File size: 32,311 Bytes
88d205f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Performance Analyzer Service
This module provides functionality for analyzing code performance across different languages.
"""
import os
import re
import logging
import subprocess
import json
import concurrent.futures
from collections import defaultdict
logger = logging.getLogger(__name__)
class PerformanceAnalyzer:
"""
Service for analyzing code performance across different languages.
"""
def __init__(self):
"""
Initialize the PerformanceAnalyzer.
"""
logger.info("Initialized PerformanceAnalyzer")
self.analyzers = {
'Python': self._analyze_python_performance,
'JavaScript': self._analyze_javascript_performance,
'TypeScript': self._analyze_typescript_performance,
'Java': self._analyze_java_performance,
'Go': self._analyze_go_performance,
'Rust': self._analyze_rust_performance,
}
# Initialize performance patterns for different languages
self._init_performance_patterns()
def _init_performance_patterns(self):
"""
Initialize performance patterns for different languages.
"""
# Python performance patterns
self.python_patterns = [
{
'name': 'Inefficient list comprehension',
'pattern': r'\[.*?for.*?in.*?for.*?in.*?\]',
'severity': 'medium',
'description': 'Nested list comprehensions can be inefficient for large datasets.',
'suggestion': 'Consider using itertools or breaking into separate operations.',
},
{
'name': 'String concatenation in loop',
'pattern': r'for.*?\+\=\s*[\'\"](.*?)[\'\"]',
'severity': 'medium',
'description': 'String concatenation in loops is inefficient in Python.',
'suggestion': 'Use string join() or a list of strings with join() at the end.',
},
{
'name': 'Global variable in loop',
'pattern': r'global\s+\w+.*?for\s+\w+\s+in',
'severity': 'medium',
'description': 'Modifying global variables in loops can be inefficient.',
'suggestion': 'Use local variables and return values instead.',
},
{
'name': 'Inefficient dict/list access in loop',
'pattern': r'for.*?in.*?:\s*.*?\[.*?\]\s*=',
'severity': 'medium',
'description': 'Repeatedly accessing dictionary or list elements in a loop can be inefficient.',
'suggestion': 'Consider using a local variable to store the accessed element.',
},
{
'name': 'Using range(len())',
'pattern': r'for\s+\w+\s+in\s+range\(len\(',
'severity': 'low',
'description': 'Using range(len()) is less readable than using enumerate().',
'suggestion': 'Use enumerate() instead of range(len()).',
},
{
'name': 'Inefficient regular expression',
'pattern': r're\.compile\([\'\"].*?[\+\*].*?[\'\"]\)',
'severity': 'medium',
'description': 'Complex regular expressions can be inefficient.',
'suggestion': 'Simplify the regular expression or use more specific patterns.',
},
{
'name': 'Large memory allocation',
'pattern': r'\[.*?for.*?in\s+range\(\d{7,}\)\]',
'severity': 'high',
'description': 'Creating large lists in memory can cause performance issues.',
'suggestion': 'Use generators or iterators instead of creating large lists.',
},
{
'name': 'Inefficient database query in loop',
'pattern': r'for.*?in.*?:\s*.*?\.execute\(',
'severity': 'high',
'description': 'Executing database queries in a loop can be very inefficient.',
'suggestion': 'Use batch operations or join queries instead of querying in a loop.',
},
]
# JavaScript performance patterns
self.javascript_patterns = [
{
'name': 'DOM manipulation in loop',
'pattern': r'for\s*\(.*?\)\s*\{.*?document\..*?\}',
'severity': 'high',
'description': 'Manipulating the DOM inside loops can cause performance issues.',
'suggestion': 'Batch DOM updates or use DocumentFragment.',
},
{
'name': 'Inefficient array manipulation',
'pattern': r'for\s*\(.*?\)\s*\{.*?splice\(.*?\}',
'severity': 'medium',
'description': 'Using splice() in loops can be inefficient for large arrays.',
'suggestion': 'Consider using filter() or other array methods.',
},
{
'name': 'Creating functions in loops',
'pattern': r'for\s*\(.*?\)\s*\{.*?function\s*\(.*?\)\s*\{.*?\}.*?\}',
'severity': 'medium',
'description': 'Creating functions inside loops can lead to performance issues.',
'suggestion': 'Define the function outside the loop and reference it.',
},
{
'name': 'Inefficient string concatenation',
'pattern': r'for\s*\(.*?\)\s*\{.*?\+\=\s*[\'\"](.*?)[\'\"].*?\}',
'severity': 'medium',
'description': 'String concatenation in loops can be inefficient.',
'suggestion': 'Use array join() or template literals.',
},
{
'name': 'Using eval()',
'pattern': r'eval\(',
'severity': 'high',
'description': 'Using eval() is slow and can introduce security vulnerabilities.',
'suggestion': 'Avoid using eval() and use safer alternatives.',
},
{
'name': 'Inefficient event handling',
'pattern': r'addEventListener\([\'\"].*?[\'\"],\s*function',
'severity': 'medium',
'description': 'Anonymous functions in event listeners can lead to memory leaks.',
'suggestion': 'Use named functions for event handlers to allow proper cleanup.',
},
]
# TypeScript performance patterns (extends JavaScript patterns)
self.typescript_patterns = self.javascript_patterns + [
{
'name': 'Inefficient type assertion',
'pattern': r'<.*?>\s*\(.*?\)',
'severity': 'low',
'description': 'Excessive type assertions can impact runtime performance.',
'suggestion': 'Use proper typing and interfaces instead of frequent type assertions.',
},
{
'name': 'Complex type definitions',
'pattern': r'type\s+\w+\s*=\s*\{[^\}]{500,}\}',
'severity': 'medium',
'description': 'Overly complex type definitions can slow down the TypeScript compiler.',
'suggestion': 'Break complex types into smaller, reusable interfaces.',
},
]
# Java performance patterns
self.java_patterns = [
{
'name': 'Inefficient string concatenation',
'pattern': r'for\s*\(.*?\)\s*\{.*?\+\=\s*[\'\"](.*?)[\'\"].*?\}',
'severity': 'medium',
'description': 'String concatenation in loops is inefficient in Java.',
'suggestion': 'Use StringBuilder or StringBuffer instead.',
},
{
'name': 'Creating objects in loops',
'pattern': r'for\s*\(.*?\)\s*\{.*?new\s+\w+\(.*?\).*?\}',
'severity': 'medium',
'description': 'Creating objects inside loops can lead to excessive garbage collection.',
'suggestion': 'Create objects outside the loop or use object pooling.',
},
{
'name': 'Inefficient collection iteration',
'pattern': r'for\s*\(int\s+i\s*=\s*0.*?i\s*<\s*\w+\.size\(\).*?\)',
'severity': 'low',
'description': 'Calling size() in each iteration can be inefficient for some collections.',
'suggestion': 'Store the size in a variable before the loop.',
},
{
'name': 'Using boxed primitives in performance-critical code',
'pattern': r'(Integer|Boolean|Double|Float|Long)\s+\w+\s*=',
'severity': 'low',
'description': 'Using boxed primitives can be less efficient than primitive types.',
'suggestion': 'Use primitive types (int, boolean, etc.) in performance-critical code.',
},
{
'name': 'Inefficient exception handling',
'pattern': r'try\s*\{.*?\}\s*catch\s*\(Exception\s+\w+\)\s*\{',
'severity': 'medium',
'description': 'Catching generic exceptions can hide issues and impact performance.',
'suggestion': 'Catch specific exceptions and handle them appropriately.',
},
]
# Go performance patterns
self.go_patterns = [
{
'name': 'Inefficient string concatenation',
'pattern': r'for\s+.*?\{.*?\+\=\s*[\'\"](.*?)[\'\"].*?\}',
'severity': 'medium',
'description': 'String concatenation in loops can be inefficient.',
'suggestion': 'Use strings.Builder for string concatenation in loops.',
},
{
'name': 'Inefficient slice operations',
'pattern': r'for\s+.*?\{.*?append\(.*?\}',
'severity': 'medium',
'description': 'Repeatedly appending to a slice can cause multiple allocations.',
'suggestion': 'Pre-allocate slices with make() when the size is known.',
},
{
'name': 'Mutex in hot path',
'pattern': r'func\s+\(.*?\)\s+\w+\(.*?\)\s+\{.*?Lock\(\).*?Unlock\(\)',
'severity': 'medium',
'description': 'Using mutexes in frequently called functions can impact performance.',
'suggestion': 'Consider using atomic operations or redesigning for less contention.',
},
{
'name': 'Inefficient map iteration',
'pattern': r'for\s+\w+,\s*_\s*:=\s*range',
'severity': 'low',
'description': 'Iterating over maps when only keys are needed can be inefficient.',
'suggestion': 'Use a slice for ordered data when possible.',
},
]
# Rust performance patterns
self.rust_patterns = [
{
'name': 'Inefficient string operations',
'pattern': r'for\s+.*?\{.*?\.push_str\(.*?\}',
'severity': 'medium',
'description': 'Repeatedly pushing to strings can be inefficient.',
'suggestion': 'Use string concatenation with the format! macro or String::with_capacity().',
},
{
'name': 'Excessive cloning',
'pattern': r'\.clone\(\)',
'severity': 'medium',
'description': 'Excessive cloning can impact performance.',
'suggestion': 'Use references or ownership transfer where possible.',
},
{
'name': 'Inefficient vector operations',
'pattern': r'for\s+.*?\{.*?\.push\(.*?\}',
'severity': 'medium',
'description': 'Repeatedly pushing to vectors can cause multiple allocations.',
'suggestion': 'Pre-allocate vectors with Vec::with_capacity() when the size is known.',
},
{
'name': 'Box allocation in loops',
'pattern': r'for\s+.*?\{.*?Box::new\(.*?\}',
'severity': 'medium',
'description': 'Allocating boxes in loops can be inefficient.',
'suggestion': 'Allocate memory outside the loop when possible.',
},
]
def analyze_repository(self, repo_path, languages):
"""
Analyze code performance in a repository for the specified languages using parallel processing.
Args:
repo_path (str): The path to the repository.
languages (list): A list of programming languages to analyze.
Returns:
dict: A dictionary containing performance analysis results for each language.
"""
logger.info(f"Analyzing performance in repository at {repo_path} for languages: {languages}")
results = {}
# Define a function to analyze a single language
def analyze_language(language):
if language in self.analyzers:
try:
logger.info(f"Analyzing {language} code performance in {repo_path}")
return language, self.analyzers[language](repo_path)
except Exception as e:
logger.error(f"Error analyzing {language} code performance: {e}")
return language, {
'status': 'error',
'error': str(e),
'issues': [],
}
else:
logger.warning(f"No performance analyzer available for {language}")
return language, {
'status': 'not_supported',
'message': f"Performance analysis for {language} is not supported yet.",
'issues': [],
}
# Use ThreadPoolExecutor to analyze languages in parallel
with concurrent.futures.ThreadPoolExecutor(max_workers=min(len(languages), 5)) as executor:
# Submit all language analysis tasks
future_to_language = {executor.submit(analyze_language, language): language for language in languages}
# Process results as they complete
for future in concurrent.futures.as_completed(future_to_language):
language = future_to_language[future]
try:
lang, result = future.result()
results[lang] = result
logger.info(f"Completed performance analysis for {lang}")
except Exception as e:
logger.error(f"Exception occurred during performance analysis of {language}: {e}")
results[language] = {
'status': 'error',
'error': str(e),
'issues': [],
}
# Identify hotspots (files with multiple performance issues)
hotspots = self._identify_hotspots(results)
return {
'language_results': results,
'hotspots': hotspots,
}
def _identify_hotspots(self, results):
"""
Identify performance hotspots across all languages.
Args:
results (dict): Performance analysis results for each language.
Returns:
list: A list of hotspot files with multiple performance issues.
"""
# Count issues per file across all languages
file_issue_count = defaultdict(int)
file_issues = defaultdict(list)
for language, language_result in results.items():
for issue in language_result.get('issues', []):
file_path = issue.get('file', '')
if file_path:
file_issue_count[file_path] += 1
file_issues[file_path].append(issue)
# Identify hotspots (files with multiple issues)
hotspots = []
for file_path, count in sorted(file_issue_count.items(), key=lambda x: x[1], reverse=True):
if count >= 2: # Files with at least 2 issues are considered hotspots
hotspots.append({
'file': file_path,
'issue_count': count,
'issues': file_issues[file_path],
})
return hotspots[:10] # Return top 10 hotspots
def _analyze_python_performance(self, repo_path):
"""
Analyze Python code for performance issues.
Args:
repo_path (str): The path to the repository.
Returns:
dict: Performance analysis results for Python code.
"""
logger.info(f"Analyzing Python code performance in {repo_path}")
# Find Python files
python_files = []
for root, _, files in os.walk(repo_path):
for file in files:
if file.endswith('.py'):
python_files.append(os.path.join(root, file))
if not python_files:
return {
'status': 'no_files',
'message': 'No Python files found in the repository.',
'issues': [],
}
# Analyze each Python file
issues = []
for file_path in python_files:
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
# Check for performance patterns
for pattern in self.python_patterns:
matches = re.finditer(pattern['pattern'], content)
for match in matches:
line_number = content[:match.start()].count('\n') + 1
code_snippet = match.group(0)
issues.append({
'file': file_path,
'line': line_number,
'code': code_snippet,
'issue': pattern['name'],
'description': pattern['description'],
'suggestion': pattern['suggestion'],
'severity': pattern['severity'],
'language': 'Python',
})
except Exception as e:
logger.error(f"Error analyzing Python file {file_path}: {e}")
# Group issues by severity
issues_by_severity = defaultdict(list)
for issue in issues:
severity = issue.get('severity', 'unknown')
issues_by_severity[severity].append(issue)
return {
'status': 'success',
'issues': issues,
'issues_by_severity': dict(issues_by_severity),
'issue_count': len(issues),
'files_analyzed': len(python_files),
}
def _analyze_javascript_performance(self, repo_path):
"""
Analyze JavaScript code for performance issues.
Args:
repo_path (str): The path to the repository.
Returns:
dict: Performance analysis results for JavaScript code.
"""
logger.info(f"Analyzing JavaScript code performance in {repo_path}")
# Find JavaScript files
js_files = []
for root, _, files in os.walk(repo_path):
if 'node_modules' in root:
continue
for file in files:
if file.endswith(('.js', '.jsx')):
js_files.append(os.path.join(root, file))
if not js_files:
return {
'status': 'no_files',
'message': 'No JavaScript files found in the repository.',
'issues': [],
}
# Analyze each JavaScript file
issues = []
for file_path in js_files:
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
# Check for performance patterns
for pattern in self.javascript_patterns:
matches = re.finditer(pattern['pattern'], content)
for match in matches:
line_number = content[:match.start()].count('\n') + 1
code_snippet = match.group(0)
issues.append({
'file': file_path,
'line': line_number,
'code': code_snippet,
'issue': pattern['name'],
'description': pattern['description'],
'suggestion': pattern['suggestion'],
'severity': pattern['severity'],
'language': 'JavaScript',
})
except Exception as e:
logger.error(f"Error analyzing JavaScript file {file_path}: {e}")
# Group issues by severity
issues_by_severity = defaultdict(list)
for issue in issues:
severity = issue.get('severity', 'unknown')
issues_by_severity[severity].append(issue)
return {
'status': 'success',
'issues': issues,
'issues_by_severity': dict(issues_by_severity),
'issue_count': len(issues),
'files_analyzed': len(js_files),
}
def _analyze_typescript_performance(self, repo_path):
"""
Analyze TypeScript code for performance issues.
Args:
repo_path (str): The path to the repository.
Returns:
dict: Performance analysis results for TypeScript code.
"""
logger.info(f"Analyzing TypeScript code performance in {repo_path}")
# Find TypeScript files
ts_files = []
for root, _, files in os.walk(repo_path):
if 'node_modules' in root:
continue
for file in files:
if file.endswith(('.ts', '.tsx')):
ts_files.append(os.path.join(root, file))
if not ts_files:
return {
'status': 'no_files',
'message': 'No TypeScript files found in the repository.',
'issues': [],
}
# Analyze each TypeScript file
issues = []
for file_path in ts_files:
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
# Check for performance patterns
for pattern in self.typescript_patterns:
matches = re.finditer(pattern['pattern'], content)
for match in matches:
line_number = content[:match.start()].count('\n') + 1
code_snippet = match.group(0)
issues.append({
'file': file_path,
'line': line_number,
'code': code_snippet,
'issue': pattern['name'],
'description': pattern['description'],
'suggestion': pattern['suggestion'],
'severity': pattern['severity'],
'language': 'TypeScript',
})
except Exception as e:
logger.error(f"Error analyzing TypeScript file {file_path}: {e}")
# Group issues by severity
issues_by_severity = defaultdict(list)
for issue in issues:
severity = issue.get('severity', 'unknown')
issues_by_severity[severity].append(issue)
return {
'status': 'success',
'issues': issues,
'issues_by_severity': dict(issues_by_severity),
'issue_count': len(issues),
'files_analyzed': len(ts_files),
}
def _analyze_java_performance(self, repo_path):
"""
Analyze Java code for performance issues.
Args:
repo_path (str): The path to the repository.
Returns:
dict: Performance analysis results for Java code.
"""
logger.info(f"Analyzing Java code performance in {repo_path}")
# Find Java files
java_files = []
for root, _, files in os.walk(repo_path):
for file in files:
if file.endswith('.java'):
java_files.append(os.path.join(root, file))
if not java_files:
return {
'status': 'no_files',
'message': 'No Java files found in the repository.',
'issues': [],
}
# Analyze each Java file
issues = []
for file_path in java_files:
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
# Check for performance patterns
for pattern in self.java_patterns:
matches = re.finditer(pattern['pattern'], content)
for match in matches:
line_number = content[:match.start()].count('\n') + 1
code_snippet = match.group(0)
issues.append({
'file': file_path,
'line': line_number,
'code': code_snippet,
'issue': pattern['name'],
'description': pattern['description'],
'suggestion': pattern['suggestion'],
'severity': pattern['severity'],
'language': 'Java',
})
except Exception as e:
logger.error(f"Error analyzing Java file {file_path}: {e}")
# Group issues by severity
issues_by_severity = defaultdict(list)
for issue in issues:
severity = issue.get('severity', 'unknown')
issues_by_severity[severity].append(issue)
return {
'status': 'success',
'issues': issues,
'issues_by_severity': dict(issues_by_severity),
'issue_count': len(issues),
'files_analyzed': len(java_files),
}
def _analyze_go_performance(self, repo_path):
"""
Analyze Go code for performance issues.
Args:
repo_path (str): The path to the repository.
Returns:
dict: Performance analysis results for Go code.
"""
logger.info(f"Analyzing Go code performance in {repo_path}")
# Find Go files
go_files = []
for root, _, files in os.walk(repo_path):
for file in files:
if file.endswith('.go'):
go_files.append(os.path.join(root, file))
if not go_files:
return {
'status': 'no_files',
'message': 'No Go files found in the repository.',
'issues': [],
}
# Analyze each Go file
issues = []
for file_path in go_files:
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
# Check for performance patterns
for pattern in self.go_patterns:
matches = re.finditer(pattern['pattern'], content)
for match in matches:
line_number = content[:match.start()].count('\n') + 1
code_snippet = match.group(0)
issues.append({
'file': file_path,
'line': line_number,
'code': code_snippet,
'issue': pattern['name'],
'description': pattern['description'],
'suggestion': pattern['suggestion'],
'severity': pattern['severity'],
'language': 'Go',
})
except Exception as e:
logger.error(f"Error analyzing Go file {file_path}: {e}")
# Group issues by severity
issues_by_severity = defaultdict(list)
for issue in issues:
severity = issue.get('severity', 'unknown')
issues_by_severity[severity].append(issue)
return {
'status': 'success',
'issues': issues,
'issues_by_severity': dict(issues_by_severity),
'issue_count': len(issues),
'files_analyzed': len(go_files),
}
def _analyze_rust_performance(self, repo_path):
"""
Analyze Rust code for performance issues.
Args:
repo_path (str): The path to the repository.
Returns:
dict: Performance analysis results for Rust code.
"""
logger.info(f"Analyzing Rust code performance in {repo_path}")
# Find Rust files
rust_files = []
for root, _, files in os.walk(repo_path):
for file in files:
if file.endswith('.rs'):
rust_files.append(os.path.join(root, file))
if not rust_files:
return {
'status': 'no_files',
'message': 'No Rust files found in the repository.',
'issues': [],
}
# Analyze each Rust file
issues = []
for file_path in rust_files:
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
# Check for performance patterns
for pattern in self.rust_patterns:
matches = re.finditer(pattern['pattern'], content)
for match in matches:
line_number = content[:match.start()].count('\n') + 1
code_snippet = match.group(0)
issues.append({
'file': file_path,
'line': line_number,
'code': code_snippet,
'issue': pattern['name'],
'description': pattern['description'],
'suggestion': pattern['suggestion'],
'severity': pattern['severity'],
'language': 'Rust',
})
except Exception as e:
logger.error(f"Error analyzing Rust file {file_path}: {e}")
# Group issues by severity
issues_by_severity = defaultdict(list)
for issue in issues:
severity = issue.get('severity', 'unknown')
issues_by_severity[severity].append(issue)
return {
'status': 'success',
'issues': issues,
'issues_by_severity': dict(issues_by_severity),
'issue_count': len(issues),
'files_analyzed': len(rust_files),
} |