),
'suggestions': [],
}
# Generate a summary of the review
summary = self._generate_repository_summary(repo_path, reviews, languages, analysis_results)
return {
'status': 'success',
'reviews': reviews,
'summary': summary,
}
def _prepare_prompt(self, file_path, file_content, language, context=None):
"""
Prepare a prompt for Qwen.
Args:
file_path (str): The path to the file being reviewed.
file_content (str): The content of the file being reviewed.
language (str): The programming language of the file.
context (dict, optional): Additional context for the review.
Returns:
str: The prompt for Qwen.
"""
prompt = f"""Please review the following {language} code and provide constructive feedback:
File: {file_path}
```{language}
{file_content}
```
"""
if context:
prompt += "Additional context:\n"
if 'issues' in context:
prompt += "\nIssues detected by other tools:\n"
for issue in context['issues']:
prompt += f"- {issue.get('issue', 'Unknown issue')} at line {issue.get('line', 'unknown')}: {issue.get('description', '')}\n"
if 'vulnerabilities' in context:
prompt += "\nSecurity vulnerabilities detected:\n"
for vuln in context['vulnerabilities']:
prompt += f"- {vuln.get('issue', 'Unknown vulnerability')} at line {vuln.get('line', 'unknown')}: {vuln.get('description', '')}\n"
prompt += "\nPlease provide your review with the following sections:\n"
prompt += "1. Code Quality: Assess the overall quality, readability, and maintainability.\n"
prompt += "2. Potential Issues: Identify any bugs, edge cases, or potential problems.\n"
prompt += "3. Security Concerns: Highlight any security vulnerabilities or risks.\n"
prompt += "4. Performance Considerations: Note any performance bottlenecks or inefficiencies.\n"
prompt += "5. Specific Suggestions: Provide concrete, actionable suggestions for improvement.\n"
return prompt
def _get_system_prompt(self, language):
"""
Get the system prompt for Qwen based on the programming language.
Args:
language (str): The programming language.
Returns:
str: The system prompt for Qwen.
"""
base_prompt = """You are an expert code reviewer with deep knowledge of software development best practices, design patterns, and security.
Your task is to review code and provide constructive, actionable feedback.
Be thorough but prioritize the most important issues.
Format your response in markdown with clear sections.
For each suggestion, include the line number, the issue, and a recommended solution.
Focus on:
- Code quality and readability
- Potential bugs and edge cases
- Security vulnerabilities
- Performance optimizations
- Adherence to best practices
Your feedback should be specific, actionable, and educational. Explain why each suggestion matters.
Do not hallucinate vulnerabilities. Base claims on code patterns.
"""
# Add language-specific guidance
if language == 'Python':
base_prompt += "\nFor Python code, pay special attention to PEP 8 compliance, proper exception handling, and Pythonic idioms."
elif language in ['JavaScript', 'TypeScript']:
base_prompt += "\nFor JavaScript/TypeScript code, focus on modern ES6+ practices, proper async handling, and potential type issues."
elif language == 'Java':
base_prompt += "\nFor Java code, examine object-oriented design, proper exception handling, and resource management."
elif language == 'Go':
base_prompt += "\nFor Go code, check for idiomatic Go patterns, proper error handling, and concurrency issues."
elif language == 'Rust':
base_prompt += "\nFor Rust code, verify memory safety, proper use of ownership/borrowing, and idiomatic Rust patterns."
return base_prompt
def _parse_review(self, review_text):
"""
Parse the review text from Qwen to extract structured suggestions.
Args:
review_text (str): The review text from Qwen.
Returns:
list: A list of structured suggestions.
"""
suggestions = []
# Split the review into sections
sections = review_text.split('##')
for section in sections:
if not section.strip():
continue
# Extract suggestions from the section
lines = section.strip().split('\n')
section_title = lines[0].strip()
current_suggestion = None
for line in lines[1:]:
line = line.strip()
if not line:
continue
# Check if this line starts a new suggestion (often contains line numbers)
line_number_match = re.search(r'line\s+(\d+)', line, re.IGNORECASE)
if line_number_match or line.startswith('- ') or line.startswith('* '):
# Save the previous suggestion if it exists
if current_suggestion:
suggestions.append(current_suggestion)
# Start a new suggestion
line_number = int(line_number_match.group(1)) if line_number_match else None
current_suggestion = {
'section': section_title,
'line': line_number,
'description': line,
'details': '',
}
elif current_suggestion:
# Add to the details of the current suggestion
current_suggestion['details'] += line + '\n'
# Add the last suggestion in the section
if current_suggestion:
suggestions.append(current_suggestion)
return suggestions
# The review_repository method is already implemented above
def _get_language_from_extension(self, extension):
"""
Get the programming language from a file extension.
Args:
extension (str): The file extension.
Returns:
str: The programming language, or None if unknown.
"""
extension_to_language = {
'.py': 'Python',
'.js': 'JavaScript',
'.jsx': 'JavaScript',
'.ts': 'TypeScript',
'.tsx': 'TypeScript',
'.java': 'Java',
'.go': 'Go',
'.rs': 'Rust',
'.cpp': 'C++',
'.cc': 'C++',
'.c': 'C',
'.h': 'C',
'.hpp': 'C++',
'.cs': 'C#',
'.php': 'PHP',
'.rb': 'Ruby',
}
return extension_to_language.get(extension.lower())
def _extract_context_for_file(self, file_path, analysis_results):
"""
Extract relevant context for a file from analysis results.
Args:
file_path (str): The path to the file.
analysis_results (dict): Results from other analysis tools.
Returns:
dict: Context for the file.
"""
context = {
'issues': [],
'vulnerabilities': [],
}
# Extract code quality issues
if 'code_analysis' in analysis_results:
for language, language_results in analysis_results['code_analysis'].items():
for issue in language_results.get('issues', []):
if issue.get('file', '') == file_path:
context['issues'].append(issue)
# Extract security vulnerabilities
if 'security_scan' in analysis_results:
for language, language_results in analysis_results['security_scan'].items():
for vuln in language_results.get('vulnerabilities', []):
if vuln.get('file', '') == file_path:
context['vulnerabilities'].append(vuln)
# Extract performance issues
if 'performance_analysis' in analysis_results:
for language, language_results in analysis_results['performance_analysis'].get('language_results', {}).items():
for issue in language_results.get('issues', []):
if issue.get('file', '') == file_path:
context['issues'].append(issue)
return context
def _generate_repository_summary(self, repo_path, reviews, languages, analysis_results=None):
"""
Generate a summary of the repository review.
Args:
repo_path (str): The path to the repository.
reviews (dict): The review results for each file.
languages (list): A list of programming languages in the repository.
analysis_results (dict, optional): Results from other analysis tools.
Returns:
str: A summary of the repository review.
"""
if not self.is_available():
return "AI review service is not available. Please set ANTHROPIC_API_KEY in environment variables."
# Prepare the prompt for Qwen
prompt = f"""Please provide a summary of the code review for the repository at {repo_path}.
Languages used in the repository: {', '.join(languages)}
"""
# Add information about the files reviewed
prompt += "\nFiles reviewed:\n"
for file_path, review in reviews.items():
if review.get('status') == 'success':
suggestion_count = len(review.get('suggestions', []))
prompt += f"- {file_path}: {suggestion_count} suggestions\n"
else:
prompt += f"- {file_path}: Error - {review.get('error', 'Unknown error')}\n"
# Add summary of analysis results if available
if analysis_results:
prompt += "\nAnalysis results summary:\n"
if 'code_analysis' in analysis_results:
total_issues = sum(result.get('issue_count', 0) for result in analysis_results['code_analysis'].values())
prompt += f"- Code quality issues: {total_issues}\n"
if 'security_scan' in analysis_results:
total_vulns = sum(result.get('vulnerability_count', 0) for result in analysis_results['security_scan'].values())
prompt += f"- Security vulnerabilities: {total_vulns}\n"
if 'performance_analysis' in analysis_results:
total_perf_issues = sum(result.get('issue_count', 0) for result in analysis_results['performance_analysis'].get('language_results', {}).values())
prompt += f"- Performance issues: {total_perf_issues}\n"
prompt += "\nPlease provide a comprehensive summary of the code review, including:\n"
prompt += "1. Overall code quality assessment\n"
prompt += "2. Common patterns and issues found across the codebase\n"
prompt += "3. Strengths of the codebase\n"
prompt += "4. Areas for improvement\n"
prompt += "5. Prioritized recommendations\n"
try:
# Call Nebius API with Qwen2.5-72B-Instruct model
response = self.client.chat.completions.create(
model="Qwen/Qwen2.5-72B-Instruct",
max_tokens=4000,
temperature=0,
messages=[
{"role": "system", "content": "You are an expert code reviewer providing a summary of a repository review. Be concise, insightful, and actionable in your feedback. Format your response in markdown with clear sections."},
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content
except Exception as e:
logger.error(f"Error generating repository summary: {e}")
return f"Error generating repository summary: {e}" |